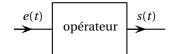
Électronique

I — Stabilité des systèmes linéaires

Système linéaire entrée-sortie continu et invariant

Un système est **linéaire** si les signaux sont des **fonctions continues du temps** (systèmes analogiques).



- e(t) est le **signal d'entrée** (ou excitation);
- s(t) est le **signal de sortie** (ou réponse).

Un système est linéaire si pour deux signaux d'entrée $e_1(t)$ et $e_2(t)$, on a

$$\begin{array}{c} e_1(t) \longrightarrow s_1(t) \\ e_2(t) \longrightarrow s_2(t) \end{array} \right\} \qquad \forall (\lambda,\mu) \in \mathbf{R}^2, \quad \lambda e_1(t) + \mu e_2(t) \longrightarrow \lambda s_1(t) + \mu s_2(t)$$

Un système est **invariant** si ses propriétés ne varient pas dans le temps : $e(t) \longrightarrow s(t) \implies e(t-\tau) \longrightarrow s(t-\tau)$, $\forall \tau$

Le signal sinusoïdal est *isomorphe* pour les systèmes linéaires : le signal de sortie est une sinusoïde de même fréquence :

$$e(t) = E\cos(\omega t + \varphi) \longrightarrow s(t) = S\cos(\omega t + \psi).$$

➤ Si e(t) = 0, on a s(t) = 0 pour un système linéaire.

Critère de linéarité : si le signal de sortie comporte une composante harmonique à une fréquence absente du spectre du signal d'entrée, le système est non linéaire.

Représentation d'un système linéaire continu invariant

Représentation temporelle

Les grandeurs d'entrée et de sortie sont reliées par une équation différentielle linéaire :

$$a_0 s(t) + a_1 \frac{\mathrm{d}s}{\mathrm{d}t} + \dots + a_n \frac{\mathrm{d}^n s}{\mathrm{d}t^n} = b_0 e(t) + b_1 \frac{\mathrm{d}e}{\mathrm{d}t} + \dots + b_m \frac{\mathrm{d}^m e}{\mathrm{d}t^m},\tag{1}$$

où n définit l'**ordre** du système.

La solution générale de (1) s'écrit $s(t) = s_h(t) + s_p(t)$ où

- $s_h(t)$, solution générale de l'équation homogène, décrit le régime libre;
- $s_p(t)$, solution particulière de l'équation complète, décrit le régime permanent établi.
- \blacktriangleright Le régime établi $s_p(t)$ est indépendant des conditions initiales.
- \blacktriangleright Tant que $s_h(t)$ n'est pas négligeable devant $s_p(t)$, on est dans le **régime transitoire**.

Représentation fréquentielle

On se place en régime harmonique (régime sinusoïdal).

Notation complexe (système linéaire) : $e(t) = E\cos(\omega t + \varphi) \longrightarrow \underline{e}(t) = \underline{E}e^{j\omega t}$ où $\underline{E} = Ee^{j\varphi}$ est l'amplitude complexe.

Le système linéaire est décrit par la fonction de transfert

$$\underline{H}(j\omega) = \frac{\underline{S}}{\underline{E}} = \frac{b_0 + b_1(j\omega) + \dots + b_m(j\omega)^m}{a_0 + (j\omega)a_1 + \dots + a_n(j\omega)^n}.$$
 (2)

- ightharpoonup Le lien entre les descriptions temporelle et fréquentielle se fait par la correspondance $\frac{\mathrm{d}}{\mathrm{d}t}\longleftrightarrow \times\mathrm{j}\omega$.
- ➤ On peut utiliser la notation symbolique $H(p) = \frac{b_0 + b_1 p + \dots + b_m p^m}{a_0 + a_1 p + \dots + a_n p^n}$
- ➤ L'ordre du système est le degré *n* du dénominateur.

Stabilité

Un système est stable si $\lim_{t\to+\infty} s_h(t) = 0$.

Un système d'ordre 1 ou 2 est stable si les coefficients de l'équation différentielle régissant le régime libre — ou les coefficients du dénominateur de la fonction de transfert — sont de même signe.