Électronique numérique

1 — Quantification des mesures

La carte d'acquisition d'un oscilloscope utilisé en TP a une résolution de 8 bits. Le calibre est réglé à l'aide des boutons CH1 et CH2 dont l'effet se traduit par un zoom sur l'écran.

- 1. L'oscilloscope peut afficher $2^8 = 256$ valeurs.
- **2.** Pour une échelle de 5 V par carreau, le calibre (c'està-dire la tension de pleine échelle) correspond à $4 \times 5 = 20$ V, donc le pas de quantification est

$$p = \frac{40}{256} = 0.15 \,\text{V}.$$

Pour une échelle de 200 mV, on a un pas

$$p = \frac{4 \times 0.2}{256} = 3 \text{ mV}.$$

3. On a intérêt à prend l'échelle la plus faible, c'est-àdire à « zoomer » la courbe pour l'avoir au maximum en « plein écran » : la précision sur la détermination des amplitudes sera meilleure.

2 — Enregistrement d'un concert

On souhaite procéder à l'enregistrement d'un concert d'une durée de une heure, dans un format numérique sans compression (WAV par exemple). La fréquence d'échantillonnage choisie est $f_{\rm e}=44\,100$ Hz, et les valeurs sont enregistrées en stéréo sur un format de 16 bits.

1. La fréquence maximale est donnée par le critère de Shannon :

$$f_{\text{max}} = \frac{f_{\text{e}}}{2} = 22 \text{ kHz}.$$

Cette fréquence correspond à peu près à la fréquence maximale audible par l'oreille.

La fréquence minimale est donnée par la résolution spectrale (premier pic de fréquence différent de la fréquence nulle dans le spectre discret); elle est directement reliée à la durée T=1 h de l'enregistrement :

$$f_{\min} = \frac{1}{T} = 2.8 \times 10^{-4} \text{ Hz}.$$

Cette fréquence correspond à un infrason bien en deçà du spectre audible.

2. Le nombre de valeurs enregistrées sur les deux pistes (stéréo) est

$$N = 2 \times \frac{T}{T_{\rm e}} = 2 \times T \times f_{\rm e} \approx 317 \times 10^6.$$

Chaque valeur occupe 16 bit, soit un total de

$$5.08 \text{ Gbit} = 635 \text{ Mo}.$$

3 — Repliement du spectre

1. Le critère de Shannon est vérifié pour les harmoniques de fréquence

$$f < \frac{f_{\rm e}}{2} = 3750 \text{ Hz}.$$

Il est donc vérifié pour le fondamental de fréquence $f = 1000 \, \text{Hz}$ et le premier harmonique de fréquence 3000 Hz. Il n'est pas vérifié pour les harmoniques de rang supérieur.

2. k = 2: $f_e - f = 2500$ Hz.

 $k = 3:2f_{\rm e} - f = 8000$ Hz.

 $k = 4 : 2f_e - f = 6000 \text{ Hz}.$

 $k = 5 : 2f_e - f = 4000 \text{ Hz}.$

 $k = 6: 2f_e - f = 2000 \text{ Hz}.$

 $k = 7 : 2 f_e - f = 0 \text{ Hz}.$

 $k = 8:3f_{\rm e} - f = 5500$ Hz.

 $k = 9:3f_{\rm e} - f = 3500$ Hz.

 $k = 10: 4 f_e - f = 7000 \text{ Hz}.$

- ➤ Si $f_e f < 0$, on considère $2f_e f$, le spectre échantillonné comprenant les fréquences $nf_e \pm f$.
- **3.** Si on représente le spectre sur l'intervalle $[0, f_e/2]$, il faut représenter, outre les deux premiers harmoniques du signal, les raies repliées correspondant à k = 1, k = 6, k = 7, k = 9 et k = 10.

4 — Spectres d'un signal échantillonné

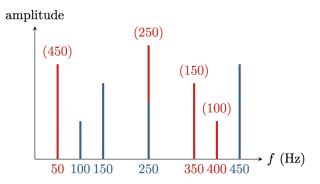
1. D'après le critère de Shannon, il faut une fréquence d'échantillonnage $f_{\rm e} > 2 f_{\rm max}$ pour échantillonner correctement un signal.

On déduit du spectre A que $f_{\text{max}} = 450 \text{ Hz}$.

Le critère de Shannon n'est donc pas vérifié pour le spectre B.

Dans le cas du spectre B, on observe le phénomène de repliement de spectre : à chaque pic du spectre du signal de fréquence f correspond un pic à la fréquen

Sur la représentation du spectre suivant, la fréquence originale de chaque pic « replié » est indiquée entre parenthèses.



- ➤ Le pic de fréquence 500 Hz se superpose au pic non replié, d'où l'amplitude observée.
- **2.** Il faut utiliser un filtre anti-repliement : filtre passebas, placé avant l'échantillonneur, qui va couper les fréquences du signal supérieures à $f_{\rm e} > 2$, soit une fréquence de coupure inférieure à 250 Hz.

Si cette méthode permet d'éviter le repliement de spectre, elle modifie le signal car elle enlève les deux harmoniques de plus hautes fréquences.

5 — Critère de Shannon

Le spectre indique un signal de fréquence fondamentale f=100 Hz. L'harmonique suivant $f_3=300$ Hz est visible comme attendu.

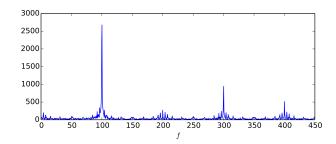
Calculons les fréquences des raies complémentaires (en hertz) pour les premiers harmoniques :

f	100	300	500	700
$f_{\rm e} - f$	800	600	400	200

On rappelle que la décomposition en série de Fourier d'un signal créneau ne contient que les harmoniques impairs du fondamental.

On observe à l'aide d'un oscilloscope numérique le spectre de Fourier d'un signal créneau avec une fréquence d'échantillonnage $f_{\rm e}=900~{\rm Hz}.$

Interpréter.



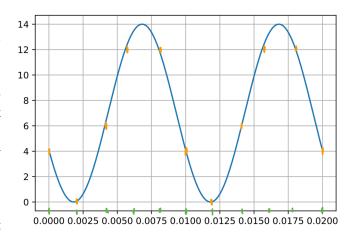
6 — Numérisation

Un échantillonnage sur 3 bits revient à découper en $2^3 = 8$ valeurs possibles l'intervalle de variation de la tension. Pour une variation entre 0 et 14 V, cela revient à arrondir les valeurs échantillonnées aux valeurs 0, 2, 4, 6, 8, 10, 12 et 14 (en volts).

On en déduit les valeurs binaires correspondantes :

tension (V)	bit	valeur binaire
0	0	000
2	1	001
4	2	010
6	3	011
8	4	100
10	5	101
12	6	110
14	7	111

La période d'échantillonnage est $T_{\rm e} = 0,002$ s. On repère les points correspondants sur la courbe.



La conversion en nombres binaires donne la liste : [010, 000, 011, 110, 110, 010, 000, 011, 110, 110, 010]

7 — Numérisation d'un son

1. La fréquence maximale audible étant $f_{\rm max}$ = 20 kHz, la fréquence d'échantillonnage doit vérifier $f_{\rm e}$ = $2f_{\rm max}$ = 40 kHz pour vérifier la critère de Shannon.

La fréquence adoptée pour ce CD vérifie donc le critère de Shannon pour les fréquences audio.

2. Le son de fréquence 43 kHz, en dehors du spectre audible, n'est pas perçu par les spectateurs.

Si on omet de placer un filtre passe-bas avant le CAN, il va se produire le phénomène de repliement spectral, faisant apparaître la fréquence

$$f_e - f = 44,1 - 43 = 1,1 \text{ kHz}$$

tout à fait audible.

3. Le filtre passe-bas doit supprimer les fréquences du signal supérieures à $f_{\rm e}/2$, soit $f_{\rm c}\approx 22$ kHz.

Le problème d'un tel filtre est que :

- il atténue les hautes fréquences du signal (juste en dessous de f_c ;
- il ne coupe pas complètement les fréquences juste au-dessus de $f_{\rm c}$ (qui donnent un phénomène de repliement de spectre).

Un filtre d'ordre plus élevé coupe plus efficacement les fréquences juste au-dessus de f_e .

Le suréchantillonnage permet d'avoir une fréquence de coupure $f_{\rm c}=f_{\rm e}/2$ plus élevée, ce qui permet de moins perturber les fréquences élevées du signal que l'on veut conserver.

4. Sur une seconde, l'enregistrement sur 2 canaux correspond à $2 \times 44.1 \times 10^3 = 88200$ acquisitions.

Chaque acquisition se faisant sur 16 bits, les données d'une seconde d'enregistrement représentent

$$16 \times 88200 = 1.41 \times 10^6$$
 bit.

Cela représente 176 ko.

Un disque de 700 Mo permet dont de stocker 3.97×10^3 s, soit 66 min.

5. Un enregistrement MP3 peut-on stocker un enregistrement jusqu'à 20 fois plus long, soit de l'ordre de 22 heures.

8 — Échantillonnage d'un son

1. Le son comporte des harmoniques aux fréquences

$$f_1 = 110 \text{ Hz}$$
; $f_2 = 220 \text{ Hz}$; $f_3 = 330 \text{ Hz}$; $f_4 = 440 \text{ Hz}$.

On reconnaît sur le spectre la raie qui correspond au repliement de l'harmonique f_4 (par son amplitude), à la fréquence de 160 Hz. On a donc

$$f_{\rm e} - 440 = 160$$

d'où $f_e = 600 \text{ Hz}$.

On peut alors vérifier les autres raies observées :

f	600 - f
110	490
220	380
330	270
440	160

Ces valeurs correspondent bien au spectre D donné.

- **2.** La fréquence la plus élevée est f = 440 Hz (c'est un la deux octaves plus aigu).
- **3.** Pour les numérisation A et B, on a $f_e > 2f$: le critère de Shannon est vérifié.

Pour la numérisation C, on a $f_{\rm e} < 2f$: le critère de Shannon n'est pas vérifié. On observe le repliement de deux raies :

la fréquence f_3 donne une raie à 800 - 330 = 470 Hz, la fréquence f_4 donne une raie à 800 - 440 = 360 Hz.

4. Il n'est pas d'augmenter indéfiniment la fréquence d'échantillonnage pour améliorer la numérisation d'un son : on voit que le spectre A est identique au spectre B, alors que la fréquence d'échantillonnage est plus élevée.

À partir du moment où le critère de Shannon est respectée, cela n'apporte rien d'augmenter la fréquence d'échantillonnage. Augmenter f_e peut s'avérer utile dans le cas de l'utilisation d'un filtre passe-bas anti-repliement (cf. exercice 7).

9 — Utiliser un module Arduino en ohmmètre? Yes, we CAN!

- 1. Le CAN peut retourner $2^{10} = 1024$ valeurs, de 0 à 1023.
- **2.** L'impédance d'entrée du module étant infinie, les deux résistances sont traversées par la même intensité, d'où avec un pont diviseur de tension

$$V_{AO} = \frac{R}{R + R_0} V_{\text{réf}}.$$

Avec $V_{AO}=\frac{x}{N}V_{\mathrm{réf}}$, on en déduit $\frac{R}{R+R_0}=\frac{x}{N}$, d'où $R=\frac{x}{N-x}R_0$.

3. On a
$$\frac{\partial R}{\partial x} = R_0 \left(\frac{1}{N-x} + \frac{x}{(N-x)^2} \right) = \frac{N}{(N-x)^2} R_0$$
, d'où
$$\Delta R = \frac{N}{(N-x)^2} R_0 \Delta x.$$

L'incertitude relative sur R est donc

$$\frac{\Delta R}{R} = \frac{N}{x(N-x)} \Delta x \ .$$

4. En notant $\frac{\Delta R}{R} = f(x)$, on a

$$f'(x) = -N\Delta x \frac{N-2x}{[x(N-x)]^2} = 0$$

pour
$$x = \frac{N}{2}$$
, ce qui correspond à $R_0 = R$.

L'incertitude minimale correspondante vaut alors

$$\frac{\Delta R}{R} = \frac{N}{N/2 \times N/2} 2 = \frac{8}{N} = 0.8 \%.$$

Une incertitude sur $V_{\text{réf}}$ est sans effet sur la détermination de R.

D'après l'expression établie à la question 2, on a

$$\frac{\Delta R}{R} = \frac{\Delta R_0}{R_0} \,,$$

et l'incertitude totale sur la résistance est

$$\frac{\Delta R}{R} = \frac{N}{x(N-x)} \Delta x + \frac{\Delta R_0}{R_0} \,.$$