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Phénomènes de transport II — Diffusion thermique

 Les différents modes de transfert thermique

Convection La convection thermique est un transfert d’énergie thermique, par rapport à un référentiel donné,
dû à un transport macroscopique de matière dans ce référentiel. Elle peut être libre, ou forcée quand le
mouvement du fluide est imposé par une machine extérieure au système (pompe, ventilateur. . . ).

Rayonnement Le rayonnement thermique est un transfert d’énergie par une onde électromagnétique située
principalement dans l’infrarouge. Tout corps émet un rayonnement de spectre continu, la longueur d’onde
pour laquelle un maximum de puissance est rayonnée dépendant de la température du corps.

Diffusion La diffusion thermique est un transfert thermique d’origine microscopique (transmission de proche
en proche du mouvement d’agitation thermique) au sein d’un milieu matériel dans lequel la température
n’est pas uniforme. Ce transfert se fait, de façon irréversible, des zones de températures élevées aux zones
de basses températures et tend à rendre uniforme la distribution de température.

ä Le transfert par rayonnement thermique, qui se produit dans les milieux transparents au rayonnement, est
le seul pouvant avoir lieu dans le vide.

ä La convection est le mode de transfert thermique principal dans les fluides.

ä La conduction existe dans tous les corps matériels mais est souvent masquée par la convection dans les
fluides. C’est le mode de transfert principal dans les solides.

 Vecteur densité de courant thermique

 Flux thermique

L’énergie transférée à travers une surface Σ orientée, pendant une durée dt , par transfert thermique s’écrit

δQ(t ) =ΦΣ(t )dt

où ΦΣ(t ) est le flux thermique à travers Σ.

ä Le flux thermique s’exprime en W : il représente la puissance thermique traversant Σ.

ä Le flux thermique est une grandeur scalaire algébrique; son signe dépend du choix d’orientation de Σ et du
sens réel du transfert d’énergie thermique à travers Σ.

 Vecteur densité de courant thermique

Par définition du vecteur densité de courant thermique :

ΦΣ(t ) =
Ï

M∈Σ
#»ȷQ (M , t )d

#»
SM .

ä La norme ‖#»ȷQ (M , t )‖ s’exprime en W ·m−2. Elle représente une puissance surfacique.

ä En coordonnées cartésiennes, pour un phénomène unidimensionnel décrit par #»ȷQ = jQ (x, t ) #»e x , le flux ther-

mique à travers une surface S normale à Ox, à l’abscisse x, orientée selon #»e x est Φ(x, t ) = jQ (x, t )S .

ä En coordonnées sphériques, pour un phénomène unidimensionnel décrit par #»ȷQ = jQ (r, t ) #»e r , le flux ther-

mique sortant à travers une sphère de rayon r est Φ(r, t ) = 4πr 2 jQ (r, t ) .

ä En coordonnées cylindriques, pour un phénomène unidimensionnel décrit par #»ȷQ = jQ (r, t ) #»e r , le flux ther-

mique sortant à travers un cylindre de rayon r et de hauteur H est Φ(r, t ) = 2πr H jQ (r, t ) .
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 Bilan d’énergie : premier principe

 Écriture générale

On considère un système de volume V délimité par une frontière Σ fixe (donc Wpression = 0 pour ce système
indéformable).
Le bilan d’énergie pendant une durée dt s’écrit sous la forme générale

dU︸︷︷︸
variation
d’énergie
stockée

= δQreçu︸ ︷︷ ︸
énergie
reçue

+ Pprod dt︸ ︷︷ ︸
énergie

produite

— dU =U (t +dt )−U (t ) est la variation de l’énergie interne du système pendant dt ;

— δQreçu est le transfert thermique reçu par le système pendant dt à travers sa frontière Σ ;

— Pprod est la puissance produite par des sources internes au système (effet Joule, réaction chimique exother-
mique ou endothermique, réaction nucléaire, changement de phase).

 Hypothèse de l’équilibre thermodynamique local

Un système est à l’équilibre thermodynamique si les grandeurs intensives y sont uniformes (température, pres-
sion, potentiel chimique de chaque espèce), et s’il n’y a pas de mouvement convectif (mouvement macrosco-
pique de matière) en son sein.

ä Lorsqu’un système est dans un état hors d’équilibre, les champs intensifs sont non uniformes, ce qui donne
naissance à des flux : transfert thermique si T n’est pas uniforme par exemple.

Dans l’hypothèse de l’équilibre thermodynamique local, chaque volume mésoscopique dτM du système
est à l’équilibre thermodynamique.

ä On peut alors définir localement, en tout point du système, la température T (M , t ), et la pression P (M , t ).

 Équation locale du bilan thermique en l’absence de sources internes

On considère un milieu de masse volumique ρ, de capacité thermique massique à volume constant 1 cv.
On se place dans le cadre de l’hypothèse de l’équilibre thermodynamique local : l’équilibre thermodynamique
est réalisé sur un volume mésoscopique dτM de masse dm = ρdτ ; sa température est donc uniforme 2 T (M , t ).

On définit l’énergie interne massique u(M , t ) = δU

dm
. La variation de son énergie interne entre t et t +dt est donc

relié à la variation de température : d(δU ) = Cc dt , avec Cv = cvdm et dT = T (M , t +dt )−T (M , t ) = ∂T

∂t
dt , d’où

d(δU ) = ρcv dτdT .

 Cas unidimensionnel en coordonnées cartésiennes

Avec T (M , t ) = T (x, t ) et #»ȷQ (x, t ) = jQ (x, t ) #»e x , on a ρcv
∂T

∂t
S dx dt =−∂ jQ

∂x
S dx dt .

En l’absence de sources internes, l’équation locale de bilan d’énergie s’écrit

ρcv
∂T (x, t )

∂t
=−∂ jQ (x, t )

∂x
.

ä On obtient cette équation en faisant un bilan d’énergie à la tranche comprise entre x et x +dx.

1. Dans le cas d’une phase condensée — liquide ou solide — on considère cv ≈ cp ≈ c, capacité thermique.
2. En raison de l’hypothèse de l’équilibre thermodynamique local.

CPGE PSI 2025-2026 Lycée Jean Perrin 2/8



Phénomènes de transport II — Diffusion thermique

 Cas unidimensionnel en coordonnées cylindriques

Avec T (M , t ) = T (r, t ) et #»ȷQ (r, t ) = jQ (r, t ) #»e r , on a ρcv
∂T

∂t
2πr H dr dt =−∂2πr H jQ

∂r
dr dt .

En l’absence de sources internes, l’équation locale de bilan d’énergie s’écrit

ρcv
∂T (r, t )

∂t
=−1

r

∂r jQ (r, t )

∂r
.

ä On obtient cette équation en faisant un bilan d’énergie au tube de rayon r d’épaisseur dr .

 Cas unidimensionnel en coordonnées sphériques

Avec T (M , t ) = T (r, t ) et #»ȷQ (r, t ) = jQ (r, t ) #»e r , on a ρcv
∂T

∂t
4πr 2 dr dt =−∂4πr 2 jQ

∂r
dr dt .

En l’absence de sources internes, l’équation locale de bilan d’énergie s’écrit

ρcv
∂T (r, t )

∂t
=− 1

r 2

∂r 2 jQ (r, t )

∂r
.

ä On obtient cette équation en faisant un bilan d’énergie à la coquille de rayon r d’épaisseur dr .

 Généralisation en géométrique quelconque

En l’absence de sources internes, l’équation locale de bilan d’énergie s’écrit

ρcv
∂T (M , t )

∂t
=−div #»ȷQ (M , t ) .

 Bilan thermique en présence de sources internes

On note p(M , t ) la puissance volumique produite au sein du milieu, soit Pprod =
Ñ

M∈V
p(M , t )dτM .

Pour un phénomène unidimensionnel en coordonnées cartésiennes :

ρcv
∂T (x, t )

∂t
=−∂ jQ (x, t )

∂x
+p(x, t ) .

ä Énergie électrique dissipée pendant dt dans une tranche dx d’un conducteur ohmique :
dx

σS
I 2 dt .

En géométrique quelconque :

ρcv
∂T (M , t )

∂t
=−div #»ȷQ (M , t )+p(M , t ) .

 Loi de Fourier

Quand la température n’est pas uniforme, il apparaît un courant de diffusion thermique ayant pour effet de la
rendre uniforme : le flux thermique est dirigé des régions de température élevée aux régions de température
faible. Dans le cas unidimensionnel il est donné par la loi de Fourier :

jQ (x, t ) =−λ ∂T (x, t )

∂x
,

où λ> 0 est la conductivité thermique du milieu (en W ·m−1 ·K−1).
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En géométrie quelconque, la loi de Fourier se généralise :

#»ȷ Q (M , t ) =−λ#      »

gradT (M , t ) .

ä La loi de Fourier (1815) est phénoménologique. Elle est valable si les variations températures ne sont si trop
fortes, ni trop faibles, ni trop rapides.

ä La loi de Fourier décrit une réponse du milieu linéaire et instantanée : la cause est le gradient de température
#      »

gradT traduisant la non uniformité de la température, la réponse le courant #»ȷQ .

ä Le signe − rend compte de l’orientation du flux thermique vers les basses températures.

ä Une conductivité thermique λ caractérise un bon conducteur thermique ; un milieu est d’autant plus ther-
miquement isolant que sa conductivité thermique λ est faible.

ä Dans les métaux, les électrons de conduction participent au transfert thermique par diffusion : en général,
les bons conducteurs électriques sont de bons conducteurs thermiques.

ä Pour les non métaux, les matériaux les plus conducteurs sont les plus cristallisés. Le diamant est le meilleur
conducteur thermique : λ= 2300 W ·m−1 ·K−1.

ä La conductivité thermique des gaz est très faible : ce sont de très bons isolants thermiques en l’absence de
convection.

 Ordres de grandeur à connaître

métaux bons conducteurs électriques λ≈ 102 W ·m−1 ·K−1

métaux médiocres conducteurs électriques (acier) λ≈ 10 W ·m−1 ·K−1

béton, verre, eau λ≈ 1 W ·m−1 ·K−1

air, laine de verre λ≈ 10−2 W ·m−1 ·K−1

On a λ≈ 400 W ·m−1 ·K−1 pour l’argent et le cuivre.

 Équation de la diffusion thermique en l’absence de sources internes

Dans le cas unidimensionnel, en l’absences de sources internes, on déduit de l’équation locale de bilan d’énergie
et de la loi de Fourier l’équation de la diffusion thermique :

∂T (x, t )

∂t
= λ

ρcv

∂2T (x, t )

∂x2 .

On peut l’écrire

∂T

∂t
= a

∂2T

∂x2 avec a = λ

ρcv

où a (en m2 · s−1) est la diffusivité thermique du milieu.
En géométrie quelconque, l’équation de la diffusion thermique se généralise en

∂T (M , t )

∂t
= a∆T (M , t ) .

ä L’équation de la diffusion thermique est aussi appelée équation de la chaleur.

ä L’équation de la diffusion n’est pas invariante par renversement du temps (changement de variable t ′ =−t ).
Cela traduit le caractère irréversible du phénomène de diffusion.

ä On a une bonne diffusion thermique dans un milieu de conductivité λ élevée (le flux thermique y est trans-
mis facilement) et de capacité thermique volumique ρcv faible (le milieu a un faible pouvoir de stockage de

l’énergie sous forme thermique) : a = capacité à conduire la chaleur

capacité à accumuler la chaleur
.

C’est la diffusivité thermique qui jour le rôle de coefficient de diffusion.
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ä Les valeurs de la diffusivité a sont assez proches : 10−5 m2 · s−1 pour les gaz et les solides, 10−7 m2 · s−1 pour
les liquides. En effet, les matériaux de conductivité λ élevée ont une masse volumique ρ élevée.

ä La diffusivité a n’intervient qu’en régime variable ; en régime stationnaire, seule la conductivité λ intervient.

 Echelles caractéristiques

On note L l’échelle de longueur caractéristique du phénomène et τ sa durée caractéristique. De l’équation de la
diffusion on déduit

L ∼p
aτ

ä La diffusion met un temps très long pour se produire sur une grande distance : τ∝ (L)2.

 Cas où il y a de sources internes

Dans le cas où une puissance volumique p(M , t ) est produite au sein du milieu, on en déduit respectivement
dans les cas unidimensionnel et en géométrique quelconque :

ρcv
∂T (x, t )

∂t
=λ

∂2T (x, t )

∂x2 +p(x, t ) et ρcv
∂T (M , t )

∂t
=λ∆T (M , t )+p(M , t ) .

 Conditions aux limites

L’équation de la diffusion thermique est une équation aux dérivées partielles linéaires. Pour un jeu de conditions
initiales et aux limites données, la solution est unique.

Cas no 1 Frontière Σ en contact
avec un thermostat à
la température T0.

La température est conti-
nue. T (L, t ) = T0 , ∀t

Cas no 2 Frontière calorifugée. Le flux thermique (donc la
densité de courant) est nul à
travers la frontière.

jQ (L, t ) =−λ
(
∂T

∂x

)
t
(L, t ) = 0 ;∀t

Cas no 3 Contact parfait entre
deux solides.

Le flux thermique et la tem-
pérature sont continus à la
traversée de la jonction.

T1(L, t ) = T2(L, t ) , ∀t

−λ1S

(
∂T1

∂x

)
t
(L−, t ) =−λ2S

(
∂T2

∂x

)
t
(L+, t ) , ∀t

Cas no 4 Frontière solide Σ au
contact d’un fluide.

Continuité du flux (donc
de la densité de courant)
donné par la loi de Newton.

−λ
(
∂T (x, t )

∂x

)
t
(L, t ) = h [T (L, t )−T0] , ∀t

solide (λ)
T (x, t )

thermostat
T0

L x

solide (λ)
T (x, t )

L x

is
o

la
n

t

solide 1 (λ1)
T1(x, t )

solide 2 (λ2)
T2(x, t )

xL

solide (λ)
T (x, t )

L x

fluide
T0

cas no 1 cas no 2 cas no 3 cas no 4

 Loi de Newton

La température est une grandeur continue, mais elle varie beaucoup sur une très courte distance dans le fluide
au voisinage de la paroi ; on modélise cette variation rapide par une discontinuité de température, le transfert

thermique étant donné par la loi de Newton : Φcc = hS(T −T0) pour un corps de température T plongé dans
un fluide à la température T0. Le vecteur densité de courant thermique, orienté du solide vers le fluide, est donc
ȷQ,cc = h(T −T0).

ä Le coefficient conducto-convectif h est plus élevé pour un liquide que pour un gaz, et est plus important
dans le cas de la convection forcée.
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 Régime stationnaire : résistance thermique

 Cas unidimensionnel : résistance thermique

Considérons un phénomène unidimensionnel en coordonnées cartésiennes décrit par par T (x, t ) et Φ(x), le
milieu étant compris entre x = 0 et x = L, avec T (0) = T1 et T (L) = T2.
L’équation de la diffusion thermique conduit à

d2T (x)

dx2 = 0 et
dΦ(x)

dx
= 0 .

En régime stationnaire, en l’absence de sources internes, le flux thermique Φ est conservé tout le long du
milieu (il ne dépend pas de x).

ä La température varie de façon affine : T (x) = T1 + (T2 −T1)
x

L
.

On définit la résistance thermique Rth du matériau par

T1 −T2 = RthΦ1→2 ,

le flux thermique étant orienté de l’extrémité (1) vers l’extrémité (2).

ä La résistance thermique est positive, et s’exprime en K ·W−1.

ä La résistance thermique d’un cylindre de longueur L et de section S siège d’une diffusion thermique unidi-
mensionnelle selon son axe est

Rth = L

λS

ä On définit la conductance thermique Gth = 1/Rth .

ä Deux milieux sont en série s’ils sont traversés par le même flux thermique. Leur résistance thermique équi-
valente vaut Rth = Rth,1 +Rth,2 : les résistances thermiques en série s’ajoutent.

ä Deux milieux sont en parallèle s’ils ont la même différence de température entre leurs extrémités. Leur conduc-
tance thermique équivalente vaut Gth =Gth,1 +Gth,2 : les conductances thermiques en parallèle s’ajoutent.

ä Une interface entre une paroi solide et un fluide (loi de Newton) peut être décrite par une résistance ther-

mique Rth = 1

hS
.

ä On peut généraliser la résistance thermique en géométrie quelconque en régime stationnaire, à partir de la
définition générale

T1 −T2 = RthΦ .

 ARQS (approximation des régimes quasi-stationnaires) : analogie électrocinétique

thermostat
T0

C
T (t )

ρ, c, λ

0 L x

On considère un corps de capacité thermique C de température T (t ), au
contact d’un thermostat à la température T0 à travers une résistance ther-
mique Rth (cylindre de longueur L, de section S, de conductivité thermique
λ, capacité thermique c).
Posons T (t = 0) = T1 < T0 ; la température du corps augmente du fait du flux
thermique traversant le cylindre.

La durée caractéristique de la diffusion thermique dans le cylindre est τdiff =
ρcL2

λ
. On note τ le temps caracté-

ristique de l’évolution de T (t ).
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0 xL

T1

T0

T (x)

0 xL

T1

T0

T (x, t )

t = 0

t1 > 0
t2 > t1

0 xL

T1

T0

T (x, t )

t = 0

t1 > 0
t2 > t1

Cas no 1 : stationnaire Cas no 2 : τdiff ¿ τ ARQS Cas no 3 : τdiff > τ

cas no1 Régime stationnaire (correspond à C →∞). Le profil de température est affine dans le cylindre.

cas no2 Si τdiff ¿ τ, la température dans le cylindre est affine à chaque instant, la pente évoluant au cours du
temps; c’est l’ARQS. La condition revient à ρcL ¿ C : la capacité thermique du cylindre est négligeable
devant celle du corps recevant le flux thermique.

cas no3 On n’est plus dans l’ARQS; la température T (t ) évolue trop rapidement pour que la température dans le
cylindre puisse relaxer vers le profil affine au cours de l’évolution.

Dans le cadre de l’ARQS, on peut utiliser le concept de résistance thermique, et faire une analogie électro-
cinétique.

Système réel

C dT =Φdt et T0 −T (t ) = RthΦ

RthC
dT

dt
+T (t ) = T0

Constante de temps τ= RthC .

Analogie électrocinétique

C
dU

dt
= i et U0 −U (t ) = Ri

RC
dU (t )

dt
+U (t ) =U0

Constante de temps τ= RC .

ý��-
��� �
Φ � ��Rth ��� ����

�C ���ý
����T0 ��� T (t ) ý��-

��� �
i � ��R ��� ����
�C ���ý

����U0 ��� U (t )

 Ondes thermiques

On considère un milieu semi-infini x > 0 (caractéristiques λ, ρ, cv) ; on impose à la frontière x = 0 les variations
sinusoïdales de température

T (t ) = T0 +T1 cos(ωt ) .

En régime harmonique établi, la température solution de l’équation de la chaleur
∂T

∂t
= a

∂2T

∂x2 est de la forme, en

notation complexe

T (x, t ) = T0 +T1 ei(ωt−kx) avec k2 =−i
ω

a
= ω

a
e−iπ/2 .

On en déduit

k =±
√

ω

2a
(1− i) =±1− i

δ
et δ=

√
2a

ω
.

On ne conserve que la solution k =−1− i

δ
, l’autre solution donnant une température qui diverge quand x →+∞.

La température dans le milieu apparaît comme une onde atténuée :

T (x, t ) = T0 +T1 e−x/δ︸ ︷︷ ︸
amplitude
atténuée

cos
(
ωt − x

δ

)
︸ ︷︷ ︸

onde
progressive

= T0 +T1 e−x/δ cos
(
ω

[
t − x

v

])
.

ä L’amplitude est atténuée sur un distance caractéristique δ=
√

2a

ω
.
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ä Quand ω devient élevée, l’onde de température ne prend de valeur notable que sur une distance δ petite,
appelée épaisseur de peau : c’est l’effet de peau.

ä La propagation de l’onde de température se fait avec une célérité 3 v = δω=p
2aω : elle dépend de ω, le phé-

nomène est dispersif. La relation de dispersion est la relation entre la pulsation temporelle ω et la pulsation

spatiale k ′ = Re(k) = 1/δ, soit k ′(ω) =
√

ω

2a
.

T (x, t )

T0

T0 +T1

T0 −T1

x0

T (x, t )

T0

T0 +T1

T0 −T1

x0

T (x, t )

T0

T0 +T1

T0 −T1

x0

ω1 ω2 >ω1 ω3 >ω2

 Analogies : diffusion thermique, diffusion particulaire et conduction électrique

Conduction électrique Diffusion thermique Diffusion particulaire

transfert de charges (q) transfert thermique (Q) transfert de particules (N )

vecteur densité de courant #»ȷ #»ȷQ
#»ȷ n

intensité électrique flux thermique flux particulaire

I =
Ï

#»ȷ ·d
#»
S = δq

dt
Φ=

Ï
#»ȷQ ·d

#»
S = δQ

dt
Φ=

Ï
#»ȷ n ·d

#»
S = δn

dt

loi d’Ohm loi de Fourier loi de Fick
#»ȷ =−γ #      »

gradV #»ȷQ =−λ #      »

gradT #»ȷ n =−D
#      »

gradn

conductivité électrique γ conductivité thermique λ diffusivité D

potentiel électrique V température T densité particulaire n

résistance électrique R résistance thermique Rth

V1 −V2 = RI T1 −T2 = RthΦ

R = L

γS
Rth = L

λS

 Mais qui était-il?

Joseph Fourier (Auxerre 1768 - Paris 1830).
Mathématicien et physicien français.
Il entre à l’ENS en 1794, où il suit les cours de Lagrange, Laplace et Monge.
Après trois années en Egypte (expéditions napoléoniennes), il est nommé pré-
fet de l’Isère en 1802. Il est nommé à l’Académie des sciences en 1817, dont il
devient secrétaire perpétuel en 1822.
Son travail le plus important porte sur l’étude de la propagation de la chaleur
dans un solide. Son œuvre majeure, Théorie analytique de la chaleur est pu-
bliée en 1822. Il montre l’importance des conditions aux limites pour la réso-
lution des équations aux dérivées partielles, dont il cherche une solution sous
forme d’une série trigonométrique. Il montre alors que toute fonction qui pos-
sède une surface sous son graphe (« intégrable ») peut être représentée comme
une série de Fourier.

On lui doit le symbole de l’intégration

ˆ b

a
.

Le symbole de la sommation

ˆ
est dû à Leibniz ; c’est un « s long », initiale de (somme en latin).

3. Appelée aussi vitesse de phase.
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