On s'intéresse à la fonction
$$F(x) = \int_0^{+\infty} \frac{\mathrm{e}^{-xt^2}}{1+t} \mathrm{d}t$$
.
On rappelle que $\int_0^{+\infty} \mathrm{e}^{-t^2} \mathrm{d}t = \frac{\sqrt{\pi}}{2}$.

- 1) Déterminer le domaine de définition D de F.
- 2) a) Montrer que F est de classe C^1 sur D.
 - **b)** Simplifier F(x) + F'(x) pour $x \in D$.
 - c) F est-elle de classe C^{∞} sur D?
- 3) a) Montrer que pour tout x > 0, $F(x) \geqslant \frac{1}{e} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t}$.
 - b) En déduire la limite de F(x) quand x tend vers 0 par valeurs strictement positives.
- 4) a) Montrer que pour tout x > 0, $F(x) = \int_0^{+\infty} \frac{e^{-u^2}}{\sqrt{x}+u} du$.
 - **b)** En déduire la limite en $+\infty$ de $\sqrt{x} F(x)$.
 - c) En s'inspirant des questions précédentes, montrer que $\sqrt{x} \left(\sqrt{x} F(x) \frac{\sqrt{\pi}}{2} \right) \xrightarrow[x \to +\infty]{} -\frac{1}{2}$.
- **5)** On s'intéresse désormais à la suite $(I_n)_{n\in\mathbb{N}^*}$ définie par $I_n=F(\frac{1}{n})$.
 - **a)** Montrer que : $\int_0^{\sqrt{n}} \frac{du}{1+u} I_n = \int_0^1 \frac{\sqrt{n}(1-e^{-u^2})}{1+u\sqrt{n}} du \int_1^{+\infty} \frac{e^{-u^2}\sqrt{n}}{1+u\sqrt{n}} du .$
 - **b)** En déduire qu'il existe un réel c tel que : $I_n = \frac{1}{n \to +\infty} \frac{1}{2} \ln(n) + c + o(1)$.