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Phénomenes de transport Il — Diffusion thermique

Les différents modes de transfert thermique

Convection La convection thermique est un transfert d’énergie thermique, par rapport a un référentiel donné,
d@i a un transport macroscopique de matiere dans ce référentiel. Elle peut étre libre, ou forcée quand le
mouvement du fluide est imposé par une machine extérieure au systeme (pompe, ventilateur...).

Rayonnement Le rayonnement thermique est un transfert d’énergie par une onde électromagnétique située
principalement dansI'infrarouge. Tout corps émet un rayonnement de spectre continuy, lalongueur d’onde
pour laquelle un maximum de puissance est rayonnée dépendant de la température du corps.

Diffusion La diffusion thermique est un transfert thermique d’origine microscopique (transmission de proche
en proche du mouvement d’agitation thermique) au sein d’'un milieu matériel dans lequel la température
n’est pas uniforme. Ce transfert se fait, de facon irréversible, des zones de températures élevées aux zones
de basses températures et tend a rendre uniforme la distribution de température.

» Le transfert par rayonnement thermique, qui se produit dans les milieux transparents au rayonnement, est
le seul pouvant avoir lieu dans le vide.

» La convection est le mode de transfert thermique principal dans les fluides.

» La conduction existe dans tous les corps matériels mais est souvent masquée par la convection dans les
fluides. C’est le mode de transfert principal dans les solides.

Vecteur densité de courant thermique

Flux thermique

L'énergie transférée a travers une surface X orientée, pendant une durée d¢, par transfert thermique s’écrit
0Q() =dx(n)dt

ol ®x(?) est le flux thermique a travers X.

» Le flux thermique s’exprime en W : il représente la puissance thermique traversant Z.

» Le flux thermique est une grandeur scalaire algébrique; son signe dépend du choix d’orientation de Z et du
sens réel du transfert d’énergie thermique a travers .

Vecteur densité de courant thermique

Par définition du vecteur densité de courant thermique :

D3 (1) =ff ToM, 1)dSy.
MeX

» Lanorme || TQ(M , )|l s’exprime en W- m~2. Elle représente une puissance surfacique.

» En coordonnées cartésiennes, pour un phénoméne unidimensionnel décrit par Jg = jo(x, 1) €y, le flux ther-
mique a travers une surface S normale a Ox, aI'abscisse x, orientée selon €y est | ®(x, 1) = jo(x, S .

» En coordonnées sphériques, pour un phénomeéne unidimensionnel décrit par TQ = jo(r, 1) e, le flux ther-
mique sortant a travers une sphére de rayon r est | ®(r, 1) = 4nr? jo(r, 1) .

» En coordonnées cylindriques, pour un phénomene unidimensionnel décrit par J, = jo(r, 1) €, le flux ther-
mique sortant a travers un cylindre de rayon r et de hauteur H est | ®(r, ) = 2nrH jo(r, ) |.
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Bilan d’énergie : premier principe
Ecriture générale

On considere un systeme de volume V délimité par une frontiere X fixe (donc Wyyession = 0 pour ce systeme
indéformable).
Le bilan d’énergie pendant une durée d¢ s’écrit sous la forme générale

dU, = 6Qrequ + Pproadrt
. . W_J
jeiauon énergie énergie
d énergie regue produite
stockée

— dU = U(t +dt) — U(t) estla variation de I'énergie interne du systéme pendant dt;
— 0 Qrecu st le transfert thermique recu par le systeme pendant dr a travers sa frontiere Z;

— Pprod st la puissance produite par des sources internes au systeme (effet Joule, réaction chimique exother-
mique ou endothermique, réaction nucléaire, changement de phase).

Hypothése de I'équilibre thermodynamique local

Un systeme est a I'équilibre thermodynamique si les grandeurs intensives y sont uniformes (température, pres-
sion, potentiel chimique de chaque espeéce), et s’il n'y a pas de mouvement convectif (mouvement macrosco-
pique de matiere) en son sein.

» Lorsqu'un systeme est dans un état hors d’équilibre, les champs intensifs sont non uniformes, ce qui donne
naissance a des flux : transfert thermique si T n’est pas uniforme par exemple.

Dans I'’hypothése de 1'équilibre thermodynamique local, chaque volume mésoscopique dz,; du systeme
est a I’équilibre thermodynamique.

» On peut alors définir localement, en tout point du systeme, la température T'(M, t), et la pression P(M, t).

Equation locale du bilan thermique en I'absence de sources internes

On considére un milieu de masse volumique p, de capacité thermique massique a volume constant! c,.

On se place dans le cadre de 'hypothese de I'équilibre thermodynamique local : I'équilibre thermodynamique

est réalisé sur un volume mésoscopique d7; de masse dm = pdr; sa température est donc uniforme? T(M, t).

On définit I’énergie interne massique u(M, t) = T La variation de son énergie interne entre ¢ et ¢ +d¢ est donc
m

oT

T dt, d'ott

relié a la variation de température : d(6U) = C.dt, avec Cy = cpdm et dT = T(M, t+dt) - T(M, t) =
d(6U) =pcydrdT.

Cas unidimensionnel en coordonnées cartésiennes

Avec T(M, 1) = T(x, 1) et jo(x, 1) = jo(x,1) ey, onapcVEdedt: ——a]Qdedt.
X

En I'absence de sources internes, I'équation locale de bilan d’énergie s’écrit

TG0 __djgLx,)
P& = ox

» On obtient cette équation en faisant un bilan d’énergie a la tranche comprise entre x et x + dx.

1. Dans le cas d'une phase condensée — liquide ou solide — on considere ¢y = ¢p = ¢, capacité thermique.
2. Enraison de '’hypotheése de I'équilibre thermodynamique local.
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Cas unidimensionnel en coordonnées cylindriques

R ) R oT 02nrHjg
Avec T(M, t) = T(r,t) et jo(r, 1) = jo(r, 1) €y, onapcVEZHerrdt= ——=drdt.

En I'absence de sources internes, I'équation locale de bilan d’énergie s’écrit

. 0T(r,t) _ 10rjo(r,1)
P =77 or

» On obtient cette équation en faisant un bilan d’énergie au tube de rayon r d’épaisseur dr.
Cas unidimensionnel en coordonnées sphériques

o , o oT danr?jo
Avec T(M, t) = T(r,t) et Jo(r, 1) = jo(r, 1) €y, onapcVE47tr drdt= v drdt.

En I'absence de sources internes, I'équation locale de bilan d’énergie s’écrit

oT(r,t) 1 0r%jo(r,1)
ot  r2  or

Cy

» On obtient cette équation en faisant un bilan d’énergie a la coquille de rayon r d’épaisseur dr.

Généralisation en géométrique quelconque

En'absence de sources internes, I'équation locale de bilan d’énergie s’écrit

0T (M, 1) . -
pcVT =—div jo(M,1).

Bilan thermique en présence de sources internes

On note p(M, t) la puissance volumique produite au sein du milieu, soit ﬂ’pmd = f f f p(M, t)dt py.
MeV

Pour un phénomene unidimensionnel en coordonnées cartésiennes :

oT(x,1)  0jo(x, 1)
[ pCy ar ox +p(x,1).

p dx
» Energie électrique dissipée pendant d¢ dans une tranche dx d'un conducteur ohmique : —SI 2dzr.
o

En géométrique quelconque :

0T (M, t) .
pCVT = —div ]Q(M) t) +p(M’ t)'

Loi de Fourier

Quand la température n'est pas uniforme, il apparait un courant de diffusion thermique ayant pour effet de la
rendre uniforme : le flux thermique est dirigé des régions de température élevée aux régions de température
faible. Dans le cas unidimensionnel il est donné par la loi de Fourier :

0T (x, 1)
ox

o1 A > 0 est la conductivité thermique du milieu (en W-m~'-K™1).
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En géométrie quelconque, la loi de Fourier se généralise :

[ ToM, 1) = —Agrad T(M, 1). J

» Laloi de Fourier (1815) est phénoménologique. Elle est valable si les variations températures ne sont si trop
fortes, ni trop faibles, ni trop rapides.

» Laloi de Fourier décrit une réponse du milieu linéaire et instantanée : la cause est le gradient de température
grad T traduisant la non uniformité de la température, la réponse le courant ;.

» Lesigne — rend compte de l'orientation du flux thermique vers les basses températures.

» Une conductivité thermique A caractérise un bon conducteur thermique; un milieu est d’autant plus ther-
miquement isolant que sa conductivité thermique A est faible.

» Dans les métaux, les électrons de conduction participent au transfert thermique par diffusion : en général,
les bons conducteurs électriques sont de bons conducteurs thermiques.

» Pour les non métaux, les matériaux les plus conducteurs sont les plus cristallisés. Le diamant est le meilleur
conducteur thermique : A =2300 W-m~! - K1,

» La conductivité thermique des gaz est tres faible : ce sont de tres bons isolants thermiques en 1'absence de
convection.

Ordres de grandeur a connaitre

métaux bons conducteurs électriques A=10°W-m~1.K!
métaux médiocres conducteurs électriques (acier) A=~10W-m~!-K!
béton, verre, eau A=~1W-m~!.K!

air, laine de verre A=~102W-m!.K!

OnaA=~400 W-m™!-K™! pour I'argent et le cuivre.

Equation de la diffusion thermique en I'absence de sources internes

Dans le cas unidimensionnel, en ’absences de sources internes, on déduit de I’équation locale de bilan d’énergie
et de la loi de Fourier I'équation de la diffusion thermique :

OT(x, 1) _ A &°T(x,1)
ot  pcy O0x2

On peut I'écrire
0T  0°T

= avec a=

ot “ox? pcy

ol a (en m?-s™ 1) est la diffusivité thermique du milieu.
En géométrie quelconque, I'équation de la diffusion thermique se généralise en

M—aAT(M f)
or T

» Léquation de la diffusion thermique est aussi appelée équation de la chaleur.

» Léquation de la diffusion n’est pas invariante par renversement du temps (changement de variable t' = —1).
Cela traduit le caractere irréversible du phénomene de diffusion.

» On a une bonne diffusion thermique dans un milieu de conductivité 1 élevée (le flux thermique y est trans-

mis facilement) et de capacité thermique volumique pcy faible (le milieu a un faible pouvoir de stockage de
capacité a conduire la chaleur

capacité a accumuler la chaleur’
C’est la diffusivité thermique qui jour le role de coefficient de diffusion.

I'énergie sous forme thermique) : a =
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» Les valeurs de la diffusivité a sont assez proches : 107> m?-s~! pour les gaz et les solides, 107" m?-s~! pour
les liquides. En effet, les matériaux de conductivité A élevée ont une masse volumique p élevée.

» Ladiffusivité a n’intervient qu’en régime variable; en régime stationnaire, seule la conductivité A intervient.

Echelles caractéristiques

On note L I'échelle de longueur caractéristique du phénomene et 7 sa durée caractéristique. De 'équation de la
diffusion on déduit

( = )

» La diffusion met un temps trés long pour se produire sur une grande distance : 7 o< (L)?.

Casou il y a de sources internes

Dans le cas ou1 une puissance volumique p(M, f) est produite au sein du milieu, on en déduit respectivement
dans les cas unidimensionnel et en géométrique quelconque :

CaT(x,t)_AGZT(x,t)_’_ w0 I . OTM, 1)
o a2 P ST

=AAT(M, )+ p(M,¥) .

Conditions aux limites

L'équation de la diffusion thermique est une équation aux dérivées partielles linéaires. Pour un jeu de conditions
initiales et aux limites données, la solution est unique.

Casn°1 | Frontiére Z en contact | La température est conti-
avec un thermostat a | nue. TL,n="To, vVt
la température 7.

Casn°2 | Frontiere calorifugée. | Le flux thermique (donc la oT
densité de courant) est nul a JoL,f)=-A (a) (L,t)=0;Vt
travers la frontiére. !

Casn°3 | Contact parfait entre | Le flux thermique et la tem-

deux solides. pérature sont continus a la hLn)=T1(L1), Yt

traversée de la jonction. A4S (aﬁ) L) = —1sS (%) AT
ox J; o0x J;
Casn°4 | Frontiére solide X au | Continuité du flux (donc 0T (x, 1)
contact d'un fluide. de la densité de courant) _)L( dx )t(l" 0 =h(TL1)-Tol, V¢
donné par la loi de Newton.
casn°1l casn° 2 casn°®3 casn°4
R
thermostat § solide 2 (1,)
To 2 T3 (x, 1)

L X L X L X L X

Loi de Newton

La température est une grandeur continue, mais elle varie beaucoup sur une trés courte distance dans le fluide
au voisinage de la paroi; on modélise cette variation rapide par une discontinuité de température, le transfert
thermique étant donné par la loi de Newton: | ®.. = hS(T — Tp) pour un corps de température T plongé dans
un fluide a la température Ty. Le vecteur densité de courant thermique, orienté du solide vers le fluide, est donc
JQ,cc = h(T - Tv).

» Le coefficient conducto-convectif i est plus élevé pour un liquide que pour un gaz, et est plus important
dans le cas de la convection forcée.
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Régime stationnaire : résistance thermique

Cas unidimensionnel : résistance thermique

Considérons un phénomene unidimensionnel en coordonnées cartésiennes décrit par par T'(x,t) et (x), le
milieu étant compris entre x=0et x =L, avec T(0) =T et T(L) = T>.
L'équation de la diffusion thermique conduit a

c12T(x)_0 o 4000 _ o
dx2 dx

En régime stationnaire, en 'absence de sources internes, le flux thermique ® est conservé tout le long du
milieu (il ne dépend pas de x).

X
» Latempérature varie de facon affine : T'(x) = T1 + (T> — T1) I

On définit la résistance thermique R, du matériau par
I - T> = Rp®1—2,

le flux thermique étant orienté de 'extrémité (1) vers I'extrémité (2).

» Larésistance thermique est positive, et s’exprime en K- W1,

» Larésistance thermique d'un cylindre de longueur L et de section S siége d'une diffusion thermique unidi-
mensionnelle selon son axe est

R L
th_/lS

» On définit la conductance thermique | Gy, = 1/Ry, |-

» Deux milieux sont en série s’ils sont traversés par le méme flux thermique. Leur résistance thermique équi-
valente vaut Ry, = Ry + R 2 : les résistances thermiques en série s’ajoutent.
» Deuxmilieux sont en parallele s’ils ontla méme différence de température entre leurs extrémités. Leur conduc-
tance thermique équivalente vaut Gy, = Gy, + G 2 : les conductances thermiques en paralléle s’ajoutent.
» Une interface entre une paroi solide et un fluide (loi de Newton) peut étre décrite par une résistance ther-
mique Ry, = —.
q th=77%
» On peut généraliser la résistance thermique en géométrie quelconque en régime stationnaire, a partir de la
définition générale
Ty — T, = Ry, ®.

ARQS (approximation des régimes quasi-stationnaires) : analogie électrocinétique

On considere un corps de capacité thermique C de température T(t), au

contact d'un thermostat a la température Ty a travers une résistance ther- = thermostat p,c, A C
mique Ry, (cylindre de longueur L, de section S, de conductivité thermique To I

A, capacité thermique c).

Posons T(t =0) = T} < Tp; la température du corps augmente du fait du flux 0 I *

thermique traversant le cylindre.
2

La durée caractéristique de la diffusion thermique dans le cylindre est 74i = . On note 7 le temps caracté-

ristique de I'évolution de T ().
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Cas n° 1 : stationnaire Casn°2: tq4i5 < T ARQS Casn®3:7gig>T
T(x,1)

Ty

T(x)
To

T

0 L x 0 L x

cas n°1 Régime stationnaire (correspond a C — 00). Le profil de température est affine dans le cylindre.

casn°2 Si 74if < 7, la température dans le cylindre est affine a chaque instant, la pente évoluant au cours du
temps; c’est 'ARQS. La condition revient a pcL <« C : la capacité thermique du cylindre est négligeable
devant celle du corps recevant le flux thermique.

casn°3 On n'est plus dans 'ARQS; la température T'(¢) évolue trop rapidement pour que la température dans le
cylindre puisse relaxer vers le profil affine au cours de I'évolution.

[ Dans le cadre de ’ARQS, on peut utiliser le concept de résistance thermique, et faire une analogie électro- ]
cinétique.

Systeme réel Analogie électrocinétique
dUu
CdT=®dt et Ty—T(t)=Rn® CEZZ et Up—U(t) =Ri
dT dU(n
RthCE+T(t) =To RC +U)=Uy
Constante de temps 7 = R, C. Constante de temps 7 = RC.
® Rm i R
i i
b 19 gl
Ondes thermiques

On considere un milieu semi-infini x > 0 (caractéristiques A, p, ¢y); on impose a la frontiere x = 0 les variations
sinusoidales de température
T(t)=Ty+ T cos(wt).
2

En régime harmonique établi, la température solution de I'’équation de la chaleur 5 ap estde la forme, en
X

notation complexe
o) f— W w _;
I'(x,1) = 10 + Zlel(“” ko) avec kz =—-l1—=—¢€ inf2 .

a a
On en déduit
! 2a
k= +,/ (1—1)—+— et 0= \/
On ne conserve que la solution k = — T I'autre solution donnant une température qui diverge quand x — +oo.

La température dans le milieu apparait comme une onde atténuée :

X X
T(x,t)= T0+T1e_’”6 cos(wt—g) =T+ Tle_x/‘scos(w [t—;])

—_—
amplitude onde
atténuée  progressive

: S . s 2a
» Lamplitude est atténuée sur un distance caractéristique 6 =/ —.
w
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» Quand w devient élevée, I'onde de température ne prend de valeur notable que sur une distance ¢ petite,
appelée épaisseur de peau : c’est I'effet de peau.

» La propagation de 'onde de température se fait avec une célérité® v = 5w = v2aw : elle dépend de w, le phé-
nomeéne est dispersif. La relation de dispersion est la relation entre la pulsation temporelle w et la pulsation

spatiale k' = Re(k) = 1/6, soit k'(w) = /%_

T(x,t)
To+ T

T(x, 1)
To+ T

T(x,1t)

w1 To+ T

w3 > W2

To

To—T, | To—T, | To—T,|

0

X

0

x 0

Analogies : diffusion thermique, diffusion particulaire et conduction électrique

Conduction électrique

Diffusion thermique

Diffusion particulaire

transfert de charges (q)

transfert thermique (Q)

transfert de particules (N)

vecteur densité de courant J Jo T
intensité électrique flux thermique flux particulaire
I=ff7-d§'=% q):f TQ-d§'=i—? q):ffﬂ-d?:%
loi ’'Ohm loi de Fourier loi de Fick
7 =-ygradV Jo=-Agrad T 7n=-Dgradn
conductivité électrique y conductivité thermique A diffusivité D

potentiel électrique V

température T

densité particulaire n

résistance électrique R résistance thermique Ry,

Vi—Va=RI T\ - Ty = Rp ®
rR=L Ry = —
" s h= s

Mais qui était-il ?

Joseph Fourier (Auxerre 1768 - Paris 1830).

Mathématicien et physicien francais.

Il entre a 'ENS en 1794, ou il suit les cours de Lagrange, Laplace et Monge.
Apres trois années en Egypte (expéditions napoléoniennes), il est nommé pré-
fet de I'Iseére en 1802. Il est nommé a I’Académie des sciences en 1817, dont il
devient secrétaire perpétuel en 1822.

Son travail le plus important porte sur I'étude de la propagation de la chaleur
dans un solide. Son ceuvre majeure, Théorie analytique de la chaleur est pu-
bliée en 1822. Il montre I'importance des conditions aux limites pour la réso-
lution des équations aux dérivées partielles, dont il cherche une solution sous
forme d’une série trigonométrique. Il montre alors que toute fonction qui pos-
sede une surface sous son graphe (« intégrable ») peut étre représentée comme
une série de Fourier.

On lui doit le symbole de I'intégration / .

a

Le symbole de la sommation / est dli a Leibniz; c’est un « s long», initiale de fumma (somme en latin).

s gt , e . /
3. Appelée aussi vitesse de phase. Lge alﬂ/i gue Lon 667‘2‘06221‘/5 mme.
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