# TD d'électromagnétisme n° 1

## Introduction à l'électrostatique

## 1 — Calculs de charge en coordonnées 4 — Espace chargé sphériques

On considère une boule  $\mathcal{D}$  de rayon a, de centre O. Calculer la charge portée par une sphère de rayon r, en considérant les cas r > a et r < a, si la sphère  $\Sigma$ :

- 1. est uniformément chargée en volume avec la densité volumique de charge  $\rho_0$ ;
- **2.** porte la densité volumique de charge  $\rho(r) =$  $\rho_0\left(1-\frac{r}{a}\right)$  en coordonnées sphériques;
- 3. est chargée en surface avec la densité surfacique de charge  $\sigma_0$  uniforme.

# 2 — Calculs de charge en coordonnées cylindriques

On considère un cylindre  $\mathcal{D}$  de rayon a, d'axe Oz, de longueur infinie.

Calculer la charge portée par un cylindre de hauteur H et de rayon r, en considérant les cas r > a et r < a, si le

- 1. est uniformément chargé en volume avec la densité volumique de charge  $\rho_0$ ;
- 2. porte la densité volumique de charge  $\rho(r) = \rho_0 \frac{r}{a}$  en coordonnées cylindriques;
- 3. est chargé en surface avec la densité surfacique de charge  $\sigma_0$  uniforme.

# 3 — Couche chargée

On considère un couche d'épaisseur 2a ( $-a \le z \le a$ ), infinie selon Ox et Oy, portant la densité volumique de charge uniforme  $\rho_0$ .

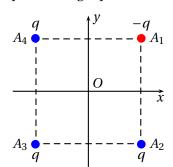
Calculer la charge portée par un cylindre de section S, d'axe Oz, compris entre -z et +z pour 0 < z < a et z > a.

La densité volumique de charge

$$\rho(M) = \frac{K}{4\pi a^2 r} \,\mathrm{e}^{-r/a},$$

où K et a sont deux constantes et r = OM, est répartie dans tout l'espace.

- 1. Quelles sont les dimensions des constantes *K* et *a*?
- 2. Calculer la charge totale contenue dans tout l'espace.


#### 5 — Doublet

On considère un doublet constitué de deux charges opposées : q > 0 située en P(a > 0,0,0) et -q située en N(-a,0,0) en coordonnées cartésiennes.

Étudier les symétries et les invariances de cette distribution de charges.

#### 6 — Champ au centre d'un carré

On considère quatre charges ponctuelles, avec q > 0:



- 1. En examinant les symétries de la distribution, déterminer la direction de  $\vec{E}(O)$ , champ électrique en centre de la figure.
- **2.** Établir l'expression de  $\vec{E}(O)$ .