Mathématiques et physique

Les opérateurs vectoriels

1 — L'opérateur gradient

Soit un champ scalaire G(M, t). Sa variation dG entraînée par un déplacement élémentaire $\overrightarrow{d\ell_M}$ de M est, par définition de l'opérateur gradient :

$$dG = \overrightarrow{\operatorname{grad}} G(M, t) \cdot d\overrightarrow{\ell}_M$$

- ➤ Mathématiquement : la différentielle d'un champ scalaire est égale à la circulation élémentaire de son gradient.
- Physiquement : la variation d'un champ scalaire lors d'un déplacement élémentaire $d\vec{\ell}$ est égal à la circulation élémentaire de son gradient sur ce déplacement $d\vec{\ell}$.
- L'opérateur gradient s'applique à un champ scalaire, qu'il transforme en un champ vectoriel :

$$\overrightarrow{\operatorname{grad}}: R \longrightarrow R^3$$

$$G(M,t) \longmapsto \overrightarrow{\operatorname{grad}} G(M,t)$$

 \blacktriangleright L'opérateur gradient est linéaire : $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\overrightarrow{\operatorname{grad}}(\lambda G_1 + \mu G_2) = \lambda \overrightarrow{\operatorname{grad}} G_1 + \mu \overrightarrow{\operatorname{grad}} G_2$.

Le gradient d'un champ scalaire G(M, t) est un champ vectoriel qui renseigne sur les variations spatiales de G(M, t).

L'ensemble des points tels que $G(M, t_0) = G_0$ à un instant donné est une surface (surface « iso-G »). En tout point d'une telle surface, le vecteur $\overrightarrow{grad} G(M, t)$ est normal à cette surface, et dirigé dans le sens des G croissants.

 $\overrightarrow{Demonstration}$: Soient M et M' deux points sur la surface $G(M) = G_0$, avec $\overrightarrow{MM'} = \overrightarrow{d\ell_M}$ élémentaire. Par définition du gradient, $\overrightarrow{\operatorname{grad}} G \cdot \overrightarrow{d\ell_M} = dG$; or dG = G(M') - G(M) = 0 car par hypothèse $G(M) = G(M') = G_0$. On a donc $\overrightarrow{\operatorname{grad}} G \cdot \overrightarrow{d\ell_M} = 0$, et $\overrightarrow{\operatorname{grad}} G \perp \overrightarrow{d\ell_M}$. Comme $\overrightarrow{d\ell_M}$ est tangent à la surface iso-G par construction, $\overrightarrow{\operatorname{grad}} G$ est normal à cette surface.

Considérons un déplacement du point M vers un point M'' selon $d\vec{\ell}$ normal à la surface iso-G, dans le sens de $\overrightarrow{\operatorname{grad}} G$. La variation du champ scalaire vaut $G(M'') - G(M) = dG = \overrightarrow{\operatorname{grad}} G \cdot d\vec{\ell}$. Comme $\overrightarrow{\operatorname{grad}} G$ est normal à la surface iso-G, il est colinéaire à $d\vec{\ell}$; on a supposé $d\vec{\ell}$ et $\overrightarrow{\operatorname{grad}} G$ de même sens, d'où $\overrightarrow{\operatorname{grad}} G \cdot d\vec{\ell} > 0$. On a donc dG > 0: le champ G augmente donc quand on se déplace dans le sens de $\overrightarrow{\operatorname{grad}} G$.

Un champ de gradient est à circulation conservative :

$$\oint_{M\in\Gamma} \overrightarrow{\operatorname{grad}} G(M,t) \cdot \overrightarrow{\operatorname{d}\ell_M} = 0; \quad \forall \Gamma.$$

Démonstration: par définition du gradient $\oint \overrightarrow{\operatorname{grad}} G \cdot \overrightarrow{\operatorname{d\ell}} = \oint dG = G(A) - G(A) = 0$, le point de départ étant égal au point d'arrivée si l'on circule sur un contour qui est une courbe fermée.

➤ La circulation d'un champ de gradient entre deux points A et B est donc indépendant du chemin suivi.

Tout champ vectoriel $\overrightarrow{A}(M, t)$ à circulation conservative est un champ de gradient :

$$\oint_{M \in \Gamma} \overrightarrow{A}(M,t) \cdot \overrightarrow{\mathrm{d}\ell_M} = 0 \; ; \forall \Gamma \Longleftrightarrow \exists G(M,t), \; \overrightarrow{A}(M,t) = \overrightarrow{\mathrm{grad}} \, G(M,t)$$

➤ La circulation d'un champ de force représente le travail de la force sur le chemin considéré. Le résultat précédent est vu en mécanique sous la forme : une force conservative dérive d'une énergie potentielle.

Une force est dite conservative si son travail ne dépend pas du chemin suivi, c'est-à-dire si $\oint \vec{F} \cdot d\vec{\ell} = 0$. Il existe donc un champ scalaire $^1 - E_p$ tel que $\vec{F} = -\overrightarrow{\text{grad}} E_p$.

^{1.} Le signe – est choisi pour l'interprétation énergétique de ce champ scalaire.

2 — L'opérateur divergence

Soit un champ vectoriel $\overrightarrow{A}(M,t)$. Son flux sortant $\delta\Phi$ à travers la surface délimitant le volume élémentaire $d\tau_M$ entourant le point M est, par définition de l'opérateur divergence :

$$\delta\Phi(t) = \operatorname{div} \overrightarrow{A}(M, t) \, \mathrm{d}\tau_M$$

- \blacktriangleright La surface délimitant un volume d τ_M étant par construction une surface fermée, le flux est pris positif s'il est sortant par convention.
- L'opérateur divergence s'applique à un champ vectoriel, qu'il transforme en un champ scalaire :

div:
$$\begin{array}{ccc}
\mathbf{R}^3 & \longrightarrow & \mathbf{R} \\
\overrightarrow{A}(M,t) & \longmapsto & \operatorname{div} \overrightarrow{A}(M,t)
\end{array}$$

► L'opérateur divergence est linéaire : $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\operatorname{div}(\lambda \overrightarrow{A}_1 + \mu \overrightarrow{A}_2) = \lambda \operatorname{div} \overrightarrow{A}_1 + \mu \operatorname{div} \overrightarrow{A}_2$.

La divergence d'un champ vectoriel \overrightarrow{A} est un champ scalaire qui renseigne sur le caractère localement divergent du champ \overrightarrow{A} ; étant donné un petit volume d τ au voisinage d'un point M:

- si div $\overrightarrow{A}(M) > 0$, le champ, globalement, « sort » du volume d τ ;
- si div $\overrightarrow{A}(M) < 0$, le champ, globalement, « rentre » dans le volume d τ ;
- si div $\overrightarrow{A}(M) = 0$, le champ, globalement, ne rentre ni ne sort de d τ .

Théorème d'Ostrogradski

Soit un champ vectoriel $\overrightarrow{A}(M,t)$ défini en tout point d'un volume $\mathcal V$ délimité par une surface Σ :

- ➤ S'il existe un point de singularité (où le champ n'est pas défini) à l'intérieur du volume V, le théorème d'Ostrogradski ne s'applique pas.
- ➤ Ce théorème est aussi appelé théorème de Green-Ostrogradski, ou théorème de flux-divergence.
- ➤ On peut l'envisager comme une extension « à grande échelle » de la définition locale de l'opérateur divergence.

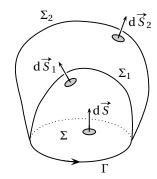
Une conséquence de ce théorème est :

Tout champ à divergence identiquement nulle est à flux conservatif, et réciproquement :

Le flux d'un champ à flux conservatif à travers une surface s'appuyant sur un contour orienté ne dépend pas du choix de cette surface; on peut alors parler du **flux du champ** à travers un contour.

Démonstration: Considérons la surface fermée comprise entre Σ_1 et Σ_2 . On note les flux $\Phi_1 = \oiint_{\Sigma_1} \overrightarrow{A} \cdot d\overrightarrow{S}_1$ et $\Phi_2 = \oiint_{\Sigma_1} \overrightarrow{A} \cdot d\overrightarrow{S}_2$. Compte tenu de l'orientation des surfaces Σ_1 et Σ_2 , le flux sortant de la surface fermée est $\Phi = -\Phi_1 + \Phi_2$. Le champ étant conservatif, on a $\Phi = 0$, d'où $\Phi_1 = \Phi_2$.

Le flux de \overrightarrow{A} est donc identique à travers Σ , Σ_1 , Σ_2 , ou toute autre surface orientée s'appuyant sur le contour Γ .



- ➤ Le flux d'un champ à flux conservatif est constant à travers toute section d'un tube de champ. Le champ est donc plus intense lorsque les lignes de champ se resserrent.
- Le champ des vitesses d'un fluide en écoulement incompressible est à flux conservatif : div $\vec{v} = 0$, et le débit volumique est conservée à travers toute section d'un tube de courant.

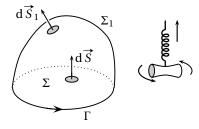
3 — L'opérateur rotationnel

Soit un champ vectoriel $\overrightarrow{A}(M,t)$. Sa circulation $\delta \mathbb{C}$ le long d'un contour élémentaire orienté $d\Gamma$ entourant le point M est, par définition de l'opérateur rotationnel :

$$\delta \mathcal{C}(t) = \overrightarrow{\text{rot}} \overrightarrow{A}(M, t) \cdot \overrightarrow{dS}_M$$

où $\overrightarrow{dS_M}$ est une surface élémentaire orientée s'appuyant sur $d\Gamma$.

Un contour Γ est une courbe fermée orientée. On l'oriente *arbitrairement* en lui associant un sens de parcours. L'orientation du contour définit l'orientation de toute surface Σ s'appuyant sur Γ selon la règle de Maxwell, appelée familièrement « règle du tire-bouchon » : un tire-bouchon dont le manche tourne dans le sens de l'orientation du contour avance dans le sens de l'orientation de la surface.



➤ L'opérateur rotationnel s'applique à un champ vectoriel, qu'il transforme en un champ vectoriel :

$$\overrightarrow{rot}: R^3 \longrightarrow R^3$$

$$\overrightarrow{A}(M,t) \longmapsto \overrightarrow{rot} \overrightarrow{A}(M,t)$$

 \blacktriangleright L'opérateur rotationnel est linéaire : $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\overrightarrow{\text{rot}}(\lambda \overrightarrow{A}_1 + \mu \overrightarrow{A}_2) = \lambda \overrightarrow{\text{rot}} \overrightarrow{A}_1 + \mu \overrightarrow{\text{rot}} \overrightarrow{A}_2$.

Le rotationnel d'un champ vectoriel \overrightarrow{A} est un champ vectoriel qui renseigne sur le caractère localement « tournant » autour de M.

Théorème de Stokes

Soit un champ vectoriel $\overrightarrow{A}(M,t)$ défini en tout point d'une surface Σ s'appuyant sur un contour orienté Γ :

$$\oint_{P \in \Gamma} \overrightarrow{A}(P,t) \cdot d\overrightarrow{\ell}_P = \iint_{M \in \Sigma} \overrightarrow{\operatorname{rot}} \ \overrightarrow{A}(M,t) \, d\overrightarrow{S}_M.$$

- \blacktriangleright Ce résultats est vrai pour toute surface Σ s'appuyant sur Γ .
- \blacktriangleright Les orientations du contour Γ et de la surface Σ sont reliées par la règle de Maxwell.
- \triangleright S'il existe un point où le champ n'est pas défini sur la surface Σ , le théorème de Stokes ne s'applique pas.

Une conséquence de ce théorème est :

Tout champ à rotationnel identiquement nul est à circulation conservative, et réciproquement :

$$\oint_{P \in \Gamma} \overrightarrow{A}(P,t) \cdot d\overrightarrow{\ell}_P = 0, \ \forall \Gamma \iff \overrightarrow{\text{rot }} \overrightarrow{A}(M,t) = \overrightarrow{0} \ \forall M, \ \forall t.$$

Champ vectoriel à flux conservatif

La divergence d'un rotationnel est identiquement nulle : $\operatorname{div}\left(\overrightarrow{\operatorname{rot}}\overrightarrow{A}(M,t)\right)=0$.

Une condition nécessaire et suffisante pour qu'un champ soit à flux conservatif est qu'il soit un champ de rotationnel :

$$\operatorname{div} \overrightarrow{A}(M,t) = 0 \; ; \forall \; M \quad \Longleftrightarrow \quad \exists \overrightarrow{R}(M,t) \; , \; \overrightarrow{A}(M,t) = \overrightarrow{\operatorname{rot}} \; \overrightarrow{R}(M,t)$$

Champ vectoriel à circulation conservative

Le rotationnel d'un gradient est identiquement nul : $\overrightarrow{\text{rot}}\left(\overrightarrow{\text{grad}}G(M,t)\right) = \overrightarrow{0}$.

Une condition nécessaire et suffisante pour qu'un champ soit à circulation conservatif est qu'il soit un champ de gradient :

$$\overrightarrow{\operatorname{rot}} \overrightarrow{A}(M,t) = \overrightarrow{0} ; \forall M \iff \exists G(M,t), \overrightarrow{A}(M,t) = \overrightarrow{\operatorname{grad}} G(M,t)$$

4 — L'opérateur laplacien

Laplacien scalaire

Soit un champ scalaire G(M, t). Son laplacien est défini par

$$\Delta G(M, t) = \operatorname{div}\left(\overrightarrow{\operatorname{grad}} G(M, t)\right)$$

- ightharpoonup L'opérateur laplacien Δ s'applique à un champ scalaire, qu'il transforme en un champ scalaire.
- ➤ Cet opérateur est linéaire.
- ➤ Le laplacien mesure l'écart du champ scalaire en un point par rapport à sa valeur moyenne au voisinage de ce point.
- ➤ On retiendra son expression en coordonnés cartésiennes :

$$\Delta G = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} + \frac{\partial^2 G}{\partial z^2}$$

Laplacien vectoriel

Le laplacien d'un champ vectoriel $\overrightarrow{A}(M, t)$ est défini par

$$\Delta \overrightarrow{A}(M, t) = \overrightarrow{\text{grad}} \left(\overrightarrow{\text{div}} \overrightarrow{A}(M, t) \right) - \overrightarrow{\text{rot}} \left(\overrightarrow{\text{rot}} \overrightarrow{A}(M, t) \right)$$

- ightharpoonup Cet opérateur est parfois noté $\overrightarrow{\Delta}$. Il s'applique à un champ vectoriel, qu'il transforme en un champ vectoriel.
- ► En coordonnées cartésiennes uniquement, en notant $\overrightarrow{A} = A_x(M,t)\overrightarrow{e}_x + A_y(M,t)\overrightarrow{e}_y + A_z(M,t)\overrightarrow{e}_z$, il s'exprime en fonction des laplaciens des coordonnées :

$$\overrightarrow{\Delta A}(M,t) = \left(\Delta A_x(M,t)\right) \overrightarrow{e}_x + \left(\Delta A_y(M,t)\right) \overrightarrow{e}_y + \left(\Delta A_z(M,t)\right) \overrightarrow{e}_z$$

où $\Delta A_x(M,t) = \frac{\partial^2 A_x(M,t)}{\partial x^2} + \frac{\partial^2 A_x(M,t)}{\partial y^2} + \frac{\partial^2 A_x(M,t)}{\partial z^2}$, et de même pour les deux autres composantes.

5 — L'opérateur nabla

L'opérateur nabla, noté $\overrightarrow{\nabla}$, est appelé aussi *opérateur de dérivation spatiale*. Il permet d'exprimer les opérateurs vectoriels :

$$\overrightarrow{\operatorname{grad}} G = \overrightarrow{\nabla} G$$
; $\operatorname{div} \overrightarrow{A} = \overrightarrow{\nabla} \cdot \overrightarrow{A}$; $\overrightarrow{\operatorname{rot}} \overrightarrow{A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$

Expression de l'opérateur nabla dans les divers systèmes de coordonnées :

Coordonnées cartésiennes :

$$\vec{\nabla} = \frac{\partial}{\partial x} \vec{e}_x + \frac{\partial}{\partial y} \vec{e}_y + \frac{\partial}{\partial z} \vec{e}_z$$

Coordonnées cylindriques :

$$\vec{\nabla} = \frac{\partial}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \vec{e}_\theta + \frac{\partial}{\partial z} \vec{e}_z$$

Coordonnées sphériques :

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \overrightarrow{e}_\varphi$$

ightharpoonup L'opérateur laplacien s'écrit comme le carré scalaire de l'opérateur nabla : $\Delta = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla}$.