TD phénomènes de transport

Mathématiques & physique

1 — Calcul de gradient et de divergence

1. Calculer le gradient des fonctions suivantes :

1.a)
$$f(x, y, z) = x^1 + y^3 + z^4$$

1.b)
$$f(x, y, z) = x^2 y^3 z^4$$

1.c)
$$f(x, y, z) = e^x \sin t \ln z$$
.

2. Calculer la divergence des champs vectoriels suivants :

2.a)
$$\overrightarrow{A}(x, y) = x \overrightarrow{e}_x + y \overrightarrow{e}_y$$

2.b)
$$\vec{A}(x, y) = y \vec{e}_x + x \vec{e}_y$$

2.c) $\overrightarrow{A}(r,z) = A_0 \left(1 - \frac{r^2}{a^2}\right) \overrightarrow{e}_z$ en coordonnées cylindriques, où A_0 et a sont deux constantes.

2.d) Le champ électrique créé en M par une charge ponctuelle q située en O s'écrit en coordonnées sphériques

$$\overrightarrow{E}(M) = \frac{q}{4\pi\varepsilon_0 r^2} \overrightarrow{e}_r.$$

Calculer div \overrightarrow{E} pour $r \neq 0$.

3. Soit G(x, y, z) en coordonnées cartésiennes. Calculer div $(\overrightarrow{\operatorname{grad}} G)$.

2 — Le gradient

On rappelle la définition du gradient :

$$dG = \overrightarrow{\operatorname{grad}} G \cdot d\overrightarrow{\ell}$$

où dG est la variation de G pour un déplacement d $\vec{\ell}$:

$$dG = G(M', t) - G(M, t)$$
 avec $\overrightarrow{d\ell} = \overrightarrow{MM'}$.

1. En coordonnées cartésiennes, on note

$$\overrightarrow{\operatorname{grad}} G = A_x(x, y, z, y) \overrightarrow{e}_x + A_y(x, y, z, y) \overrightarrow{e}_y + A_z(x, y, z, y) \overrightarrow{e}_z.$$

En explicitant le déplacement élémentaire $\overrightarrow{d\ell}$ en coordonnées cartésiennes, exprimer le produit scalaire $\overrightarrow{\operatorname{grad}} G \cdot \overrightarrow{d\ell}$ en fonction des composantes A_x , A_y et A_z du gradient.

Exprimer la différentielle dG de la fonction de plusieurs variables G(x, y, z, t) à un instant t fixé (dt = 0).

En identifiant les deux expressions, en déduire l'expression du gradient en coordonnées cartésiennes.

2. Reprendre la même méthode pour exprimer les composantes du gradient noté

$$\overrightarrow{\text{grad}} G = A_r(r, \theta, z) \overrightarrow{e}_r + A_{\theta}(r, \theta, z) \overrightarrow{e}_{\theta} + A_z(r, \theta, z) \overrightarrow{e}_z$$

du champ scalaire $G(z,\theta,z,t)$ en coordonnées cylindriques.

3. Reprendre la même méthode pour exprimer les composantes du gradient noté

$$\overrightarrow{\operatorname{grad}} G = A_r(r,\theta,\varphi) \overrightarrow{e}_r + A_{\theta}(r,\theta,\varphi) \overrightarrow{e}_{\theta} + A_{\varphi}(r,\theta,\varphi) \overrightarrow{e}_{\varphi}$$

du champ scalaire $G(z, \theta, \varphi, t)$ en coordonnées cylindriques.

3 — Gradient et force conservative

Soit $\overrightarrow{F}(M, t)$ un champ de force.

1. Que représente physiquement la circulation élémentaire $\overrightarrow{F} \cdot \overrightarrow{d\ell}$?

Faut-il noter *a priori* cette grandeur avec un « d » ou avec un « δ »?

2. On dit qu'une force dérive d'une énergie potentielle \mathcal{E}_p si son travail élémentaire peut s'écrire

$$\delta W = -d\mathcal{E}_{p}$$
.

2.a) En déduire la relation entre \overrightarrow{F} et \mathcal{E}_n .

2.b) Justifier qu'une telle force est conservative, c'està-dire que le travail $W_{A\to B}(\vec{F})$ entre deux points A et B ne dépend pas du chemin suivi.

2.c) Que peut-on dire de son travail le long d'un contour 1 Γ :

$$W = \oint_{M \in \Gamma} \vec{F} \cdot d\vec{\ell}$$

➤ Un tel champ de force est dit à circulation conservative.

4 — Potentiel de Yakawa

Le potentiel de Yukawa s'écrit en coordonnées sphériques sous la forme

$$V(r) = -g^2 \frac{e^{-mr}}{r}$$

où g et m sont deux constantes positives.

1. Tracer le graphe de V(r).

2. Exprimer le champ de force associé.

^{1.} Un contour est une courbe fermée.

5 — La divergence

On rappelle la définition de la divergence :

$$\delta\Phi(t) = \operatorname{div} \overrightarrow{A}(M, t) \, \mathrm{d}\tau_M$$

où $\delta\Phi$ est le flux sortant de \overrightarrow{A} à travers la surface délimitant le volume élémentaire d τ_M entourant le point M

En considérant un volume élémentaire situé en M (cube de côtés dx, dy et dz), établir l'expression de $div \overrightarrow{A}$ en fonction des composantes du champ :

$$\overrightarrow{A}(M,t) = A_x(x,y,z,t) \overrightarrow{e}_x + A_y(x,y,z,t) \overrightarrow{e}_y + A_z(x,y,z,t) \overrightarrow{e}.$$

6 — Une colline

L'altitude en un point (x, y) d'une colline est donnée (en mètres) par

$$h(x, y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12),$$

où y est la distance (en kilomètres) par rapport au nord de Niederschaeffolsheim et x la distance par rapport au sud de ce même village.

- 1. Où est situé le sommet de la colline?
- 2. Quelle est l'altitude de la colline?
- **3.** Quelle est la raideur de la pente (en %) en un point 1 1 km au nord et 1 km au sud de Niederschaeffolsheim? Dans quelle direction la pente est-elle la plus raide, et à quel point?

7 — Retour vers le futur

On considère les équations différentielles suivantes :

$$\frac{d^2x}{dt^2} + \omega_0^2 x(t) = 0 {1}$$

et

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\omega_0}{O} \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$
 (2)

- 1. Sont-elles invariantes selon le changement de variable t' = -t?
- **2.** Interpréter physiquement les résultats de la question précédente.