Électronique III - Oscillateurs

E. Saudrais

Jean Perrin PSI

12 septembre 2024

[1] — Principe d'un oscillateur quasi-sinusoïdal

chaîne directe amplificateur de gain A

chaîne de retour filtre passe-bande d'ordre 2 de fonction de transfert $\underline{B}(j\omega) = \frac{H_0}{(2\pi)^3}.$

$$1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)$$

[2] — Oscillateur à pont de Wien Chaîne directe

Chaîne directe : amplificateur non inverseur

Gain $G = 1 + \frac{R_2}{R_1}$ quand l'ALI est linéaire, c'est-à-dire pour $|e(t)| < \frac{V_{sat}}{G}$.

[3] — Oscillateur à pont de Wien Chaîne de retour

Chaine de retour : filtre de Wien

[4] — Oscillateur à pont de Wien Montage complet

Si l'ALI fonctionne en régime linéaire :

$$\frac{\mathrm{d}^2 \mathbf{v}(t)}{\mathrm{d}t^2} + (3-G)\omega_0 \frac{\mathrm{d}\mathbf{v}(t)}{\mathrm{d}t} + \omega_0^2 \mathbf{v}(t) = 0.$$

[5] — Oscillateur à pont de Wien Condition théorique d'oscillations sinusoïdales

Cas limite : $G_c = 3$.

- Oscillateur harmonique $\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + \omega_0^2 v(t) = 0.$
- Amplitude des oscillations très faibles : inutilisable en pratique.
- Égalité rigoureuse $G_c = 3$ impossible à fixer en pratique.

[6] — Oscillateur à pont de Wien Condition d'accrochage des oscillations

Cas G > 3 : accrochage des oscillations. Deux modes de fonctionnement :

- ALI linéaire, $\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + (3 G)\omega_0 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \omega_0^2 v(t) = 0$: oscillations amplifiées (3 G < 0)
- ALI saturé, $\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + 3\omega_0 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \omega_0^2 v(t) = 0$: régime libre amorti et décroissance de v(t).

Les oscillations prennent naissance en s'amplifiant ; quand la saturation est atteinte, on observe une alternance des deux phases.

Les oscillations sont d'autant plus proches d'une sinusoïde que G est proche de $G_c = 3$; l'ALI fonctionne presque tout le temps en régime linéaire.

[7] — Oscillateur à pont de Wien Naissance des oscillations : G > 3

évolution de v(t)

E. Saudrais	(Jean Perrin)
-------------	---------------

[8] — Oscillateur à pont de Wien Oscillations guasi-sinusoïdales

Le gain G est peu supérieur à 3

évolution de v(t)

E. Saud	lrais (Jean	Perrin)

9/21

[9] — Oscillateur à pont de Wien Oscillations non sinusoïdales

Le gain G est nettement supérieur à 3

évolution de v(t)

E. Saudrais	(Jean Perrin)	
-------------	---------------	--

[10] — Oscillateur à pont de Wien Oscillations guasi-sinusoïdales : saturation de l'ALI

évolution de v(t) et $v_1(t)$

- L'ALI est presque tout le temps saturé.
- La période des oscillations a augmenté.

E. Saudrais (Jean Perrin)

[11] — Oscillateur à pont de Wien $C_{as} G = 3$

12/21

[12] — Oscillateur à pont de Wien $C_{as} G = 3,1$

-15 -10 -5

10 15

140

[13] — Oscillateur à pont de Wien $C_{as} G = 3,2$

oscillations moins harmoniques ALI presque toujours linéaire non linéarités apparaissant (v_1)

[14] — Oscillateur à pont de Wien $C_{as} G = 3,5$

[15] — Oscillateur à pont de Wien $C_{as} G = 4$

[16] — Oscillateur à pont de Wien $C_{as} G = 5$

17 / 21

[17] — Oscillateur à pont de Wien $C_{as} G = 8$

[18] — Oscillateur de relaxation

Comparateur non inverseur

[19] — Oscillateur de relaxation Intégrateur

[20] — Oscillateur de relaxation Montage complet

