Mécanique PCSI

II — Dynamique

La dynamique relie le mouvement observé à ses causes.

Loi de l'inertie (première loi de Newton)

Dans un référentiel galiléen, un point matériel ne subissant aucune interaction est animé d'un mouvement rectiligne uniforme.

- ► L'accélération d'un tel point est donc nulle : $\vec{a}_{/\mathcal{R}}(M) = \vec{0}$.
- Nous postulons l'existence de tels référentiels galiléens. Le référentiel terrestre peut être considéré comme galiléen dans la plupart des expériences usuelles.

Principe fondamental de la dynamique (deuxième loi de Newton)

Énoncé

Un point matériel M soumis à des actions extérieures dans un référentiel galiléen $\mathbb R$ acquiert une accélération donnée par

$$m\overrightarrow{a}_{/\mathcal{R}}(M) = \overrightarrow{F}$$

- la constante m > 0 est la masse du système;
- le vecteur \overrightarrow{F} représente les actions subies par le point M.
- \blacktriangleright Le principe de la dynamique relie le mouvement (accélération) à ses causes, qui admettent une représentation vectorielle sous le nom de **forces** \overrightarrow{F} .
- La masse m, appelée **masse inerte**, représente l'inertie du corps, c'est-à-dire son aptitude à s'opposer à l'effet des forces appliquées : l'accélération acquise $\vec{a} = \frac{\vec{F}}{m}$ pour une force donnée est d'autant plus faible que m est élevé.
- La masse est indépendante du référentiel galiléen choisi. Elle s'exprime en kilogramme (kg).
- \blacktriangleright La force \vec{F} est indépendant du référentiel galiléen choisi. Son module s'exprime en newtons (N).

Ouantité de mouvement

La quantité de mouvement d'un point matériel M de masse m est définie par

$$\overrightarrow{p}_{/\mathcal{R}}(M) = m \overrightarrow{v}_{/\mathcal{R}}(M)$$
.

- ➤ La quantité de mouvement dépend du référentiel galiléen choisi.
- ➤ Le principe fondamental de la dynamique peut s'écrire

$$\left(\frac{\mathrm{d}\vec{p}_{/\mathcal{R}}(M)}{\mathrm{d}t}\right)_{\mathcal{R}} = \vec{F} \ .$$

Loi des actions réciproques (troisième loi de Newton)

Lorsque deux points matériels M_1 et M_2 sont en interaction, les forces d'interaction correspondantes sont opposées :

$$\vec{F}_{1\rightarrow 2} + \vec{F}_{2\rightarrow 1} = \vec{0}.$$

- ➤ Cette loi est aussi appelée « loi de l'action et de la réaction ».
- ➤ La troisième loi de Newton ne peut s'écrire que pour des systèmes ponctuels (points matériels).

Mécanique PCSI II — Dynamique

Méthode d'étude d'un problème de mécanique

- ① Choisir le référentiel d'étude galiléen \Re .
- ② Faire le bilan des forces s'exerçant sur le point matériel M.
- $\$ Écrire le principe fondamentale de la dynamique (P.F.D.) dans le référentiel $\$ $\$ $\$
- ④ Choisir une base de projection adaptée au problème. Projeter la relation vectorielle constituée du P.F.D.: on obtient un système d'équations différentielles.
- ⑤ Résoudre les équations différentielles précédentes, compte tenu des conditions initiales.

Forces usuelles

Pesanteur

Un point matériel de masse est soumis à son poids, ou force de pesanteur de la forme

$$\vec{P} = m\vec{g}$$
.

La grandeur \overrightarrow{g} , dont la direction définit la verticale au point considéré, est le *champ de pesanteur terrestre*. Elle a la dimension d'une accélération.

Retenir: $g \approx 9.81 \text{ m} \cdot \text{s}^{-2}$.

➤ La force de pesanteur est principalement —- mais pas uniquement — due à l'attraction gravitationnelle terrestre.

Force de rappel élastique (loi de Hooke)

Un ressort idéal de longueur $\ell = MP$ exerce sur son extrémité P une force de rappel élastique donnée par la loi de Hooke :

$$\vec{F}_{\text{ressort} \to P} = -k(\ell - \ell_0) \vec{u}$$
 avec $\vec{u} = \frac{\overrightarrow{MP}}{MP}$

- ➤ La constante k est la *raideur* du ressort; elle s'exprime en $N \cdot m^{-1}$.
- ➤ C'est une *force de rappel* : elle s'oppose à la déformation du ressort.

$$\stackrel{\overrightarrow{u}}{\longleftarrow} \stackrel{\ell}{\longleftarrow}$$

Tension d'un fil inextensible

Un fil inextensible sans masse exerce sur son extrémité, quand il est tendu, une force de rappel \vec{T} colinéaire au fil, appelée tension.

Frottement visqueux

Un corps en mouvement dans un fluide est soumis à une force de frottement visqueux, colinéaire et opposée à sa vitesse par rapport au fluide.

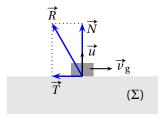
➤ Aux faibles vitesses, on peut modéliser cette résistance à l'avancement sous la forme d'une loi linéaire

$$\vec{F} = -h\vec{v}$$

avec h > 0. On parle de frottements fluides.

Aux vitesse plus élevées, on peut adopter une loi quadratique $\vec{F} = -kv^2\vec{u}$ avec $\vec{u} = \frac{\vec{v}}{v}$.

Mécanique PCSI II — Dynamique


Contact entre deux solides : lois de Coulomb

On considère un solide S en mouvement à la surface d'un autre solide $(\Sigma).$

La vitesse \overrightarrow{v}_g du solide S par rapport à (Σ) est appelée **vitesse de glissement**.

On note $\overrightarrow{R} = \overrightarrow{N} + \overrightarrow{T}$ la réaction exercée par (Σ) sur S:

- $\vec{N} = N\vec{u}$ est la composante normale à la surface de contact, où \vec{u} est un vecteur unitaire;
- $-\overrightarrow{T}$ est la composante tangentielle à la surface de contact.

Condition de contact

contact	décollement
N > 0	N = 0

Condition de glissement

glissement	adhérence
$\vec{T} \cdot \vec{v}_{g} < 0$	$\vec{v}_g = \vec{0}$
$\vec{T} \wedge \vec{v}_g = \vec{0}$	
$ \overrightarrow{T} = f_{\mathbf{d}} \overrightarrow{N} $	$\ \overrightarrow{T}\ \leqslant f_{\mathrm{S}} \ \overrightarrow{N}\ $

- $\blacktriangleright\,$ En cas de glissement, \overrightarrow{T} est colinéaire à $\overrightarrow{v}_{\rm g},$ de sens opposé.
- \blacktriangleright $f_{\rm d}$ est le coefficient de frottement dynamique, $f_{\rm s}$ le coefficient de frottement statique.
- ► En général $f_d \le f_s$; le plus souvent on a $f_d \approx f_s$.