Définition 1 Soit *u* un endomorphisme d'un espace vectoriel *E*.

Une *valeur propre* de u est un scalaire λ pour lequel existe un vecteur x non nul tel que $u(x) = \lambda x$. Un *vecteur propre* pour u est un vecteur x non nul pour lequel existe un scalaire λ tel que $u(x) = \lambda x$. Lorsqu'il n'est pas réduit au vecteur nul, le noyau de $u - \lambda I d_E$ est appelé *espace propre* associé à λ .

Remarque 1 Un vecteur est propre si, et seulement si, il engendre une droite stable.

Remarque 2 Si u est annulé par un polynôme P, toute valeur propre de u est racine de P.

Remarque 3 Si u et v commutent, tout sous-espace propre pour u est stable par v.

Proposition 1 Toute somme (finie) de sous-espaces propres est directe.

Définition 2 Dans tout ce qui suit, *E* est un espace de dimension finie. Un endomorphisme de *E* est alors dit *diagonalisable* lorsqu'il peut être représenté par une matrice diagonale; il est dit *trigonalisable* lorsqu'il peut être représenté par une matrice triangulaire.

Proposition 2 Soit u un endomorphisme de E.

u est diagonalisable \iff la somme des sous-espaces propres de u est égale à E \iff la somme des dimensions des sous-espaces propres de u est égale à la dimension de E

Remarque 4 Valeur propre d'une matrice carrée, matrice diagonalisable, matrice trigonalisable.

Définition 3 Le polynôme caractéristique d'une matrice $M \in \mathcal{M}_n(\mathbf{K})$ est le polynôme χ_M défini par : $\forall x \in \mathbf{K}$, $\chi_M(x) = (-1)^n \det(M - xI_n)$.

Remarque 5
$$\chi_M(x) = x^n - \text{tr}(M)x^{n-1} + \dots + (-1)^n \det(M)$$

Remarque 6 Deux matrices semblables ont le même polynôme caractéristique.

Remarque 7 Si χ_u est scindé à racines simples, alors u est diagonalisable.

Proposition 3 En dimension finie, l'ensemble des valeurs propres d'un endomorphisme, appelé *spectre* de u et noté Sp(u), est l'ensemble des racines du polynôme caractéristique. Et la multiplicité de chacune de ces racines est un majorant de la dimension de l'espace propre correspondant.

Proposition 4 u est diagonalisable si, et seulement si, χ_u est scindé et la multiplicité de chaque valeur propre de u est égale à la dimension de l'espace propre correspondant.

Théorème 1 u diagonalisable $\iff \prod_{\lambda \in \operatorname{Sp}(u)} (u - \lambda I d_E) = 0_{\mathscr{L}(E)}$ $\iff u$ est annulé par un polynôme scindé à racines simples

Corollaire 1 L'endomorphisme induit par un endomorphisme diagonalisable sur un sous-espace stable est diagonalisable.

Théorème 2 Un endomorphisme est trigonalisable si, et seulement si, son polynôme caractéristique est scindé sur le corps des scalaires. En particulier, toute matrice de $\mathcal{M}_n(\mathbb{C})$ est trigonalisable.

Corollaire 2 Le déterminant d'une matrice est le produit de ses valeurs propres complexes, tandis que sa trace est la somme de ses valeurs propres complexes (et tenant compte des multiplicités).

Théorème 3 (Cayley-Hamilton) $\forall M \in \mathcal{M}_n(\mathbf{C})$, $\chi_M(M) = 0_{\mathcal{M}_n(\mathbf{C})}$