PSI

Chapitre I : Intégrales généralisées :

- Définition des fonctions continues par morceaux.
- Intégrales généralisées :
 - * Si f est une fonction continue par morceaux sur $[a; +\infty[$, l'intégrale $\int_a^{+\infty} f(t)dt$ est dite convergente si $x \mapsto \int_a^x f(t)dt$ admet une limite finie quand $x \to +\infty$.
 - * On a la définition équivalente sur $[a;b[,\,\mathrm{sur}\]-\infty;b]$ et sur]a;b].
 - * Si f est une fonction continue par morceaux sur]a;b[, l'intégrale $\int_a^b f(t)dt$ est dite convergente si pour $c \in]a;b[$ les intégrales $\int_{[a:c]} f(t)dt$ et $\int_{[c:b]} f(t)dt$ sont convergentes.
 - * Si f est une fonction continue par morceaux sur [a;b[(ou]a;b]) et si f est positive sur cet intervalle alors $\int_a^b f(t)dt \text{ converge ssi } x \mapsto \int_a^x f(t)dt \text{ est major\'ee.}$
 - * Intégrales de référence à connaitre :

$$\int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge} \iff \dots; \int_{0}^{1} \frac{dt}{t^{\alpha}} \text{ converge} \iff \dots; \int_{0}^{+\infty} e^{-\alpha t} dt \text{ converge} \iff \dots; \int_{0}^{1} \ln(t) dt \text{ converge}.$$

- * Propriétés des intégrales : linéarité, positivité, croissance, relation de Chasles.
- * Changement de variables, si $\varphi:]\alpha,\beta[\to]a,b[$ est une bijection strictement croissante (ou strictement décroissante) de classe C^1 alors . . .
- * Intégration par parties sur un intervalle quelconque si vous n'oubliez pas d'hypothèse (de convergence) ou alors on se ramène à une intégration par partie sur un segment (sans oublier les hypothèses C^1) suivi d'un passage à la limite.
- Intégrales absolument convergentes et fonctions intégrables
 - * La fonction f est intégrable sur I si f est continue par morceaux sur I et si $\int_{I} |f(t)| dt$ converge.
 - \star Si $|f| \leq |g|$ sur $[a; +\infty[$ (ou sur $[a; b[, \ldots)$ alors l'intégrabilité de g sur l'intervalle implique celle de f.
 - * Si f(x) = O(g(x)) alors l'intégrabilité de g implique celle de f sur $[a; +\infty[$.
 - * Si $f(x) \underset{x \to +\infty}{\sim} g(x)$ alors l'intégrabilité de g est équivalente à celle de f sur $[a; +\infty[$.
 - \star Si f est continue et intégrable sur I alors $\int_I |f(t)| dt = 0$ implique f = 0 sur I.
 - \star L'ensemble des fonctions intégrables sur I est un espace vectoriel.

Questions de cours :

En plus d'une des questions suivantes l'examinateur vous demandera un développement limité usuel : e^x , $\cos(x)$, $\sin(x)$, $(1+x)^{\alpha}$, $\ln(1+x)$, $\arctan(x)$ en 0 à l'ordre n et $\tan(x)$ en 0 à l'ordre 5.

- Montrer que la fonction $t \mapsto \frac{e^{it}}{t}$ n'est pas intégrable sur $[1; +\infty[$ mais que l'intégrale $\int_{1}^{+\infty} \frac{e^{it}}{t} dt$ converge.
- Pour tout $n \in \mathbb{N}$, on pose $\Gamma(n) = \int_0^{+\infty} t^n e^{-t} dt$.
 - **a.** Justifier que $\Gamma(n)$ existe.
 - **b.** Montrer que pour tout entier naturel n on a $\Gamma(n+1) = (n+1)\Gamma(n)$. On en déduit alors que $\Gamma(n) = n!$. (On ne demande pas de montrer ce point dans cette question de cours.)
- Déterminer la nature de $\int_0^{+\infty} \frac{\ln t}{1+t^2} dt$ et de $\int_0^{+\infty} \frac{\ln(1+\frac{1}{t})}{\sqrt{t}} dt$.
- Nature et valeur de $\int_0^{+\infty} e^{-\sqrt{t}} dt$.