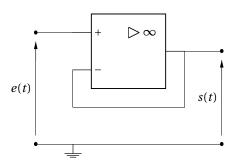

TP de physique nº 2

Prise en main de l'ALI

1 — L'amplificateur linéaire intégré

Nous utiliserons l'ALI μ 741, donc le brochage est indiqué ci-dessous :



- ➤ Seules les entrées indiquées en gras seront utilisées.
- ➤ ATTENTION : l'alimentation 15 V/-15 V doit être branchée avant d'envoyer un signal sur l'entrée de l'ALI (risque de détérioration).

2 — Le montage suiveur

2.1 Le montage

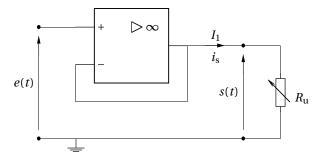
- 1. Réaliser le montage suiveur.
- Le signal d'entrée e(t) est fourni par le générateur basse fréquence.
- On visualise à l'oscilloscope le signal d'entrée e(t) sur la voie 1 et le signal de sortie s(t) sur la voie 2.

Quel est le gain en considérant l'ALI idéal de gain infini?

En prenant e(t) sinusoïdal de fréquence $f \approx 1$ kHz, d'amplitude E = 10 V vérifier le comportement « suiveur » du montage.

2.2 Vitesse de balayage

- 2. Augmenter la fréquence, que devient le signal de sortie? Quel défaut met-on ainsi en évidence?
- **3.** Proposer et mettre en œuvre un protocole expérimental pour mesurer la vitesse de balayage σ de l'ALI. On pourra prendre un signal d'entrée non sinusoïdal.

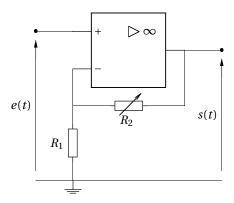

2.3 Bande passante du montage

- **4.** En prenant $e(t) = E\cos(2\pi f t)$ avec E = 10 V et f = 1 kHz, obtient-on le comportement attendu avec un ALI idéal de gain infini?
- **5.** Prendre f = 50 kHz: qu'observe-t-on? Baisser l'amplitude du signal d'entrée jusqu'à observer le signal de sortie attendu avec l'ALI idéal de gain infini. La valeur de E est-elle compatible avec la valeur de σ précédemment déterminée?
- 6. Même question à 500 kHz.
- **7.** Augmenter la fréquence jusqu'à f = 1 MHz en prenant soin de garder un signal de sortie sinusoïdal. Que peut-on dire de l'amplitude du signal de sortie? Quelle propriété de l'ALI met-on ainsi en évidence?
- **8.** Estimer expérimentalement la bande passante à -3 dB de ce montage. Est-ce compatible avec les données constructeur de l'ALI?
 - 1. Attention, la valeur indiquée sur le générateur est l'amplitude crête-à-crête.

TP de physique nº 2 Prise en main de l'ALI

2.4 Saturation du courant de sortie

Placer en sortie du montage suivante une résistance $R_{\rm u}$ variable (boite de résistances) :


On prend $e(t) = E\cos(2\pi f t)$ avec E = 10 V et f = 500 Hz. Sélectionner initialement $R_u = 1$ k Ω .

9. Diminuer progressivement la valeur de $R_{\rm u}$? Qu'observe-t-on? Déterminer ainsi le courant de saturation $i_{\rm s,\ max}$ de l'ALI. Comparer avec les données constructeur.

3 — Le montage amplificateur non inverseur

Réaliser le montage amplificateur non inverseur.

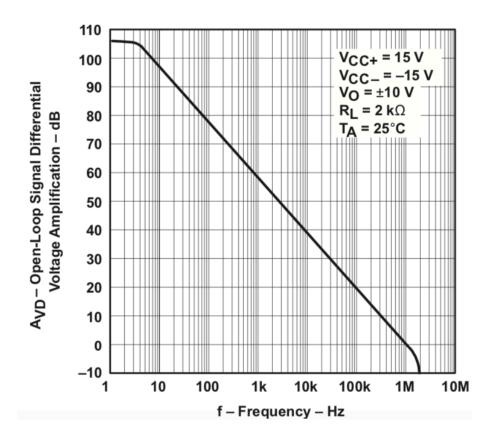
- Le signal d'entrée e(t) est fourni par le générateur basse fréquence.
- On visualise à l'oscilloscope le signal d'entrée e(t) sur la voie 1 et le signal de sortie s(t) sur la voie 2.

La résistance variable R_2 est une boite de résistances. On prend $R_1 = 1 \text{ k}\Omega$.

- **10.** Établir l'expression du gain G dans le cas de l'ALI idéal de gain infini fonctionnant en régime linéaire. Vérifier pour quelques valeurs de R_2 .
- 11. Déterminer la tension V_{sat} pour laquelle il y a saturation de la tension de sortie de l'ALI.
- **12.** On se propose de déterminer le produit gain \times bande passante pour plusieurs valeurs du gain du montage. Pour chaque valeur du gain G:
- **12.a)** régler l'amplitude de la tension e(t) de façon à ce que l'amplificateur ne sature pas (on pourra mettre en service l'atténuation de sortie -20 dB du générateur);
- **12.b)** mesurer l'amplitude de la tension de sortie $V_{\rm BF}$ à basse fréquence (par exemple 100 Hz);
- 12.c) augmenter la fréquence jusqu'à ce que la tension de sortie ait une amplitude $V_s = \frac{V_{\rm BP}}{\sqrt{2}}$. Attention : la tension de sortie ne doit pas être déformée en raison de la vitesse de balayage de l'amplificateur; au besoin abaisser l'amplitude de la tension d'entrée et recommencer à l'étape 7.b.

Compléter le tableau suivant², et conclure.

$G_{ m dB}$	0	20	40	60
G				
R_2				
$V_{ m e}$				
$V_{\rm s} = V_{\rm e}/\sqrt{2}$				
$f_{ m c}$				
$G \times f_{c}$				


^{2.} Quel montage permet de remplir la 1^{re} colonne?

TP de physique nº 2 Prise en main de l'ALI

Annexe : extrait de la fiche technique du $\mu 741$

	PARAMETER	TEST CONDITIONS (2)	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	V _O = 0		1	5	mV
$\Delta V_{IO(adj)}$	Offset voltage adjust range	V _O = 0		±15		mV
I _{IO}	Input offset current	V _O = 0		20	200	nA
I _{IB}	Input bias current	V _O = 0		80	500	nA
V _{ICR}	Common-mode input voltage range		±12	±13		V
V _{OM}	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	±12	±14		v
		$R_L = 2 k\Omega$	±10	±13		
A _{VD}	Large-signal differential voltage amplification	R _L ≥ 2 kΩ	20	200		V/mV
rį	Input resistance		0.3	2		МΩ
ro	Output resistance	V _O = 0; see ⁽¹⁾		75		Ω
Ci	Input capacitance			1.4		pF
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICRmin}	70	90		dB
k _{SVS}	Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC})	V _{CC} = ±9 V to ±15 V		30	150	μV/V
los	Short-circuit output current			±25	±40	mA
Icc	Supply current	V _O = 0; no load		1.7	2.8	mA
PD	Total power dissipation	V _O = 0; no load		50	85	mW

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time	$V_1 = 20 \text{ mV}, R_1 = 2 \text{ k}\Omega$		0.3		μs
	Overshoot factor	C _L = 100 pF; see Figure 1		5%		
SR	Slew rate at unity gain	V_I = 10 V, R_L = 2 k Ω C_L = 100 pF; see Figure 1		0.5		V/µs

