Exercice 1 (Mines-Télécom 25) Soit $F(x) = \int_0^{+\infty} \frac{(e^{-t} - e^{-2t})e^{-xt}}{t} dt$.

- 1) Montrer que F est définie et de classe C^1 sur $]-1,+\infty[$. Déterminer la valeur de F'(x).
- 2) Montrer que F admet une limite, que l'on précisera, en $+\infty$. En déduire la valeur de F(x).

Exercice 2 (CCINP 25) Soit f de classe C^{∞} sur **R** et $F(x) = \int_0^1 f'(xt) dt$.

- 1) Montrer que F est de classe C^{∞} sur \mathbf{R} .
- 2) En déduire que $x \mapsto \frac{f(x) f(0)}{x}$ est prolongeable en une fonction C^{∞} sur **R**.

Exercice 3 (CCINP 25) Soit $g(x) = \int_0^{+\infty} \frac{e^{-xt}(\sin t)^2}{t} dt$.

- 1) Montrer que l'intégrale définissant g(x) converge pour tout x > 0.
- 2) Déterminer la limite de g(x) quand x tend vers $+\infty$.
- 3) Montrer que g est de classe C^1 sur \mathbf{R}_+^* . Calculer g'(x); en déduire g(x).

Exercice 4 (CCINP 25) On veut calculer $A = \int_0^{+\infty} e^{-u^2} du$. On pose $f(x) = \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt$.

- 1) Montrer que f est bien définie et continue sur $[0, +\infty[$.
- 2) Calculer f(0) et déterminer la limite de f(x) en $+\infty$.
- 3) Montrer que f est C^1 sur]0, $+\infty$ [puis établir que $f'(x) = -A\frac{e^{-x}}{\sqrt{x}}$.
- 4) Montrer que $\int_0^{+\infty} f'(t) dt = -2A^2$. En déduire la valeur de A.

Exercice 5 (CCINP 25) Soit $F(x) = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} e^{-xt} dt$.

- 1) Montrer que F est définie et continue sur $[0, +\infty[$.
- 2) Montrer que F est de classe C^2 sur $]0, +\infty[$.
- 3) Déterminer les limites de F(x) et de F'(x) en $+\infty$.
- 4) Montrer que $F'(x) = \ln(x) \frac{1}{2}\ln(1+x^2)$ pour x > 0;
- 5) Déterminer la valeur de F(x) pour $x \in \mathbf{R}_+$.
- 6) Soit $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$. Exprimer I en fonction de F(0) puis déterminer sa valeur.

Exercice 6 (Saint-Cyr 25) Soit $F(x) = \int_1^{+\infty} \frac{1}{1+t^x} dt$.

- 1) Déterminer le domaine de définition D de F.
- 2) Établir la continuité, puis la classe C^1 , de F sur D.
- 3) Avec Python, conjecturer la valeur de f(2); puis prouver cette conjecture.
- 4) Étudier la monotonie de *F* puis déterminer ses limites aux extrémités de *D*.

Exercice 7 (Centrale 25) Soit $F(x) = \int_0^{+\infty} \frac{\cos(xt)}{1+t^2} dt$.

- 1) Montrer que F est définie et continue sur \mathbf{R} .
- 2) Tracer avec Python la courbe représentative de F su [-10, 10].
- 3) En posant u = xt montrer que F est de classe C^2 sur \mathbb{R}_+^* .
- 4) Montrer que l'équation y''(x) = y(x) admet une unique solution bornée sur **R** vérifiant $y(0) = \frac{\pi}{2}$.
- 5) En utilisant odeint, tracer la courbe représentative de cette solution. Conjecture?
- 6) Prouver le résultat conjecturé.