1 — Pile argent-zinc

Considérons une pile argent/zinc constitué des cellules suivantes :

- demi-pile ① : électrode d'argent, électrolyte de volume $V=100\,\mathrm{mL}$ contenant des ions $\mathrm{Ag^{+}}$ à la concentration $c=0.18\,\mathrm{mol\cdot L^{-1}}$;
- demi-pile ② : électrode de zinc, électrolyte de volume $V'=250\,\mathrm{mL}$ contenant des ions $2\,\mathrm{n}^{2+}$ à la concentration $c'=0.30\,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

On donne $E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$ et $E^{\circ}(Ag^{+}/Ag) = 0.80 \text{ V}$.

1. On détermine les potentiels de Nernst pour chaque électrode.

Pour l'électrode d'argent :

$$E_{Ag} = E^{\circ} (Ag^{+}/Ag) + 0.06 \log c = 0.76 \text{ V}.$$

Pour l'électrode de zinc :

$$E_{\rm Zn} = E^{\circ}({\rm Zn^{2+}/Zn}) + \frac{0.06}{2}\log c' = -0.78 \,{\rm V}.$$

L'électrode d'argent est donc le pôle ⊕, où les ions Ag⁺ se font réduit : c'est la cathode.

L'électrode de zinc est le pôle \ominus , où le zinc se fait oxyder : c'est l'anode.

2. À la cathode d'argent, il se produit la réduction

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$
.

À l'anode de zinc, il se produit l'oxydation

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$
.

La réaction de fonctionnement s'obtient en éliminant les électrons :

$$2Ag^{+}(aq) + Zn(s) \longrightarrow 2Ag(s) + Zn^{2+}(aq)$$
.

3. Le zinc étant en excès (c'est l'électrode!), le réactif limitant est Ag^+ , à la quantité initiale $cV=1,8\times 10^{-2}$ mol. Compte tenu des coefficients stœchiométriques, l'avancement final est $\xi_f=\frac{cV}{2}=9\times 10^{-3}$ mol.

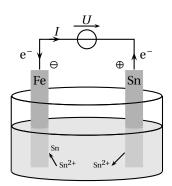
La quantité finale d'ions zinc est donc

$$n(\text{Zn}^{2+}) = c'V' + \xi_f = 8.4 \times 10^{-2} \text{ mol.}$$

La concentration finale de zinc est donc

$$[Zn^{2+}]_f = 3.36 \times 10^{-1} \text{ mol} \cdot L^{-1}$$
.

Le nombre d'électrons échangés est


$$N_{\rm e^-} = 2\xi_{\rm f} = 1.8 \times 10^{-2} \text{ mol.}$$

La capacité de la pile est donc $Q = N_{\rm e}$ -F = 1,75 × 10³ C, soit Q = 480 mA·h.

2 — Étamage

1. Sur la pièce de fer, on a un dépôt d'étain : il se produit la **réduction** $Sn^{2+} + 2e^- \longrightarrow Sn$; c'est donc la **cathode**.

L'électrode en étain est le siège de l'**oxydation** Sn \longrightarrow Sn²⁺ + 2e⁻ ; c'est donc l'**anode**.

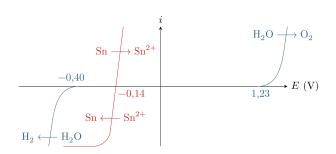
- 2. Les espèces électroactives en présence sont :
- l'étain Sn (réducteur);
- les ions Sn²⁺ (oxydant);
- le solvant H₂O (oxydant et réducteur);
- le fer Fe (réducteur).

Le fer ne peut que se faire oxyder; or il constitue la cathode, et une oxydation se fait sur l'anode : il n'y a donc pas de réaction à considérer pour le fer.

On calcule les potentiels d'équilibre des couples (Nernst).

$$E_{\text{\'eq}}(\text{Sn}^{2+}/\text{Sn}) = E^{\circ}(\text{Sn}^{2+}/\text{Sn}) + 0.03\log[\text{Sn}^{2+}] = -0.14 \text{ V}.$$

 $\hat{A} pH = 0$, on a


$$E_{\text{éq}}(H_2O/H_2) = E^{\circ}(H_2O/H_2) - 0.06\text{pH} = 0 \text{ V}.$$

Il faut retrancher le surpotentiel cathodique $\eta_c = -0.40 \, \text{V}$ pour tracer la courbe courant-potentiel correspondante.

On a aussi

$$E_{\text{éq}}(O_2/H_2O) = E^{\circ}(O_2/H_2O) - 0.06\text{pH} = 1.23\text{ V}.$$

On trace les courbes courant-potentiel:

3. À l'anode, on observe l'oxydation correspond à la courbe démarrant au potentiel le plus bas, c'est-à-dire ici celle de l'étain comme attendu. La courbe ne présente pas de palier de diffusion (le réactif est le métal de l'électrode).

À la cathode, on observe la réduction correspondant à la courbe démarrant au potentiel le plus bas, c'est-à-dire ici celle de l'étain. La courbe présente un palier de diffusion (le réactif est un soluté). Si la tension est suffisamment importante, on pourra commencer à observer en plus la réduction de l'eau, avec un dégagement de $\rm H_2$ gazeux.

4. D'après

$$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$$
.

pour n moles d'étain formées, on a 2n moles d'électrons échangées, soit une charge

$$Q = 2n\mathcal{F} = I\Delta t$$
.

La masse d'étain formée est alors

$$m = nM = \frac{I\Delta t}{2\mathcal{F}}M = \frac{1\times5\times60}{2\times96500}\times0,118$$

soit
$$m = 0.183 \text{ g}$$
.

5. L'énergie consommée vaut

$$\mathcal{E} = IU\Delta t = 900 \text{ J}.$$

3 — Préparation du zinc

- 1. Les espèces électroactives sont :
- les ions Zn²⁺ (oxydant);
- l'eau H₂O (oxydant et réducteur).

À l'anode, on a une oxydation possible :

$$2H_2O \longrightarrow O_2(g) + 4H^+ + 4e^-$$
.

À la cathode, on a deux réductions possibles :

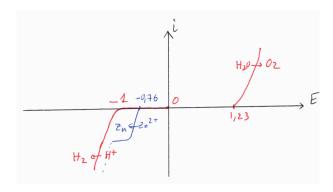
$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
 et $2H^{+} + 2e^{-} \longrightarrow H_{2}(g)$.

- **2.** Les courbes intensité-potentiel permettent d'étudier la **cinétique** des réactions.
- **3.** On calcule les potentiels d'équilibre des couples en jeu.

En l'absence d'information sur la concentration en ions zinc, on considère

$$E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}.$$

Pour O_2/H_2O , on a à pH = 0:


$$E_{\text{\'eq}}(O_2/H_2O) = E^{\circ}(O_2/H_2O) - 0.06pH = 1.23 \text{ V}.$$

Pour H_2O/H_2 , on a à pH = 0:

$$E_{\text{éq}}(H_2O/H_2) = E^{\circ}(H_2O/H_2) - 0.06\text{pH} = 0 \text{ V}.$$

Il faut retrancher le surpotentiel cathodique $\eta_{\rm c} = -1~{\rm V}$ pour tracer la courbe courant-potentiel correspondante.

On trace l'allure des courbes courant-potentiel:

À l'anode, on observe l'oxydation de H_2O (seule oxydation envisageable).

À la cathode, on observe la réduction correspondant à la courbe démarrant au potentiel le plus bas, c'est-à-dire ici celle de Zn^{2+} .

Le choix d'une cathode en aluminium permet d'obtenir la réduction des ions zinc, car le surpotentiel élevé de $\rm H^+/H_2$ « repousse » sa courbe au-delà de celle de $\rm Zn^{2+}/Zn$.

4. À l'anode, le réactif est le solvant H₂O, qui n'est pas limitant : pas de courant limite de diffusion.

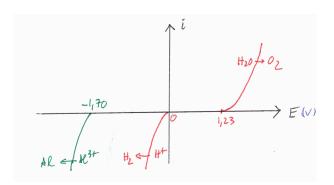
À la cathode, on peut observer un palier si $[Zn^{2+}]$ est faible.

5. Si on applique une tension trop importante, on observe de plus $2H^+ + 2e^- \longrightarrow H_2(g)$ à la cathode comme réaction parasite.

4 — Préparation de l'aluminium

- 1. Les espèces électroactives en présence sont :
- les ions Al^{3+} (oxydant);
- l'eau H₂O (oxydant et réducteur).

La seule oxydation pouvant se dérouler à l'anode est


$$2H_2O \longrightarrow O_2(g) + 4H^+ + 4e^-$$
.

Les réductions pouvant être observées à la cathode sont

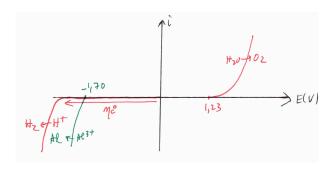
$$2\,H^+ + 2\,e^- \longrightarrow H_2 \quad et \quad Al^{3+} + 3\,e^- \longrightarrow Al \,.$$

Le couple mis en jeu à l'anode a le potentiel standard le plus élevé : il s'agit du pôle \oplus .

En supposant les couples rapides, l'allure des courbes courant-potentiel est la suivante :

La réduction observée à la cathode est celle dont la 5 — Traitement anti-corrosion courbe débute au potentiel le plus élevé, soit

$$2H^+ + 2e^- \longrightarrow H_2$$
.


La réaction globale est alors l'électrolyse de l'eau

$$2 H_2 O \longrightarrow O_2 + 2 H_2$$
.

La tension minimale à appliquer est

$$U_{\min} = 1,23 \text{ V}.$$

2. On pourra obtenir de l'aluminium si le couple H⁺/H₂ sur Al un surpotentiel η_c° suffisamment élevé pour que sa courbe passe « derrière » celle de Al³⁺/Al :

La tension minimale théorique à appliquer vaut alors

$$U_{\min} = 1.23 - (-1.70) = 2.93 \text{ V}.$$

3. La charge circulant dans l'électrolyseur pendant Δt

$$O = I\Delta t = n(e^{-})F$$

où $n(e^-)$ est la quantité (en moles) l'électrons échangés. D'après la stœchiométrie

$$Al^{3+} + 3e^{-} \longrightarrow Al$$

la quantité d'aluminium formé est

$$n(Al) = \frac{n(e^{-})}{3} = \frac{I\Delta t}{3F} = \frac{200 \times 10^{3} \times 24 \times 3600}{3 \times 96500}$$

soit $n(Al) = 59.7 \times 10^3$ mol. La masse correspondante est

$$m(Al) = n(Al)M(Al) = 1.61 \times 10^3 \text{ kg}.$$

En tenant compte des surtensions et de la chute ohmique, la tension à appliquer aux bornes de la cellule est

$$U = 2.93 + 0.9 - (-0.2) + 5 = 9.0 \text{ V}.$$

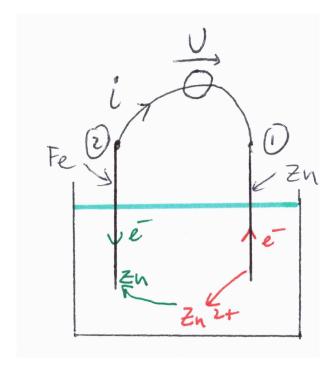
L'énergie nécessaire vaut alors

$$\mathcal{E} = UI\Delta t = 9.0 \times 200 \times 10^{3} \times 24 \times 3600$$

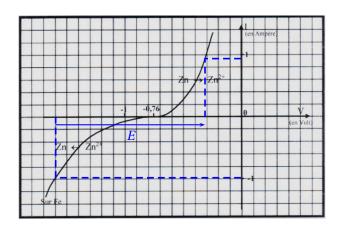
soit
$$\mathcal{E} = 160 \times 10^9 \text{ J}.$$

1. Sur la pièce de fer, on veut déposer de zinc selon la réaction

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
.


Cette électrode est donc la cathode.

L'électrode de zinc va fournir des ions Zn²⁺ selon la réaction


$$Zn(s) \longrightarrow Zn^{2+} + 2e^{-}$$
.

D'après les courbes courant-potentiel fournies, on voit que le potentiel de l'oxydation anodique est supérieur à celui de la réduction cathodique.

L'électrode ① de zinc est donc le pôle ⊕ tandis que l'électrode ① de fer est le pôle ⊖.

2. On lit la tension ΔE correspond à $i_a = -i_c = 1.0$ A sur les courbes courant-potentiel:

On trouve E = 1.3 V.

En prenant en compte la chute de tension ohmique, on a

$$U = E + Ri$$

soit
$$U = 6.3 \text{ V}$$

3. On veut former une couche de zinc d'épaisseur e sur la surface latérale $S=2\pi aL$, soit un volume $2\pi aLe$ (l'épaisseur est très faible), donc une masse de zinc

$$m = \mu 2\pi a Le$$
.

La charge traversant le système pendant Δt est

$$Q = I\Delta t = n(e^{-})F$$
,

le nombre d'électrons échangés (en moles) étant relié à la quantité de zinc formé selon

$$Zn^{2+} + 2e^{-} \longrightarrow Zn$$

par $n(e^{-}) = 2n(Zn)$. On a donc

$$n(\mathrm{Zn}) = \frac{I\Delta t}{2\mathrm{F}}.$$

Avec m = n(Zn)M(Zn), on obtient

$$\Delta t = \frac{2F\mu 2\pi a LeF}{iM(Zn)}.$$

On calcule

$$\Delta t = 1324 \text{ s} = 22 \text{ min}.$$

4. À pH = 5, le potentiel Nernstien pour le couple H^+/H_2 est E = -0.06pH = -0.3 V.

Avec la surtension cathodique $\eta_{\rm c}^{\circ}=-0.65~{\rm V}$, la réaction a lieu pour un potentiel inférieur à

$$E + \eta_c^{\circ} = -0.95 \text{ V},$$

donc légèrement plus « à gauche » de celle de la réaction de réduction des ions zinc souhaitée.

À l'intensité choisie, le potentiel de la cathode est de –1,6 V; la réduction de l'eau se produit donc aussi à la cathode, diminuant le rendement faradique de l'opération.

6 — Pile Daniell en fonctionnement

- 1. Compartiment ①: $E_1 = -0.76 + 0.03 \log 0.1 = -0.79 \text{ V}$. Compartiment ②: $E_2 = 0.34 + 0.03 \log 0.1 = 0.31 \text{ V}$. Le f.é.m. est alors $U_0 = E_2 E_1$ soit $U_0 = 1.10 \text{ V}$.
- 2. Réactions dans les électrodes :

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$
 (anode),

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
 (cathode).

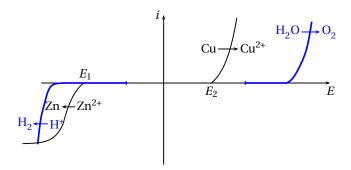
Réaction de fonctionnement :

$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$
.

Le volume de l'électrode est $V = 6.3 \text{ cm}^{-3}$, soit m(Zn) = 44.9 g et n(Zn) = 0.686 mol.

Dans la solution, on a initialement $n(\mathrm{Cu}^{2+})=10^{-2}\ \mathrm{mol}.$ Le réactif limitant est $\mathrm{Cu}^{2+}.$ Au premier ordre on a donc l'avancement en fin de réaction $\xi_{\mathrm{f}}=1\times 10^{-2}\ \mathrm{mol}$ et $n(\mathrm{Zn}^{2+})=2\times 10^{-2}\ \mathrm{mol},$ soit $[\mathrm{Zn}^{2+}]_{\mathrm{f}}=0.2\ \mathrm{mol}\cdot\mathrm{L}^{-1}$.

La quantité d'électrons échangés est


$$n(e^{-}) = 2\xi_f = 2 \times 10^{-2} \text{ mol}$$

soit une charge

$$Q = 2\xi_{\rm f}F = 1930 \text{ C} = \frac{1930}{3600} = 0.54 \text{ A} \cdot \text{h}.$$

Capacité de la pile : $Q = 540 \text{ mA} \cdot \text{h}$.

3. On représente les courbes intensité-potentiel relatives à la recharge : réduction de ${\rm Zn^{2+}}$ et oxydation de Cu.

À l'anode, il faut de plus envisager l'oxydation de l'eau selon $2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$.

Le potentiel d'équilibre est $E = 1,23 - 0,06 \times 5 = 0,93 \text{ V}$; on ajoute la surtension anodique, soit 0,93 + 0,50 = 1,43 V.

À la cathode, il faut aussi envisager la réduction de l'eau selon $2H^+ + 2e^- \longrightarrow H_2$.

Le potentiel d'équilibre est $E = 0 - 0.06 \times 5 = -0.30 \text{ V}$; on ajoute la surtension cathodique, soit -0.30 - 0.80 = -1.10 V.

Grâce à la surtension cathodique qui déplace au-delà de la courbe de réduction de Zn²⁺ la courbe de réduction de l'eau, on peut recharger la pile Daniell.

Il faut appliquer une tension supérieure à la f.é.m. à vide, mais pas trop importante, sinon le palier de diffusion cathodique permet d'observer la réduction de l'eau avec dégagement de $\rm H_2$: on recharge toujours la pile, mais avec un rendement faradique moindre et avec dégagement d'un gaz explosif.