Thermochimie

I — Application du premier principe

Description d'un système réactif

On considère un système de N constituants, réagissant selon une réaction chimique d'équation bilan

$$\sum_{i=1}^{N} v_i B_i = 0, \tag{1}$$

où v_i est le coefficient stœchiométrique algébrique de l'espèce B_i ($v_i > 0$ pour un produit, $v_i < 0$ pour un réactif).

Par exemple pour $2H_2 + O_2 = 2H_2O$, on a $v(H_2) = -2$, $v(O_2) = -1$ et $v(H_2O) = +2$.

Variables de Gibbs

L'état du système peut être décrit par les N+2 variables de Gibbs $(T, P, n_1, ..., n_N)$, où n_i est la quantité du constituant B_i .

L'enthalpie du système s'écrit donc $H(T, P, n_1, ..., n_N)$; sa différentielle est

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,\xi} dT + \left(\frac{\partial H}{\partial P}\right)_{T,\xi} dP + \sum_{i=1}^{N} \left(\frac{\partial H}{\partial n_i}\right)_{T,P,n_{i\neq i}} dn_i$$
(2)

On définit l'enthalpie molaire partielle du constituant i dans le système par $H_{\mathrm{m},i} = \left(\frac{\partial H}{\partial n_i}\right)_{T,P,n_{j\neq i}}$.

- \blacktriangleright Dans la relation (2), chaque dérivée partielle est fonction des variables de Gibbs (T, P, n_1, \dots, n_N) .
- ➤ La relation (2) peut s'écrire

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,\xi} dT + \left(\frac{\partial H}{\partial P}\right)_{T,\xi} dP + \sum_{i=1}^{N} H_{m,i} dn_{i}.$$
(3)

Utilisation de l'avancement (variables de De Donder)

La variation dn_i de l'espèce B_i pendant dt est reliée à l'avancement par $dn_i = v_i d\xi$.

 \blacktriangleright En prenant $\xi(t=0)=0$, on a donc $n_i(t)=n_i(0)+v_i\xi(t)$.

L'enthalpie du système s'écrit alors $H(T, P, \xi)$; sa différentielle est

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,\xi} dT + \left(\frac{\partial H}{\partial P}\right)_{T,\xi} dP + \left(\frac{\partial H}{\partial \xi}\right)_{T,P} d\xi. \tag{4}$$

Enthalpie de réaction

L'enthalpie de réaction associée à la réaction (1) est définie par

$$\Delta_{\rm r} H(T, P, \xi) = \left(\frac{\partial H}{\partial \xi}\right)_{T, P} (T, P, \xi).$$

- ▶ Une grandeur de réaction est une grandeur instantanée, qui dépend en particulier de l'avancement $\xi(t)$ à l'instant considéré.
- \triangleright L'enthalpie de réaction s'exprimer en kJ·mol⁻¹.
- \blacktriangleright L'opérateur de Lewis Δ_r ne doit pas être confondu avec le symbole de variation Δ d'une grandeur.

En identifiant les relations (2) et (4), on peut exprimer l'enthalpie de réaction en fonction des enthalpies molaires des constituants

$$\Delta_{\rm r} H(T,P,\xi) = \sum_{i=1}^N v_i H_{{\rm m},i}(T,P,\xi) \ . \label{eq:delta-relation}$$

Grandeurs standard de réaction

État standard

L'état standard d'un constituant d'un mélange pris à la température T et à la pression P dans un état physique donné est l'état de ce même constituant pris :

- dans le même état physique; sous la pression standard $P^{\circ} = 1$ bar;
 - à la même température *P*; pur.
- \blacktriangleright Pour un gaz, on prend le gaz parfait à la pression P° .
- ▶ Pour un soluté, on le considère à la concentration $C^{\circ} = \text{mol} \cdot L^{-1}$ « infiniment dilué » (sans interactions avec les autres constituants).
- \blacktriangleright L'état standard peut être fictif, car l'état physique à (T, P) n'est pas forcément stable à (T, P°) .
- \blacktriangleright L'enthalpie molaire standard d'un constituant $H_{\mathrm{m},i}^{\circ}(T)$, définie quand le constituant est pris dans son état standard, **ne dépend que de la température**.

Enthalpie standard de réaction

L'enthalpie standard de réaction est l'enthalpie de réaction quand les constituants sont pris dans leur état standard :

$$\Delta_{\mathbf{r}} H^{\circ}(T) = \sum_{i} \nu_{i} H_{\mathbf{m},i}^{\circ}(T).$$

Elle ne dépend que de la température.

État standard d'un élément

L'état standard de référence **d'un élément** à une température donnée est l'état standard du **corps simple** sous la forme la plus stable et dans la phase la plus stable à la température donnée.

- L'état standard de référence n'est défini que pour un élément.
- ➤ L'état standard dépend de la température.

Enthalpie standard de formation

La réaction de formation d'un composé à une température donnée est la réaction :

- de formation d'une mole de ce composé
- à partir des **corps simples** le constituant pris dans leurs **état standard de référence** à la température considérée.

L'enthalpie standard de formation $\Delta_f H^{\circ}(T)$ d'un composé à une température donnée est l'enthalpie standard de réaction de sa réaction de formation.

- \blacktriangleright Par définition, $\Delta_f H^\circ = 0$ pour un corps simple pris dans son état standard de référence.
- ► Par convention $\Delta_f H^{\circ}(H^+(aq)) = 0$ à toute température.

Expression de l'enthalpie standard de réaction en fonction des enthalpies standard de formation

La **loi de Hess** s'écrit

$$\Delta_{\mathbf{r}} H^{\circ}(T) = \sum_{i} \nu_{i} \Delta_{\mathbf{f}} H_{i}^{\circ}(T)$$

où $\Delta_f H_i^{\circ}(T)$ est l'enthalpie standard de formation du constituant B_i .

Calcul des enthalpies standard à des températures différentes de 298 K

Capacité thermique molaire isobare du constituant B_i dans le systèmes : $C_{p,m,i}(T,P,\xi) = \left(\frac{\partial H_{m,i}}{\partial T}\right)_{P,\xi,n_{i\neq i}}$.

Sa capacité thermique molaire standard isobare est : $C_{p,m,i}^{\circ}(T) = \frac{dH_{m,i}^{\circ}(T)}{dT}$

La **loi de Kirchhoff** s'écrit

$$\frac{\mathrm{d}\Delta_{\mathrm{r}}H^{\circ}(T)}{\mathrm{d}T} = \sum_{i} v_{i} C_{\mathrm{p,m},i}^{\circ}(T).$$

Dans le cas — très fréquent — où on considère que les $C_{\mathrm{p,m},i}^{\circ}$ sont indépendants de la température, on en déduit

$$\Delta_{\mathbf{r}} H^{\circ}(T) = \Delta_{\mathbf{r}} H^{\circ}(T_0) + (T - T_0) \sum_{i} v_i C_{\mathbf{p}, \mathbf{m}, i}^{\circ}.$$

➤ Usuellement on dispose des données à $T_0 = 298$ K.

Approximation de Ellingham

On se place souvent dans l'approximation de Ellingham:

En l'absence de changement d'état, on considère les enthalpies standard de réaction indépendantes de la température.

ightharpoonup L'approximation de Ellingham revient à considérer $\Delta_{\rm r} C_{\rm p}^{\rm o} \approx 0$.

Transfert thermique dû à une réaction en réacteur monobare isotherme

On considère la réaction chimique d'équation bilan (1), évoluant d'un état initial d'avancement $\xi_i = 0$ vers un état final d'avancement $\xi_f > 0$.

La variation d'enthalpie du système due à la réaction est

$$\Delta H = \Delta_{\rm r} H^{\circ}(T) \times \xi_{\rm f} \ .$$

Le premier principe pour une transformation monobare s'écrivant $\Delta H = Q_p$, le transfert thermique reçu par le milieu réactionnel du fait de la réaction est donc

$$Q_{\rm p} = \Delta_{\rm r} H^{\circ}(T) \times \xi_{\rm f} \ .$$

- ightharpoonup Si $\Delta_{\rm r} H^{\circ} > 0$: on a $Q_{\rm p} > 0$; le système reçoit de l'énergie thermique. La réaction est dite **endothermique**.
- ► Si $\Delta_r H^\circ$ < 0 : on a Q_p < 0; le système cède de l'énergie thermique. La réaction est dite **exothermique**.
- ightharpoonup Si $\Delta_{\rm r} H^{\circ} = 0$: on a $Q_{\rm p} = 0$. La réaction est dite **athermique**.

Température finale lors d'une réaction monobare dans un réacteur adiabatique

État initial (1): système à la température T_i , avancement $\xi_i = 0$.

État final (2): système à la température T_f , avancement $\xi_f > 0$.

On introduit un état intermédiaire fictif (I), où la réaction a eu lieu (avancement $\xi_f > 0$) mais de façon isotherme.

Étape $1 \to I : \Delta H_{1 \to I} = \Delta_r H^{\circ}(T_i) \times \xi_f$.

Étape I \rightarrow 2 : $\Delta H_{\text{I}\rightarrow 2} = C_{\text{p}}(T_{\text{f}}-T_{\text{i}})$, où la capacité thermique du système final s'écrit $C_{\text{m}} = \sum_{i} n_{i}C_{\text{p,m},i}$, la somme

portant sur tous les constituants présents dans le système final (en prenant en compte les éventuels constituants ne participant pas à la réaction), n_i étant la quantité de constituant i.

Le réacteur étant d'adiabatique, on a $\Delta H_{1\rightarrow 2} = 0$.

L'enthalpie étant une fonction d'état, sa variation entre deux états est indépendante du chemin suivi, d'où $\Delta H_{1\rightarrow 2} = \Delta H_{1\rightarrow I} + \Delta H_{I\rightarrow 2}$. On détermine la température finale de l'équation

$$\Delta_{\rm r} H^{\circ}(T_{\rm i}) \times \xi_{\rm f} + C_{\rm p}(T_{\rm f} - T_{\rm i}) = 0$$
.