Chapitre III : Algèbre linéaire : rappels et compléments

• Espaces vectoriels :

- * Définition de sous-espace vectoriel, dimension d'un espace vectoriel, somme de sous-espaces vectoriels, somme directe de deux sous-espaces vectoriels, somme directe de plusieurs sous-espaces vectoriels, sous-espaces supplémentaires.
- \star Caractérisation d'une somme de deux sous-espaces vectoriels par $F \cap G = \{0\}$.
- * Formule de Grassmann.
- \star Caractérisation de $F \oplus G = E$ en dimension finie et en dimension infinie.
- ★ Caractérisation d'une somme directe de plusieurs sous-espaces vectoriels : $\forall (e_1, \ldots, e_n) \in E_1 \times \ldots \times E_n, e_1 + \cdots e_n = 0 \Longrightarrow e_1 = \ldots = e_n = 0.$

• Familles de vecteurs :

- \star Définition de famille libre, liée, génératrice **de** E, base **de** E.
- * En dimension finie, si dim E = n alors $(e_1, ..., e_n)$ est libre ssi elle est génératrice **de** E ssi elle est une base **de** E.
- * Liberté d'une famille de polynôme de degrés échelonnés.

• Applications linéaires :

- ★ Définition d'une application linéaire, du noyau, de l'image, du rang d'une application linéaire.
- * Caractérisation de l'injectivité avec le noyau. De la surjectivité avec le rang (en dimension finie).
- \star Dans le cas de la dimension finie : une application linéaire est déterminée par les images $(f(e_1), \ldots, f(e_n))$ d'une base (e_1, \ldots, e_n) de l'espace de départ. Caractérisation de l'injectivité, de la surjectivité, de la bijectivité en fonction de la nature de la famille $(f(e_1), \ldots, f(e_n))$.
- * Définition et caractérisation d'un projecteur, d'une symétrie.
- \star Le théorème du rang.
- * Définition d'un hyperplan H dans un espace vectoriel E de dimension $n: H = \ker(\phi)$ avec ϕ une forme linéaire non nulle, dim H = n 1, $E = H \oplus D$ avec D une droite vectorielle.
- \star Définitions de sous-espaces vectoriels stables par un endomorphisme. Si $u \circ v = v \circ u$ alors ker u et Imu sont stables par v.

• Matrices et applications linéaires :

- * Il faut savoir passer d'une matrice à une application linéaire et réciproquement, il faut savoir donner la matrice d'une application linéaire dans n'importe quelle base.
- \star Matrice de passage d'une base à une autre.
- * Formule de changement de base : $Mat_{\mathcal{E}',\mathcal{F}'}(u) = P_{\mathcal{F}'}^{\mathcal{F}} Mat_{\mathcal{E},\mathcal{F}}(u) P_{\mathcal{E}}^{\mathcal{E}'}$.
- \star Interprétation géométrique de matrices semblables.

• Opérations matricielles :

- * Définition du produit matriciel : $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$.
- * Définition de la trace. La trace est linéaire et Tr(AB) = Tr(BA).
- ★ Calcul de l'inversibilité d'une matrice à l'aide d'un polynôme annulateur. Calcul d'une puissance de matrice à l'aide d'un polynôme annulateur.
- * Matrices par blocs : produit matriciel par blocs, interprétation géométrique d'une matrice triangulaire par blocs en terme de stabilité de sous-espaces vectoriels.

- Déterminant d'une matrice :
 - \star Il faut savoir calculer le déterminant d'une matrice.
 - * Pour une matrice triangulaire par blocs $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, $\det(M) = \det(A) \det(C)$.
 - * Il faut connaître le déterminant d'une matrice de Vandermonde.
- Les polynômes d'interpolation de Lagrange :

soit
$$(a_1, \ldots, a_{n+1}) \in \mathbb{K}^{n+1}$$
 tous différents, on définit $L_k(X) = \prod_{i \neq k} \left(\frac{X - a_i}{a_k - a_i} \right)$.

La familles (L_1, \ldots, L_{n+1}) est une base de $\mathbb{K}_n[X]$ et les coordonnées de $P \in \mathbb{K}_n[X]$ dans cette base sont $(P(a_1), \ldots, P(a_{n+1}))$.

Questions de cours :

- Dans l'espace $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ on pose $\mathcal{P} = \{ f \in E : f \text{ est paire} \}$ et $\mathcal{I} = \{ f \in E : f \text{ est impaire} \}$. Montrer que \mathcal{P} et \mathcal{I} sont supplémentaires dans E.
- Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^3 = I_n$. On considère les sous-espaces vectoriels

$$E_1 = \{ X \in \mathbb{C}^n : MX = X \}$$
 $E_j = \{ X \in \mathbb{C}^n : MX = jX \}$ $E_{j^2} = \{ X \in \mathbb{C}^n : MX = j^2X \}.$

Montrer que la somme $E_1 + E_j + E_{j^2}$ est directe.

- Soit $M \in \mathcal{M}_n(\mathbb{K})$ telle que $M^{n-1} \neq 0$ et $M^n = 0$.

Soit $M \in \mathcal{M}_n(\mathbb{K})$ tene que ...

Montrer que M est semblable à $\begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & 1 & \ddots & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \end{pmatrix}$

Soit A une matrice carrée telle que $A^2 - 3A + 2I_n = 0$. Calculer les puissances k-ième de A en fonction de A et I_n .

- Soient
$$M_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
, $M_3 = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, et pour tout $n \ge 2$, $M_n = \begin{pmatrix} 2 & -1 & \cdots & \cdots & 0 \\ -1 & 2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 2 & -1 \\ 0 & \cdots & \cdots & -1 & 2 \end{pmatrix}$.

- 1. Calculer les déterminant de M_2 et M_3 .
- 2. Donner une relation entre $\det(M_{n+2})$, $\det(M_{n+1})$ et $\det(M_n)$.
- 3. En déduire $\det(M_n)$ en fonction de n.