Électronique III - Oscillateurs

E. Saudrais

Jean Perrin PSI

12 septembre 2024

[1] — Principe d'un oscillateur quasi-sinusoïdal

chaîne directe amplificateur de gain A

chaîne de retour filtre passe-bande d'ordre 2 de fonction de transfert

$$\underline{B}(\mathrm{j}\omega) = \frac{H_0}{1 + \mathrm{j}Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

[2] — Oscillateur à pont de Wien

Chaîne directe

Chaîne directe: amplificateur non inverseur

 ${\sf Gain} \ \ G=1+\frac{R_2}{R_1} \ \ {\sf quand} \ \ {\sf l'ALI} \ \ {\sf est} \ \ {\sf lin\'eaire}, \ \ {\sf c'est-\`a-dire} \ \ {\sf pour} \ \ |e(t)|<\frac{V_{\sf sat}}{G}.$

[3] — Oscillateur à pont de Wien

Chaîne de retour

Chaine de retour : filtre de Wien

$$\begin{split} \underline{H}(\mathrm{j}\omega) &= \frac{H_0}{1 + \mathrm{j} Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \quad \text{avec} \quad H_0 = \frac{1}{3} \;, \quad Q = \frac{1}{3} \quad \text{et} \quad \omega_0 = \frac{1}{RC} \,. \\ &\frac{\mathrm{d}^2 s(t)}{\mathrm{d}t^2} + 3\omega_0 \frac{\mathrm{d}s(t)}{\mathrm{d}t} + \omega_0^2 s(t) = \omega_0 \frac{\mathrm{d}e(t)}{\mathrm{d}t} \,. \end{split}$$

[4] — Oscillateur à pont de Wien

Montage complet

Si l'ALI fonctionne en régime linéaire :

$$\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + (3 - G)\omega_0 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \omega_0^2 v(t) = 0.$$

[5] — Oscillateur à pont de Wien

Condition théorique d'oscillations sinusoïdales

Cas limite : $G_c = 3$.

- Oscillateur harmonique $\frac{\mathrm{d}^2 v(t)}{\mathrm{d} t^2} + \omega_0^2 v(t) = 0.$
- Amplitude des oscillations très faibles : inutilisable en pratique.
- Égalité rigoureuse $G_c = 3$ impossible à fixer en pratique.

[6] — Oscillateur à pont de Wien

Condition d'accrochage des oscillations

Cas G > 3: accrochage des oscillations.

Deux modes de fonctionnement :

- ALI linéaire, $\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + (3-G)\omega_0 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \omega_0^2 v(t) = 0$: oscillations amplifiées (3-G<0)
- ALI saturé, $\frac{\mathrm{d}^2 v(t)}{\mathrm{d}t^2} + 3\omega_0 \frac{\mathrm{d}v(t)}{\mathrm{d}t} + \omega_0^2 v(t) = 0$: régime libre amorti et décroissance de v(t).

Les oscillations prennent naissance en s'amplifiant; quand la saturation est atteinte, on observe une alternance des deux phases.

Les oscillations sont d'autant plus proches d'une sinusoïde que G est proche de $G_{\rm c}=3$; l'ALI fonctionne presque tout le temps en régime linéaire.

[7] — Oscillateur à pont de Wien

Naissance des oscillations : G > 3

évolution de v(t)

[8] — Oscillateur à pont de Wien

Oscillations quasi-sinusoïdales

Le gain G est peu supérieur à 3

évolution de v(t)

[9] — Oscillateur à pont de Wien

Oscillations non sinusoïdales

Le gain G est nettement supérieur à 3

évolution de v(t)

[10] — Oscillateur à pont de Wien

Oscillations quasi-sinusoïdales : saturation de l'ALI

évolution de v(t) et $v_1(t)$

- L'ALI est presque tout le temps saturé.
- La période des oscillations a augmenté.

[11] — Oscillateur à pont de Wien

Cas G = 3

oscillations harmoniques amplitude très faible ALI linéaire

[12] — Oscillateur à pont de Wien

Cas G = 3.1

oscillations quasi-harmoniques amplitude notable ALI presque toujours linéaire

[13] — Oscillateur à pont de Wien

Cas G = 3,2

oscillations moins harmoniques ALI presque toujours linéaire non linéarités apparaissant (v_1)

-10 ·

-15 -10

10 15

[14] — Oscillateur à pont de Wien

Cas G = 3.5

Oscillations non harmoniques partie non linéaire plus importante sur la caractéristique de l'ALI

[15] — Oscillateur à pont de Wien

Cas G = 4

Oscillations non harmoniques ALI souvent non linéaire

-15

-15 -10

10 15

[16] — Oscillateur à pont de Wien

Cas G = 5

Oscillations pas du tout harmoniques, période plus grande ALI fortement non linéaire

[17] — Oscillateur à pont de Wien

Cas G = 8

Oscillations pas du tout harmoniques, période plus grande ALI fortement non linéaire

[18] — Oscillateur de relaxation

Comparateur non inverseur

[19] — Oscillateur de relaxation

Intégrateur

[20] — Oscillateur de relaxation

Montage complet

