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TD phénomènes de transport Diffusion thermique

 ;;;; Conduction thermique <<<<

1—  Métabolisme d’unmammifère

Les mammifères sont des êtres thermorégulés, dits ho-
méothermes (improprement « à sang chaud »), contrai-
rement aux reptiles ou aux poissons, dit poïkilo-
thermes (improprement « à sang froid »). On modélise
un mammifère par une sphère de rayon R dont le mé-
tabolisme dégage la puissance thermique volumique
pv, uniformément dans tout son volume. L’air extérieur
a une conductivité thermique λ, et sa température loin
de l’animal est T0 = 20 °C. On s’intéresse à la tempéra-
ture de l’air (donc pour r ⩾ R) en régime stationnaire.
On considère le contact parfait entre l’animal et le mi-
lieu extérieur (continuité de la température).

1. Que peut-on dire du flux thermique Φ(r ) pour r >
R ? En déduire l’expression de jQ (r ) en fonction de pv,
R et r .

2. En déduire l’expression de la température T (r ) pour
r ⩾R.

3. Quelle est la température cutanée Tc de l’animal?
Commenter la variation de Tc d’une part quand λ varie
à R fixé, d’autre part quand R varie à λ fixée.

4. Quelle doit être la valeur du métabolisme volu-
mique pv pour avoir Tc = 30 °C dans l’air puis dans
l’eau?

Pourquoi n’existe-t-il pas de petits mammifères ma-
rins?

Données :
λair = 5 W ·m−1 ·K−1 et λeau = 500 W ·m−1 ·K−1.
On prendra R = 25 cm.

2—  Modèle d’un fusible

Un fusible est constitué d’un fil conducteur cylindrique
de section droite d’aire S, de longueur L, de masse vo-
lumique µ et de capacité thermique massique c. Il pos-
sède une conductivité thermique λ et une conductivité
électrique γ.
Il est traversé par un courant électrique d’intensité I .
Ce fil est enfermé dans une capsule remplie d’une sub-
stance assurant une isolation thermique et électrique
parfaite.
Les températures en x = 0 et x = L sont imposées et
égales à la température T0 du milieu ambiant.
Données :
λ= 65 W ·m−1 ·K−1,
γ= 1,2×106 S ·m−1,
c = 460 J ·K−1 ·kg−1,

µ= 2,7×103 kg ·m−3.
On prend T0 = 290 K et L = 2,5 cm
On rappelle que la résistance électrique d’un conduc-
teur cylindrique de conductivité électrique γ, de lon-
gueur ℓ et de section S, parcouru par un courant I est

R = ℓ

γS
.

On se place en régime stationnaire.

1. Établir et résoudre l’équation différentielle vérifiée
par la température T (x) le long du fusible. Représenter
graphiquement T (x).

2. Le matériau constituant le fil fond à TF = 390 K. On
veut fabriquer un fusible qui admet une intensité maxi-
male Imax = 16 A. Préciser l’endroit de la rupture en
cas de dépassement de Imax. Déterminer littéralement
puis numériquement l’aire S16 à prévoir.

3. On fixe I = 10 A. Le fil a la section S16. Évaluer litté-
ralement puis numériquement la puissance thermique
Pth(0) transférée par conduction en x = 0. Préciser si
elle est reçue ou fournie par le fil. Même question pour
la puissance thermique Pth(L) en x = L. Quelle relation
a-t-on entre Pth(0), Pth(L) et la puissance électrique Pe

fournie à l’ensemble du fil ? Commenter.

3—  Banc de Kofler

Un banc de Kofler permet de mesurer avec précision
la température de fusion de cristaux solides en poudre.
C’est une barre parallélépipédique horizontale de lon-
gueur L et de section a × b (avec b ≪ a), constituée
d’un matériau de conductivité thermique λ et de cha-
leur massique à pression constante c. À l’une des ex-
trémités du banc est insérée une résistance électrique
R. Quand on branche le banc de Kofler, la résistance R
est soumise à une tension U . On admet que la totalité
de la puissance dégagée par effet Joule est transmise
au banc. Les échanges thermiques entre l’air et le banc
sont modélisés par une puissance P = h(T −Ta)S, où T
est la température du banc, Ta la température de l’air et
S la surface d’échange. On considère la face inférieure
isolée : le transfert thermique avec l’extérieur s’effec-
tue à travers la face supérieure du banc. On applique
une tension de valeur efficace U aux bornes de la résis-
tance R.
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1. Trouver l’équation différentielle vérifiée par la tem-
pérature du banc en régime stationnaire, en suppo-
sant le problème unidimensionnel. Donner la forme
du profil de température.

2. À quelle condition sur L peut-on supposer le banc
comme semi-infini. Montrer que dans le cadre de cette
approximation le profil de température dans le banc
est de la forme

T (x) = A+B e−x/δ .

Exprimer A, B et δ en fonction des données du texte.

3. Si la tension U est la tension électrique délivrée par
le réseau domestique, à quelle condition la tempéra-
ture du banc peut-elle être considérée comme station-
naire?

4. On saupoudre les cristaux à étudier dans le sens de
la longueur L. Expliquer ce que l’on observe et com-
ment on en déduit la température de fusion.

Justifier la nécessité d’un étalonnage et montrera que
le choix de la résistance R caractérise la plage de tem-
pérature de fusion détectable.

5. La précision des mesures de distance le long du
banc est de 0,5 mm. Discuter de la précision obtenue
sur la mesure d’une température de fusion : dépend-
elle de Tfusion ? de R ?

4—  Conduction thermique

Une tige cylindrique de longueur L et de rayon R est
constituée d’un métal de conductivité thermique λ.
Elle est encastrée à une de ses extrémités dans un réci-
pient contenant de l’eau portée à ébullition, imposant
en x = 0 la température constante T0 = 100 °C.

T0

Ta

L

0 x

Le reste de la tige est en contact avec l’atmosphère de
température constante Ta = 20 °C. On prend en compte
les transferts thermiques conducto-convectifs entre la
tige et l’air ambiant par la loi de Newton : un élément
de surface latérale dS à la température T fournit à l’ex-
térieur une puissance thermique

dP = h(T −Ta)dS .

On se place en régime stationnaire.

1. Établir l’équation différentielle vérifiée par T (x). On
introduira une longueur caractéristique δ dont on don-
nera l’expression. Donner la forme générale de la solu-
tion T (x).

2. Écrire les conditions aux limites qui permettent de
déterminer les constantes d’intégration (le calcul n’est
pas demandé).

3. Déterminer complètement l’expression de T (x)
dans le cas où la tige est infiniment longue (préciser
cette hypothèse).

4. On dispose de deux barres (1) et (2) de dimen-
sions identiques, constituées respectivement de cuivre
et d’étain, recouvertes d’une fine couche de paraffine
dont la température de fusion est Tf = 60 °C. Sur cha-
cune des barres, on observe la fusion de la paraffine
aux abscisses x1 = 15,6 cm et x2 = 6,4 cm. On admet
que le coefficient h est inchangé.

Sur quelle partie de la tige la paraffine est-elle fondue ?

La conductivité thermique du cuivre étant λ1 =
390 W ·m−1 ·K−1, déterminer la valeur λ2 de celle de
l’étain.

5. Comment sont modifiés les résultats précédents si
l’on place un ventilateur dirigé vers la tige?

5—  Barre parcourue par un courant

Soit une barre de conductivité thermique λ, de lon-
gueur L et section S. Sa surface latérale est calorifugée.
Ses extrémités sont en contact avec deux sources à des
températures T1 en x = 0 et T2 en x = L.

1. Déterminer T (x) et la puissance P2 fournie à la
source de température T2 en régime permanent.

2. La barre est de plus parcourue par un courant d’in-
tensité I . On note ρ la résistivité électrique de la barre.

On rappelle l’expression de la résistance électrique
d’un cylindre de résistivité électrique ρ, de longueur ℓ
et de section S :

R = ρℓ

S
.

Déterminer T (x) et P (x), puissance traversant la sec-
tion de la barre

3. Déterminer P2. La mettre sous forme de deux
termes. Commenter.

4. Quelle est la puissance P1 sortant en x = 0?

5. Que se passe-t-il si on interrompe le courant d’in-
tensité I et que l’on calorifuge les extrémités? Déter-
miner la température finale.
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6—  Barreau non isolé

On considère un cylindre d’axe Ox, de rayon R et de
longueur L ≫ R. Il existe une perte d’énergie interne
par unité de temps et de volume uniforme et constante
notée β.
Calculer la température T (x) en régime permanent
lorsque seules les extrémités du barreau sont plongées
dans un bain de température T0 et qu’il y a un phéno-
mène de conducto-convection avec l’air sur la paroi la-
térale.

7—  Conduction thermique dans une dalle

On considère une dalle de surface S et d’épaisseur
e (petite par rapport aux autres dimensions du pro-
blème), de conductivité thermique λ.
Elle reçoit en x = 0 un flux thermique Φ0 constant dans
un premier temps.

1. Déterminer le profil de température dans la dalle.

2. Comment prendre en compte le fait que Tdalle(x =
e) ̸= Tair ? Recalculer alors le profil de température.

3. On considère désormais un flux variable dans le
temps : Φ(t ) =ϕ0 sin(ωt ). Déterminer le nouveau profil
de température dans la dalle.

8—  Ailette de refroidissement

On souhaite refroidir un moteur en fixant sur lui un
certain nombre d’ailettes de forme cylindrique (rayon
R, longueur L), de conductivité thermique λ. Chaque
ailette est au contact d’un fluide à la température θe <
θ0, où θ0 est la température du moteur.

L

Moteur θ0

1. Combien doit-on placer d’ailettes sur le moteur sa-
chant que le flux thermique à évacuer vaut ΦT = 40 W ?

2. Comment améliorer le système?

Données numériques
λ= 400 W ·m−1 ·K−1

h = 100 W ·m−2 ·K−1 (coefficient de transfert
conducto-convectif de Newton)
R = 2 mm
L = 15 cm
θ0 = 82 °C
θe = 22 °C

9—  Compost

Du fait de la décomposition, un bloc de compost de
grande surface S et de hauteur H produit une puis-
sance volumique

pv =Q sin
(πz

H

)
,

l’axe des z étant choisi ascendant.
La surface en z = 0 est parfaitement isolée, celle en
z = H subit un échange conducto-convectif avec l’ex-
térieur. On rappelle la loi de Newton : jth = h(T −T0),
où h désigne le coefficient de transfert thermique de
surface.

1. Déterminer le profil de température T (z) en régime
stationnaire et le tracer.

2. Calculer la puissance dégagée par le compost.

10—  Production d’entropie

Les extrémités d’une barre calorifugée en acier inox,
de conductivité thermique λ, de longueur L = 1 m, sont
maintenues aux températures T1 = 300 K et T2 = 400 K.
On se place en régime stationnaire.
On donne λ= 16 W ·m−1 ·K−1.

1. Quelle est la variation d’entropie d’un élément de
volume de section A et de longueur dx ?

Établir l’expression de l’entropie reçue par cet élément.

2. Calculer l’entropie σs produite dans la barre par
unité de volume et par unité de temps, au point de la
barre où elle est maximale.

11—  Gel d’un lac

Un lac est recouvert d’un épaisseur z(t ) de glace, l’axe
des z étant orienté vers le bas, son origine étant à la sur-
face de glace en contact avec l’air, cette surface étant à
la température Ts =−30,0 °C.
On donne la température de fusion de l’eau Tf = 0,0 °C,
l’enthalpie massique de fusion de la glace ∆fush =
335 kJ ·kg−1, la masse volumique de la classe ρg =
940 kg ·m−3 et le coefficient de transmission thermique
de la glace λg = 2,1 W ·m−1 ·K−1.

1. Donner l’équation différentielle vérifiée par la tem-
pérature Tg(z, t ) de la glace et les condition aux limites
sur Tg(z, t ).

2. À l’aide d’un bilan d’enthalpie, obtenir la relation

λ

(
∂Tg

∂z

)
ε(t )

= ρg∆fushż .

3. On suppose ż très faible, donc on considère que z
est constant : quel est le nom de cette approximation?

4. Que devient alors la première équation différen-
tielle ? Donner le gradient de Tg.
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5. Donner l’équation différentielle vérifiée par z(t ) et
la résoudre. Le résultat obtenu est-il cohérent? Donner
son sens physique.

6. Donner l’épaisseur de la couche de glace au bout
d’une minute, d’une journée et d’un mois. Est-ce co-
hérent?

12—  Diffusion thermique instationnaire

Deux plaques sont séparées d’une distance L. Il règne à
l’extérieur une température T0 ; on note T (x, t ) la tem-
pérature à l’intérieur (pour 0⩽ x ⩽ L).
Le profil initial de température entre les plaques est

T (x,0) = T0 +θ sin
(πx

L

)
avec θ > 0.

1. Vérifier que T (x,0) vérifie les conditions aux limites.

2. On cherche des solution sous la forme T (x, t ) = T0+
f (x)g (t ). Déterminer f (x) et g (t ).

3. Calculer le flux thermique en x à l’instant t .

13—  Température de la planète Mars

La température moyenne sur le sol martien est de
−50 °C. Le rayon de la planète est R2 = 3400 km et on
suppose pour simplifier qu’elle est formée de deux par-
ties bien distinctes à symétrie sphérique :

— un noyau homogène d’un mélange, entre autres,
de fer et de nickel à la température uniforme de
2500 °C, de rayon R1 = 1500 km;

— un manteau homogène composé essentiellement
de silice solide jusqu’à la surface, de conductivité
thermique λ.

1. Comment varie la température à l’intérieur de
Mars? Tracer l’allure de T (r ) pour 0⩽ r ⩽R2.

2. Quelle est la puissance dissipée par le noyau de
Mars si λ = 1,2 W ·m−1 ·K−1 ? Quelle est l’origine de
cette énergie?

3. Une autre théorie plus fine consiste à dire que Mars
a été formée il y a environ 4 milliards d’années par une
très grande quantité de grains de poussière identiques
qui, en s’agglomérant, ont fini par créer la planète que
l’on connaît de nos jours. Pour modéliser T (r ), on sup-
pose qu’il se dégage au sein de la planète une puissance
volumique Pv constante. On élimine donc la distinc-
tion entre le noyau et le manteau.

Justifier pourquoi on peut admettre que T (r ) ne dé-
pend pas du temps.

Déterminer la nouvelle expression de T (r ).

14—  Solidification d’une goutte

On considère une goutte d’eau à la température
Te = 10 °C que l’on pulvérise dans l’air à Ta = −15 °C.
Le rayon de la goutte est R = 0,1 cm.

À l’interface eau-air, le flux thermique de la goutte de
surface S et de température T (t ) vers l’extérieur est
donné par Φ= hS[T (t )−Ta], avec h = 50 W ·m−2 ·K−1.
On note ρ = 1,0×103 kg ·m−3 la masse volumique de la
goutte, supposée uniforme, c = 4,18×103 J ·kg−1 ·K−1

la capacité calorifique massique de l’eau et
∆fush = 335 kJ ·kg−1 l’enthalpie massique de fusion de
la glace.

1. À l’aide du premier principe de la thermodyna-
mique, montrer que

ρcR
dT

dt
=−3h[T (t )−Ta] .

2. Déterminer T (t ). On pourra poser τ= ρcR

3h
.

3. Déterminer le temps t1, en fonction de τ, Te, Ta et
Tf au bout duquel T (t1) = Tf =−5 °C.

4. On considère que la goutte est liquide à Tf et que
la température remonte à T0 = 0 °C où elle se solidifie
partiellement. On considère la réaction isobare et ré-
versible. Déterminer la proportion x de liquide restant.

5. Déterminer le temps t2 au bout duquel la goutte est
entièrement solide.

15—  Neige artificielle

La neige artificielle est obtenue en pulvérisant de fines
gouttes d’eau liquide supposées sphériques de rayon
R = 0,2 mm à Ti = 10 °C dans l’air ambiant à la tempé-
rature Te =−15 °C.
À l’interface eau-air, le flux thermique dϕ à travers une
surface dS dans le sens de la normale extérieure #»n est
donné par la loi

dϕ= h[T (t )−Te]dS .

1. Établir l’équation différentielle régissant l’évolution
temporelle de la température de la goutte T (t ).

2. Déterminer le temps t0 mis par la goutte li-
quide pour atteindre la température de surfusion
T (t0) =−5 °C.

3. Lorsque la goutte a atteint la température de −5 °C,
il y a rupture de la surfusion : la température remonte
brutalement à 0 °C et la goutte est partiellement soli-
difiée (phénomène également brutal). Moyennant des
hypothèses que vous expliciterez, calculer la fraction x
de liquide restant à solidifier après la rupture de la sur-
fusion.

4. Calculer le temps nécessaire à la solidification du
reste de l’eau liquide.

 Données

Coefficient conducto-convectif : h = 65 W ·m−2 ·K−1
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Chaleur latente de changement de phase solide-
liquide : ℓf = 333 kJ ·kg−1

Capacité thermique massique de l’eau liquide :
cℓ = 4,2 kJ ·kg−1 ·K−1

Capacité thermique massique de l’eau solide :
cs = 2,1 kJ ·kg−1 ·K−1

16—  Transfert thermique dans une poutre

Soit une poutre de longueur L, de section circulaire
de rayon a et de conductivité thermique λ, contenue
entre deux murs de température Tm. On note Ta la tem-
pérature de l’air entourant la poutre et h le coefficient
de transfert convecto-conductif.
On considère le régime permanent atteint. Le point O
est placé au milieu de la poutre et on définit un axe (Oz)
dans le sens de la poutre.

1. Déterminer le profil de température T (z).

2. Quel est le transfert thermique entre la poutre et
l’air

17—  La fine ou l’épaisse?

On considère un transistor de puissance qui dissipe de
l’énergie lors de son fonctionnement, et se comporte
alors comme une source de chaleur. Afin d’éviter une
montée en température trop importante, on utilise une
ailette de refroidissement pour favoriser les échanges
thermiques avec le milieu extérieur.
On étudie une ailette de longueur L, de section rectan-
gulaire S = a × b, dont la face en x = 0 est en contact
avec le transistor à la température T0 = 65 °C.

L

x
O

transistor

à T0

air à Ta

a

b

On se place en régime stationnaire, et on suppose que
le phénomène est unidimensionnel selon Ox : la tem-

pérature dans l’ailette est T (x). La température de l’air
ambiant est Ta. Le transfert thermique de l’ailette vers
l’air ambiant est tel que la puissance thermique échan-
gée par un élément de surface latérale dS de longueur
dx est donnée par dP = h[T (x)−Ta]dS, où h est une
constante caractéristique de cet échange thermique.
La conductivité thermique de l’ailette est λ.

1. Montrer que la température dans l’ailette vérifie une
équation différentielle de la forme

d2T (x)

dx2 − T (x)−Ta

δ2 = 0 (1)

où δ est une grandeur caractéristique dont on donnera
l’expression en fonction de λ, a, b et h, dont on préci-
sera la dimension.

2. Quelle est la forme générale de la solution de l’équa-
tion différentielle (1) ?

À quelle condition portant sur δ peut-on considérer
l’ailette comme infinie? En se plaçant dans ce cas, dé-
terminer complètement l’expression de T (x).

3. Exprimer en fonction de T0, Ta, a, b, λ et h la puis-
sance thermique totale évacuée par l’ailette.

Pour une même section S = 1 cm2, on considère deux
profils d’ailette :

— une fine, avec a = 0,1 cm et b = 10 cm;

— l’autre épaisse, avec a′ = b′ = 1 cm.

Quelle ailette vaut-il mieux choisir pour évacuer une
maximum de puissance thermique?

4. Est-il nécessaire de prendre une ailette aussi longue
que possible ? Proposer une longueur L d’ailette dans le
cas où δ = 1 cm. Commenter la structure du radiateur
sur la photo suivante.

 ;;;; Résistance thermique, ARQS thermique <<<<

18—  Chauffage d’un igloo

Pour passer la nuit, un inuit veut construire un igloo
fait d’un mur constitué de neige compactée de 4 m2

de surface. La neige compactée est un bon isolant de
conductivité thermique λ= 0,25 W ·m−1 ·K−1.

1. Exprimer la résistance thermique des parois de
l’igloo en fonction de l’épaisseur e de la paroi. On né-
gligera la courbure des parois.

2. Pendant son sommeil, l’inuit dégage 0,5 MJ de cha-
leur par heure. Exprimer la puissance de l’inuit en tant
que source de chaleur dans les unités du système inter-
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national.

3. Pendant la nuit, quand le feu à l’intérieur de l’igloo
s’est éteint, la température intérieure est Tint = 20 °C,
tandis que celle à l’extérieur est Text = −40 °C. Si la
conduction thermique à travers les murs de l’igloo est
le facteur dominant dans les pertes thermiques, quelle
est la valeur de e pour que l’intérieur de l’igloo ne se
refroidisse pas?

4. En fait, l’épaisseur est trop importante pour que l’on
puisse négliger la courbure des parois. Faire la bilan
thermique en coordonnées sphériques, et trouver la
résistance thermique Rth en fonction des rayons inté-
rieur et extérieur de l’igloo, demi-sphérique. Étude de
la limite si e ≪ Rint.

19—  Diffusion thermique dans une barre

On considère une barre (représentée en gris sur le
schéma) homogène de longueur L, de conductivité
thermique λ, de section S et de masse volumique ρ.
Deux sources de température sont placées à ses deux
extrémités comme indiqué sur le schéma.

T1, C1 T2, C2

L0 x

1. On suppose les sources idéales.

1.a) Que valent C1 et C2 ?

1.b) On se place en régime permanent. Donner T (x).

2. On considère plus que les sources ne sont plus
idéales, et on se place en régime quasi-stationnaire.

2.a) Discuter de la validité de l’hypothèse.

2.b) Déterminer T1(t ) et T2(t ).

20—  Le parpaing a un petit creux

1. On considère un phénomène de diffusion ther-
mique unidimensionnel dans un matériau de longueur
L, de section S et de conductivité thermique λ.

Rappeler la définition de la résistance thermique d’un
milieu en précisant les hypothèses nécessaires, puis
établir son expression dans le cas du matériau consi-
déré. Préciser son unité.

On considère un parpaing creux en béton, dont les
dimensions sont indiquées sur la figure ci-dessous
(l’épaisseur de la paroi est constante, égale à e). On
note λa la conductivité thermique de l’air et λb celle
du béton.
On donne a = 20 cm, b = 15 cm, c = 40 cm, e = 2 cm,
λa = 2,6×10−2 W ·m−1 ·K−1 et λb = 0,92 W ·m−1 ·K−1.

x

b

ca

e
e

2. On impose les températures T1 à la face x = 0 et T2

à la face x = b. Déterminer le flux thermique traversant
le parpaing en régime permanent.

3. Quelle serait l’épaisseur b′ d’un parpaing de béton
plein qui serait traversé par le même flux thermique,
les dimensions a et c étant inchangées? Commenter.

21—  Isolation d’une conduite

On considère une conduite entourée d’un isolant.

R1

Conduite épaisseur e
conductivité thermique λc

Isolant épaisseur x
conductivité thermique λi

Les phénomènes de convection sont modélisés par la
loi de Newton : dΦ= h(T −Te)dS.
On note h1 le coefficient d’échange air/conduite et h2

le coefficient d’échange isolant/air.
On donne également l’expression de la résistance ther-
mique en coordonnées cylindriques

Rth = 1

2πλL
ln

(
R2

R1

)
,

où R1 est le rayon intérieur, R2 le rayon extérieur, λ la
conductivité thermique du cylindre de longueur L.
Est-il vrai que plus il y a d’isolant, meilleure est l’isola-
tion? Si non, quelle est la condition sur x pour avoir la
meilleure isolation?

22—  Isolation d’une canalisation

a

b

On considère une canalisa-
tion cylindrique de longueur
L, de rayons intérieur a et
extérieur b, et de conducti-
vité thermique λ. On étudie
la diffusion thermique en régime stationnaire entre la
face interne et la face externe en négligeant les effets
de bords : la température dans le tube s’écrit T (r ) en
coordonnées cylindriques d’axe l’axe du tube.
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On rappelle que pour T (r ) en coordonnées cylin-

driques, on a
#      »

gradT = dT

dr
#»e r et ∆T = 1

r

d

dr

(
r

dT

dr

)
.

1. Rappeler la définition générale de la résistance ther-
mique.

2. Donner l’expression du flux thermique sortant Φ(r )
à travers un cylindre de rayon r ∈ [a,b] de de longueur

L en fonction des données et de
dT

dr
.

Que peut-on dire de ∆T en régime stationnaire? En dé-
duire que le flux thermique Φ(r ) = Φ est indépendant
de r .

On note T1 la température de la face interne du tube et
T2 celle de sa face externe. Relier alors T1−T2 à Φ et aux
données du problème, et en déduire l’expression de la
résistance thermique Rth,1 du tube en fonction de a, b,
λ et L.

3. On rappelle la loi de Newton donnant le flux ther-
mique à travers une surface S d’un solide à la tempé-
rature TS vers un fluide à la température Te : ΦS→e =
hS(TS −Te), où h est le coefficient de transfert convec-
tif. Montrer que l’on peut associer une résistance ther-
mique Rconv à ce transfert convectif, dont on donnera
l’expression en fonction de h et S.

4. Un fluide circule dans le tube, qui est entouré d’air ;
il se produit donc des transferts convectifs sur les deux
faces de la canalisation, caractérisés par les coefficients
de transfert h1 pour la face interne et h2 pour la face ex-
terne.

Donner la résistance thermique totale Rth caractéri-
sant le transfert thermique de l’intérieur du tube vers
l’air extérieur.

5. On cherche à minimiser les pertes thermique en en-
veloppant le tube d’un matériau isolant de conducti-
vité λiso, de rayon r .

a
b

r

Que devient la résistance thermique R ′
th de l’en-

semble?

Montrer que la résistance thermique passe par un ex-
tremum pour une valeur critique rc de r que l’on dé-
terminera. À quelle condition cette situation sera pos-
sible? Est-ce un minimum ou un maximum?

6. En étudiant le signe de R ′
th − Rth, discuter de l’in-

fluence de l’isolant sur le flux thermique.

On parle du « paradoxe de l’isolant » : discuter.

23—  Expérience de regel

On pose un fil métallique de section rectangulaire de
côtés b selon (O y) et c selon (Oz) aux extrémités du-
quel sont fixées deux masses m/2 sur un gros bloc de
glace. On constate que la glace fond sous le fil, que le fil
descend doucement à vitesse constante v et que l’eau
regèle au-dessus du fil.

1. Évaluer, à l’aide notamment du diagramme (P,T ) et
des données, la différence de température Ti −Ts entre
le dessous (indice i )et le dessus (indice s).

On donne m = 5 kg; a = 20 cm; b = 0,5 mm et c =
5 mm.

2. On suppose que le régime de diffusion thermique
dans le fil est stationnaire.

En appliquant le premier principe à la couche d’eau so-
lide d’épaisseur dz qui fond sous le fil, en déduire la vi-

tesse v = dz

dt
.

Données : λ = 80 W ·m−1 ·K−1 ; enthalpie massique de
fusion de l’eau à 0 °C : ∆fusH = 330 kJ ·kg−1.

ä On appelle enthalpie massique de changement
d’état ∆h1→2(T ), ou chaleur latente de changement
d’état ℓ1→2(T ), la variation d’enthalpie massique du
corps pur lors de la transition de phase 1 → 2. Cette
grandeur est tabulée en, fonction de la température
car elle ne dépend que de T .

ä Pour une masse m de corps pur, passant de
l’état initial {phase 1,T,Péq(T )} à l’état final
{phase 2,T,Péq(T )} on peut calculer la variation
d’enthalpie due au changement d’état par

∆H1→2 = mℓ1→2(T ) .
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24—  Trois barres en contact

On considère le dispositif représenté ci-dessous dans
lequel les deux extrémités A et B sont maintenues aux
températures stationnaires TA et TB . Les trois barres
(d’indices 0, I et II) sont caractérisées respectivement
par des sections d’aires respectives S0, SI et SII et par
des conductivités thermiques λ0, λI et λII et de même
longueur notée L0.
On note TC la température à la jonction C et Tx la tem-
pérature en un point d’abscisse x de la barre 0, de lon-
gueur totale L0 = 20 cm.

A B

C

III

0

Tx

x

On mesure Tx = TC pour x = 4 cm. En déduire la
conductivité thermique de la barre II.
Données numériques
Les aires sont toutes égales à 1 cm2

Les barres 0 et I sont en acier, pour lequel λ =
50,2 W ·m−1 ·K−1.
TA = 273 K et TB = 373 K.

25—  Détermination d’une conductivité
thermique

On souhaite déterminer la conductivité thermique λ

d’une barre cylindrique de section S et de longueur L.
On utilise le dispositif suivant :

tige métallique calorifugée

bain thermostaté calorimètre

T1

sonde
thermo-
métrique
T2(t )

La tige, calorifugé latéralement, plonge d’un côté dans
un bain thermostaté maintenu à la température T1

constante, et de l’autre dans un calorimètre de capacité
thermique C , rempli d’une masse m = 400 g d’eau. Ini-
tialement, T2(0) < T1, et on relève l’évolution de T2(t )
au cours du temps.

1. On fait l’hypothèse d’un état quasi-stationnaire :
l’évolution de T2(t ) est « suffisamment lente » pour que
l’on puisse considérer le régime stationnaire atteint à
chaque instant dans la tige.

Établir alors l’expression de la résistance thermique de
la tige en fonction de L, S et λ. En déduire l’expres-
sion du flux thermique traversant la barre dans le sens
thermostat → calorimètre en fonction des tempéra-
tures T1 et T2(t ).

2. En effectuant un bilan d’énergie au système {eau+
calorimètre}, établir l’équation différentielle vérifiée
par T2(t ). On notera C2 la capacité thermique totale de
l’eau et du calorimètre.
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Montrer que l’évolution est décrite par une constante
de temps τ que l’on exprimera, et en déduire l’expres-
sion de T2(t ).

3. On donne le graphe de t en fonction de

ln

(
T2(0)−T1

T2(t )−T1

)
, sur lequel on représente la régression

linéaire effectuée avec les points expérimentaux.

La tige a pour longueur L = 68 cm et pour dia-
mètre D = 1,2 cm. La capacité du calorimètre est
C = 180 J ·K−1 ; on y a placé m = 400 g d’eau, et on
donne ceau = 4,186 J ·g−1K−1.

En déduire une estimation de la conductivité λ de la
tige.

On donne :

λAl = 237 W ·m−1 ·K−1 ;

λCu = 401 W ·m−1 ·K−1.

De quel métal est constituée la tige?

4. On rappelle l’équation de la chaleur unidimension-

nelle : ρc
∂T

∂t
= λ

∂2T

∂x2 . Par analyse dimensionnelle,

donner l’expression du temps caractéristique du phé-
nomène de diffusion thermique dans la barre en fonc-
tion des grandeurs physiques en jeu.

On a considéré l’évolution quasi-stationnaire (cf. ques-
tion 1). À quoi revient cette approximation en raison-
nant sur les échelles de temps du problème?

Est-elle vérifiée ici?

Données :

— pour l’aluminium ρAl = 2,7 g ·cm−3

et cAl = 897 J ·K−1 ·kg−1 ;

— pour le cuivre ρCu = 8,9 g ·cm−3

et cCu = 386 J ·K−1 ·kg−1.

5. Si l’évolution ne peut être considérée comme quasi-
statique, notre évaluation expérimentale de λ serait-
elle sur-estimée ou sous-estimée par rapport à la valeur
réel ?

26—  Conductivité du givre

On modélise le givre comme la répétition d’un même
motif : un cube de côté a, comprenant un sous-cube
d’air de côté b, le reste de la matière du motif étant de
la glace.

Conductivités thermique : λglace = 2,1 W ·m−1 ·K−1 et
λair = 0,022 W ·m−1 ·K−1.

1. Exprimer la résistance thermique du motif.

2. Exprimer la conductivité thermique λ du givre.

3. Tracer la courbe λ= F

(
b

a

)
.

4. Calculer la conductivité thermique du givre pour
une fraction volumique de l’air dans le givre de 0,4.
Conclure sur la nécessité de dégivrer régulièrement un
congélateur.

 ;;;; Ondes thermiques <<<<

27—  Oscillations thermiques

Le plan x = 0 sépare l’air (x < 0) d’un milieu (x > 0) de
conductivité thermique λ, de masse volumique ρ, de
masse volumique µ et de capacité thermique massique
c. La température en x = 0 est

T (0, t ) = Ta +θ0 cos(ωt ) .

1. Établir l’équation aux dérivées partielles régissant
T (x, t ) dans le milieu.

2. La solution est recherchée en complexe sous la
forme

T (x, t ) = θ(x)eiωt +C x +D .

Trouver θ(x) en introduisant une longueur caractéris-
tique δ. Déterminer complètement T (x, t ). Commen-
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ter.

3. On donne a = λ

ρc
= 7×10−7 m2 · s−1. Calculer δ

pour la variation jour-nuit. Commenter.

4. Quelle doit être l’épaisseur d’un mur pour atténuer
les variations de température d’un facteur 10 ?

28—  Diffusion thermique dans un câble

On considère un câble cylindrique de section S, de
rayon a, de longueur L, de masse volumique µ, de
conductivité thermique λ et de capacité thermique
massique c. On le suppose parfaitement calorifugé;
son état de dépend que l’abscisse x et du temps t .

1. Une perturbation thermique a lieu à l’extrémité x =
0. Établir l’équation aux dérivées partielles vérifiée par
la température T (x, t ).

2. L’extrémité en x = 0 est maintenue à la tempéra-
ture T1 alors que l’autre est maintenue à la tempéra-
ture T2 < T1. Calculer λ sachant que le flux thermique
à travers une section S est de 2400 J ·min−1. On donne
S = 100 cm2, T1 = 300 K, T2 = 280 K et L = 1 m. Com-
menter la valeur obtenue.

3. On impose des variations sinusoïdales de tempéra-
ture autour d’une température moyenne T0 :

T (x = 0, t ) = T0 + A cos(ωt ) .

L’expression de la température en un point d’abscisse
x est de la forme

T (x, t ) = T0 + A e−mx cos(ωt −αx +φ) .

3.a) Commenter, et déterminer φ, m et α en fonction
de ω, µ, λ et c.

3.b) On a relevé expérimentalement les amplitudes
d’oscillation suivantes pour un câble de longueur L =
10 m :

x (m) 0 1 2 3
amplitude (K) 19,5 11,5 6,8 4

Quel paramètre caractérisant l’évolution de la tempé-
rature peut-on en déduire?

3.c) On appelle profondeur d’inversion l’abscisse mi-
nimale pour laquelle les oscillations thermiques sont
en opposition de phase avec celles de l’origine. Calcu-
ler cette profondeur.
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