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1 — Métabolisme d’'un mammifere

Les mammiferes sont des étres thermorégulés, dits ho-
méothermes (improprement « a sang chaud »), contrai-
rement aux reptiles ou aux poissons, dit poikilo-
thermes (improprement « a sang froid »). On modélise
un mammifere par une sphere de rayon R dont le mé-
tabolisme dégage la puissance thermique volumique
Pv, uniformément dans tout son volume. Lair extérieur
a une conductivité thermique A, et sa température loin
de 'animal est T = 20 °C. On s’intéresse a la tempéra-
ture de l'air (donc pour r > R) en régime stationnaire.
On considere le contact parfait entre I’animal et le mi-
lieu extérieur (continuité de la température).

1. Que peut-on dire du flux thermique ®(r) pour r >
R? En déduire 'expression de jg(r) en fonction de py,
Retr.

2. En déduire I'expression de la température T'(r) pour
r=R.

3. Quelle est la température cutanée T, de 'animal?
Commenter la variation de 7. d'une part quand A varie
a R fixé, d’autre part quand R varie a A fixée.

4. Quelle doit étre la valeur du métabolisme volu-
mique py pour avoir T, = 30 °C dans l'air puis dans
leau?

Pourquoi n’existe-t-il pas de petits mammiféres ma-
rins?

Données :

Aair =5 W-m™ - K! et Aeay =500 W-m™! - K™%

On prendra R = 25 cm.

2 — Modeéle d’un fusible

Un fusible est constitué d'un fil conducteur cylindrique
de section droite d’aire S, de longueur L, de masse vo-
lumique p et de capacité thermique massique c. Il pos-
sede une conductivité thermique A et une conductivité
électrique .

Il est traversé par un courant électrique d’intensité I.
Ce fil est enfermé dans une capsule remplie d'une sub-
stance assurant une isolation thermique et électrique
parfaite.

Les températures en x = 0 et x = L sont imposées et
égales a la température Ty du milieu ambiant.
Données :

A=65W-m 1K1,

Yy=12x 10° S'm_l,

c=460]-K'-kg!,

p=2,7x103kg-m3.

Onprend Tp =290Ket L=2,5cm

On rappelle que la résistance électrique d’'un conduc-
teur cylindrique de conductivité électrique vy, de lon-
gueur ¢ et de section S, parcouru par un courant I est

R=—.
YS

On se place en régime stationnaire.

1. Etablir et résoudre 'équation différentielle vérifiée
par la température T'(x) le long du fusible. Représenter
graphiquement T'(x).

2. Le matériau constituant le fil fond a 7 = 390 K. On
veut fabriquer un fusible qui admet une intensité maxi-
male Imax = 16 A. Préciser 'endroit de la rupture en
cas de dépassement de I ;. Déterminer littéralement
puis numériquement |'aire S a prévoir.

3. On fixe I = 10 A. Le fil a la section S;¢. Evaluer litté-
ralement puis numériquement la puissance thermique
Py, (0) transférée par conduction en x = 0. Préciser si
elle est recue ou fournie par le fil. Méme question pour
la puissance thermique Py, (L) en x = L. Quelle relation
a-t-on entre Py, (0), Py, (L) et la puissance électrique Pe
fournie a I'’ensemble du fil? Commenter.

3 — Banc de Kofler

Un banc de Kofler permet de mesurer avec précision
la température de fusion de cristaux solides en poudre.
C’est une barre parallélépipédique horizontale de lon-
gueur L et de section a x b (avec b < a), constituée
d’'un matériau de conductivité thermique A et de cha-
leur massique a pression constante c. A I'une des ex-
trémités du banc est insérée une résistance électrique
R. Quand on branche le banc de Kofler, la résistance R
est soumise a une tension U. On admet que la totalité
de la puissance dégagée par effet Joule est transmise
au banc. Les échanges thermiques entre I'air et le banc
sont modélisés par une puissance P = h(T - T3)S,ou T
estla température du banc, T, la température de l'air et
S la surface d’échange. On considére la face inférieure
isolée : le transfert thermique avec I'extérieur s’effec-
tue a travers la face supérieure du banc. On applique
une tension de valeur efficace U aux bornes de la résis-
tance R.
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1. Trouver ’équation différentielle vérifiée par la tem-
pérature du banc en régime stationnaire, en suppo-
sant le probleme unidimensionnel. Donner la forme
du profil de température.

2. A quelle condition sur L peut-on supposer le banc
comme semi-infini. Montrer que dans le cadre de cette
approximation le profil de température dans le banc
est de la forme

T(x)=A+Be ¥,

Exprimer A, B et § en fonction des données du texte.

3. Silatension U est la tension électrique délivrée par
le réseau domestique, a quelle condition la tempéra-
ture du banc peut-elle étre considérée comme station-
naire?

4. On saupoudre les cristaux a étudier dans le sens de
la longueur L. Expliquer ce que I'on observe et com-
ment on en déduit la température de fusion.

Justifier la nécessité d'un étalonnage et montrera que
le choix de la résistance R caractérise la plage de tem-
pérature de fusion détectable.

5. La précision des mesures de distance le long du
banc est de 0,5 mm. Discuter de la précision obtenue
sur la mesure d'une température de fusion : dépend-
elle de Tfysion ¢ de R?

4 — Conduction thermique

Une tige cylindrique de longueur L et de rayon R est
constituée d'un métal de conductivité thermique A.
Elle est encastrée a une de ses extrémités dans un réci-
pient contenant de I'’eau portée a ébullition, imposant
en x = 0 la température constante Tp = 100 °C.

Ta
T

Le reste de la tige est en contact avec 'atmosphere de
température constante T, = 20 °C. On prend en compte
les transferts thermiques conducto-convectifs entre la
tige et 'air ambiant par la loi de Newton : un élément
de surface latérale dS a la température T fournit a I'ex-
térieur une puissance thermique

dP=h(T-T,)dS.
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On se place en régime stationnaire.

1. Ftablir I'équation différentielle vérifiée par T'(x). On
introduira une longueur caractéristique 6 dont on don-
nera l'expression. Donner la forme générale de la solu-
tion T(x).

2. Ecrire les conditions aux limites qui permettent de
déterminer les constantes d’intégration (le calcul n’est
pas demandé).

3. Déterminer complétement lI'expression de T(x)
dans le cas ou la tige est infiniment longue (préciser
cette hypothese).

4. On dispose de deux barres (1) et (2) de dimen-
sions identiques, constituées respectivement de cuivre
et d’étain, recouvertes d'une fine couche de paraffine
dont la température de fusion est T = 60 °C. Sur cha-
cune des barres, on observe la fusion de la paraffine
aux abscisses x; = 15,6 cm et x; = 6,4 cm. On admet
que le coefficient h est inchangé.

Sur quelle partie de la tige la paraffine est-elle fondue?

La conductivité thermique du cuivre étant A; =
390 W-m~!-K~!, déterminer la valeur 1, de celle de
I’étain.

5. Comment sont modifiés les résultats précédents si
I'on place un ventilateur dirigé vers la tige?

5 — Barre parcourue par un courant

Soit une barre de conductivité thermique A, de lon-
gueur L et section S. Sa surface latérale est calorifugée.
Ses extrémités sont en contact avec deux sources a des
températures Ty enx=0et T en x = L.

1. Déterminer T(x) et la puissance P, fournie a la
source de température T» en régime permanent.

2. La barre est de plus parcourue par un courant d’'in-
tensité I. On note p la résistivité électrique de la barre.

On rappelle 'expression de la résistance électrique
d’un cylindre de résistivité électrique p, de longueur ¢
etde section S:

Déterminer T(x) et P(x), puissance traversant la sec-
tion de la barre

3. Déterminer P,. La mettre sous forme de deux
termes. Commenter.

4. Quelle est la puissance P; sortanten x =07

5. Que se passe-t-il si on interrompe le courant d’in-
tensité I et que 'on calorifuge les extrémités? Déter-
miner la température finale.
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6 — Barreau nonisolé

On considere un cylindre d’axe Ox, de rayon R et de
longueur L > R. 1l existe une perte d’énergie interne
par unité de temps et de volume uniforme et constante
notée f.

Calculer la température T'(x) en régime permanent
lorsque seules les extrémités du barreau sont plongées
dans un bain de température Ty et qu'il y a un phéno-
mene de conducto-convection avec I'air sur la paroi la-
térale.

7 — Conduction thermique dans une dalle

On considére une dalle de surface S et d’épaisseur
e (petite par rapport aux autres dimensions du pro-
bleme), de conductivité thermique A.

Elle recoit en x = 0 un flux thermique ®y constant dans
un premier temps.

1. Déterminer le profil de température dans la dalle.

2. Comment prendre en compte le fait que Tyaje(x =
e) # T,ir ? Recalculer alors le profil de température.

3. On considere désormais un flux variable dans le
temps : (1) = ¢ sin(wt). Déterminer le nouveau profil
de température dans la dalle.

8 — Ailette de refroidissement

On souhaite refroidir un moteur en fixant sur lui un
certain nombre d’ailettes de forme cylindrique (rayon
R, longueur L), de conductivité thermique A. Chaque
ailette est au contact d'un fluide a la température 8, <
6o, ou O est la température du moteur.

L

-~

0

Moteur 6

1. Combien doit-on placer d’ailettes sur le moteur sa-
chant que le flux thermique a évacuer vaut @1 =40 W?

2. Comment améliorer le systéme?

Données numériques
A=400W-m1.K!

h = 100W-m~2-K! (coefficient
conducto-convectif de Newton)
R=2mm

L=15cm

6y =82°C

B =22°C

de transfert

CPGE PSI 2025-2026

Lycée Jean Perrin

9 — Compost

Du fait de la décomposition, un bloc de compost de
grande surface S et de hauteur H produit une puis-
sance volumique

.7z

= sin(22),

I'axe des z étant choisi ascendant.
La surface en z = 0 est parfaitement isolée, celle en
z = H subit un échange conducto-convectif avec I'ex-
térieur. On rappelle la loi de Newton : jy, = h(T — Tp),
ol h désigne le coefficient de transfert thermique de
surface.

1. Déterminer le profil de température T'(z) en régime
stationnaire et le tracer.

2. Calculer la puissance dégagée par le compost.

10 — Production d’entropie

Les extrémités d'une barre calorifugée en acier inox,
de conductivité thermique A, de longueur L = 1 m, sont
maintenues aux températures 77 =300 Ket T, =400 K.
On se place en régime stationnaire.

Ondonne A =16 W-m~!-K 1.

1. Quelle est la variation d’entropie d'un élément de
volume de section A et de longueur dx?

Etablir 'expression de I'entropie recue par cet élément.

2. Calculer I'entropie o5 produite dans la barre par
unité de volume et par unité de temps, au point de la
barre ot elle est maximale.

11 — Gel d’un lac

Un lac est recouvert d'un épaisseur z(t) de glace, I'axe
des z étant orienté vers le bas, son origine étant a la sur-
face de glace en contact avec l'air, cette surface étant a
la température Ts = —30,0 °C.

On donne la température de fusion de 'eau T3 = 0,0 °C,
I'enthalpie massique de fusion de la glace Agh =
335k]-kg™!, la masse volumique de la classe Pg =
940 kg- m~3 etle coefficient de transmission thermique
delaglace A =2,1W- m1.KL

1. Donner I'équation différentielle vérifiée par la tem-
pérature Tg(z, r) de la glace et les condition aux limites
sur Tg(z, 1).

2. ATl'aide d'un bilan d’enthalpie, obtenir la relation

A(aTg) Agysh?
0z g(t)_pg fusf<.

3. On suppose z tres faible, donc on considére que z
est constant : quel est le nom de cette approximation ?

4. Que devient alors la premiére équation différen-
tielle? Donner le gradient de Ty.
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5. Donner I'équation différentielle vérifiée par z(z) et
la résoudre. Le résultat obtenu est-il cohérent? Donner
son sens physique.

6. Donner I'épaisseur de la couche de glace au bout
d’'une minute, d'une journée et d'un mois. Est-ce co-
hérent?

12 — Diffusion thermique instationnaire

Deux plaques sont séparées d'une distance L. Il regne a
I'extérieur une température Ty; on note T'(x, t) la tem-
pérature a I'intérieur (pour 0 < x < L).

Le profil initial de température entre les plaques est

X
T(x,O):T0+Bsin(T) avec 0>0.

1. Vérifier que T'(x,0) vérifie les conditions aux limites.

2. On cherche des solution sous la forme T'(x, ) = Ty +
f(x)g(t). Déterminer f(x) et g(1).

3. Calculer le flux thermique en x a l'instant t.

13 — Température de la planéte Mars

La température moyenne sur le sol martien est de

—50 °C. Le rayon de la planéte est R, = 3400 km et on

suppose pour simplifier qu’elle est formée de deux par-

ties bien distinctes a symétrie sphérique :

— un noyau homogeéne d'un mélange, entre autres,
de fer et de nickel a la température uniforme de
2500 °C, de rayon R; = 1500 km;

— un manteau homogene composé essentiellement
de silice solide jusqu’a la surface, de conductivité
thermique A.

1. Comment varie la température a l'intérieur de
Mars? Tracer I'allure de T'(r) pour 0 < r < Ro.

2. Quelle est la puissance dissipée par le noyau de
Mars si A = 1,2W-m™!-K12 Quelle est l'origine de
cette énergie?

3. Une autre théorie plus fine consiste a dire que Mars
a été formée il y a environ 4 milliards d’années par une
trés grande quantité de grains de poussiére identiques
qui, en s’agglomérant, ont fini par créer la planete que
I’on connait de nos jours. Pour modéliser T'(r), on sup-
pose qu’il se dégage au sein de la planéte une puissance
volumique Py, constante. On élimine donc la distinc-
tion entre le noyau et le manteau.

Justifier pourquoi on peut admettre que T(r) ne dé-
pend pas du temps.

Déterminer la nouvelle expression de T'(r).

14 — Solidification d’une goutte

On considére une goutte d’eau a la température
Te =10 °C que 'on pulvérise dans l'air a T, = —15°C.
Le rayon de la goutte est R = 0,1 cm.
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A l'interface eau-air, le flux thermique de la goutte de
surface S et de température T'(f) vers l'extérieur est
donné par ® = hS[T(t) — Ta], avec h =50 W-m~2.K1.
On note p = 1,0 x 10° kg- m~3 la masse volumique de la
goutte, supposée uniforme, ¢ =4,18x 103 J-kg™!-K!
la capacité calorifique massique de l'eau et
Afush =335 k] -kg™! I'enthalpie massique de fusion de
la glace.

1. A l'aide du premier principe de la thermodyna-
mique, montrer que

cRdT— 3h[T(t) — Tyl
P = o

CR
2. Déterminer T'(¢). On pourra poser T = F;_h
3. Déterminer le temps f;, en fonction de 7, Te, T, et

Tt au bout duquel T(#) = Ty = -5 °C.

4. On considére que la goutte est liquide a T; et que
la température remonte a Ty = 0 °C ou elle se solidifie
partiellement. On considere la réaction isobare et ré-
versible. Déterminer la proportion x de liquide restant.

5. Déterminer le temps 7, au bout duquel la goutte est
entierement solide.

15 — Neige artificielle

La neige artificielle est obtenue en pulvérisant de fines
gouttes d’eau liquide supposées sphériques de rayon
R=0,2mm a T; = 10 °C dans I'air ambiant a la tempé-
rature Te = —15 °C.

Alinterface eau-air, le flux thermique d¢ a travers une
surface dS dans le sens de la normale extérieure 77 est
donné par la loi

de¢ = h[T (1) - Tl dS.

1. Etablir 'équation différentielle régissant I'évolution
temporelle de la température de la goutte T(#).

2. Déterminer le temps f, mis par la goutte li-
quide pour atteindre la température de surfusion
T(ty) =-5°C.

3. Lorsque la goutte a atteint la température de —5 °C,
il y a rupture de la surfusion : la température remonte
brutalement a 0 °C et la goutte est partiellement soli-
difiée (phénomene également brutal). Moyennant des
hypotheses que vous expliciterez, calculer la fraction x
de liquide restant a solidifier apres la rupture de la sur-
fusion.

4. Calculer le temps nécessaire a la solidification du
reste de '’eau liquide.

Données

Coefficient conducto-convectif: h =65 W-m™2-K™!
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Chaleur latente de changement de phase solide-
liquide : /s =333 kJ-kg™!

Capacité thermique massique de 'eau liquide :
co=42k kg™ -K!

Capacité thermique massique de I'’eau solide :
cs=2,1kJ-kg™!-K!

16 — Transfert thermique dans une poutre

Soit une poutre de longueur L, de section circulaire
de rayon a et de conductivité thermique A, contenue
entre deux murs de température Tr,. On note T, la tem-
pérature de I'air entourant la poutre et h le coefficient
de transfert convecto-conductif.

On considere le régime permanent atteint. Le point O
est placé au milieu de la poutre et on définit un axe (Oz)
dans le sens de la poutre.

1. Déterminer le profil de température T'(z).

2. Quel est le transfert thermique entre la poutre et
lair

17 — La fine ou I'épaisse?

On considere un transistor de puissance qui dissipe de
I'énergie lors de son fonctionnement, et se comporte
alors comme une source de chaleur. Afin d’éviter une
montée en température trop importante, on utilise une
ailette de refroidissement pour favoriser les échanges
thermiques avec le milieu extérieur.

On étudie une ailette de longueur L, de section rectan-
gulaire S = a x b, dont la face en x = 0 est en contact
avec le transistor a la température Ty = 65 °C.

transistor
aTy

aira Ty

On se place en régime stationnaire, et on suppose que
le phénomene est unidimensionnel selon Ox : la tem-

pérature dans l'ailette est T'(x). La température de l'air
ambiant est Ty. Le transfert thermique de I'ailette vers
I’air ambiant est tel que la puissance thermique échan-
gée par un élément de surface latérale dS de longueur
dx est donnée par dP = h[T(x) — T,]1dS, ou h est une
constante caractéristique de cet échange thermique.
La conductivité thermique de I'ailette est A.

1. Montrer que la température dans I'ailette vérifie une
équation différentielle de la forme

d?T(x) TW-Ta
dx? 62

=0 (1)

ol 0 est une grandeur caractéristique dont on donnera
I'expression en fonction de A, a, b et h, dont on préci-
sera la dimension.

2. Quelle estla forme générale de la solution de I'équa-
tion différentielle (1) ?

A quelle condition portant sur § peut-on considérer
'ailette comme infinie? En se placant dans ce cas, dé-
terminer complétement I'expression de T'(x).

3. Exprimer en fonction de Ty, T, a, b, A et h la puis-
sance thermique totale évacuée par 'ailette.

Pour une méme section S = 1 cm?, on considére deux
profils d’ailette :

— une fine,aveca=0,1cmet b=10cm;
— lautre épaisse, avec a’ = b’ =1 cm.

Quelle ailette vaut-il mieux choisir pour évacuer une
maximum de puissance thermique?

4. Est-il nécessaire de prendre une ailette aussi longue
que possible? Proposer une longueur L d’ailette dans le
cas ou 6 = 1 cm. Commenter la structure du radiateur

sur la photo suivante.

QU

wenenen Résistance thermique, ARQS thermique avevmome

18 — Chauffage d'unigloo

Pour passer la nuit, un inuit veut construire un igloo
fait d'un mur constitué de neige compactée de 4 m?
de surface. La neige compactée est un bon isolant de
conductivité thermique A = 0,25 W-m~' - K1,
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1. Exprimer la résistance thermique des parois de
l'igloo en fonction de I'épaisseur e de la paroi. On né-
gligera la courbure des parois.

2. Pendant son sommeil, I'inuit dégage 0,5 MJ de cha-
leur par heure. Exprimer la puissance de 'inuit en tant
que source de chaleur dans les unités du systéme inter-
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national.

3. Pendant la nuit, quand le feu a l'intérieur de 'igloo
s’est éteint, la température intérieure est Tinc = 20 °C,
tandis que celle a I'extérieur est Texy = —40°C. Si la
conduction thermique a travers les murs de l'igloo est
le facteur dominant dans les pertes thermiques, quelle
est la valeur de e pour que l'intérieur de l'igloo ne se
refroidisse pas?

4. Enfait, I'épaisseur est trop importante pour quel’on
puisse négliger la courbure des parois. Faire la bilan
thermique en coordonnées sphériques, et trouver la
résistance thermique Ry, en fonction des rayons inté-
rieur et extérieur de I'igloo, demi-sphérique. Etude de
la limite si e << Rjnt.

19 — Diffusion thermique dans une barre

On considére une barre (représentée en gris sur le
schéma) homogene de longueur L, de conductivité
thermique A, de section S et de masse volumique p.
Deux sources de température sont placées a ses deux
extrémités comme indiqué sur le schéma.

7 7,
/S S S S S S S SSSSSSSSS S SY
T, Gy T, G
/S S S S S SSSSSSSS/S/
7 7
0 L X

1. On suppose les sources idéales.

1.a) Quevalent C; et C»?
1.b) On se place en régime permanent. Donner T'(x).

2. On considére plus que les sources ne sont plus
idéales, et on se place en régime quasi-stationnaire.

2.a) Discuter de la validité de 'hypothese.
2.b) Déterminer T;(t) et T»(t).

20 — Le parpaing a un petit creux

1. On considere un phénomene de diffusion ther-
mique unidimensionnel dans un matériau de longueur
L, de section S et de conductivité thermique A.

Rappeler la définition de la résistance thermique d'un
milieu en précisant les hypothéses nécessaires, puis
établir son expression dans le cas du matériau consi-
déré. Préciser son unité.

On considere un parpaing creux en béton, dont les
dimensions sont indiquées sur la figure ci-dessous
(I'épaisseur de la paroi est constante, égale a e). On
note 1, la conductivité thermique de l'air et Ay, celle
du béton.

On donne a =20cm, b=15cm, c =40cm, e = 2 cm,
1a=26x102W-m~1-K ety =092W-m~-K L.
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2. On impose les températures T; ala face x=0et T
alaface x = b. Déterminer le flux thermique traversant
le parpaing en régime permanent.

3. Quelle serait 'épaisseur b’ d’'un parpaing de béton
plein qui serait traversé par le méme flux thermique,
les dimensions a et ¢ étant inchangées? Commenter.

21 — Isolation d’une conduite

On considere une conduite entourée d’un isolant.

Isolant épaisseur x
conductivité thermique A;

Conduite épaisseur e
conductivité thermique A

Les phénomenes de convection sont modélisés par la
loi de Newton : d® = h(T — Te) dS.

On note h, le coefficient d’échange air/conduite et h,
le coefficient d’échange isolant/air.

On donne également I’expression de la résistance ther-
mique en coordonnées cylindriques

. 1, (Rz)
=——In|—|,
BT 50l \Ry

ol R; est le rayon intérieur, R, le rayon extérieur, A la
conductivité thermique du cylindre de longueur L.
Est-il vrai que plus il y a d’isolant, meilleure est I'isola-
tion? Si non, quelle est la condition sur x pour avoir la
meilleure isolation?

22 — Isolation d'une canalisation

On considére une canalisa-

tion cylindrique de longueur \l a
L, de rayons intérieur a et J_b
extérieur b, et de conducti-

vité thermique A. On étudie

la diffusion thermique en régime stationnaire entre la
face interne et la face externe en négligeant les effets
de bords : la température dans le tube s’écrit T(r) en
coordonnées cylindriques d’axe I’axe du tube.

6/10



TD phénomeénes de transport

Diffusion thermique

On rappelle que pour T(r) en coordonnées cylin-

driques,onagrad T = T? et AT = 1d (rdT)
aues & Cdr T Crdr U dr)

1. Rappelerla définition générale de la résistance ther-

mique.

2. Donner I'expression du flux thermique sortant ®(r)
a travers un cylindre de rayon r € [a, b] de de longueur

dT
L en fonction des données et de T

Que peut-on dire de AT en régime stationnaire ? En dé-
duire que le flux thermique ®(r) = ® est indépendant
der.

On note Tj la température de la face interne du tube et
T> celle de sa face externe. Relier alors 71 — T» a @ et aux
données du probleme, et en déduire I'expression de la
résistance thermique Ry, ; du tube en fonction de a, b,
AetL.

3. On rappelle la loi de Newton donnant le flux ther-
mique a travers une surface S d'un solide a la tempé-
rature Ts vers un fluide a la température T; : Ps_ =
hS(Ts — Te), ou h est le coefficient de transfert convec-
tif. Montrer que I’on peut associer une résistance ther-
mique Rcony a ce transfert convectif, dont on donnera
I'expression en fonction de & et S.

4. Un fluide circule dans le tube, qui est entouré d’air;
il se produit donc des transferts convectifs sur les deux
faces de la canalisation, caractérisés par les coefficients
de transfert h; pour la face interne et h, pour la face ex-
terne.

Donner la résistance thermique totale Ry, caractéri-
sant le transfert thermique de I'intérieur du tube vers
lair extérieur.

5. On cherche a minimiser les pertes thermique en en-
veloppant le tube d’'un matériau isolant de conducti-

vité Aiso, de rayon r.

Que devient la résistance thermique R de l'en-
semble?

Montrer que la résistance thermique passe par un ex-
tremum pour une valeur critique r; de r que 'on dé-
terminera. A quelle condition cette situation sera pos-
sible? Est-ce un minimum ou un maximum?

6. En étudiant le signe de R{h — Ry, discuter de I'in-
fluence de 'isolant sur le flux thermique.

On parle du « paradoxe de I'isolant » : discuter.
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23 — Expérience de regel

On pose un fil métallique de section rectangulaire de
cOtés b selon (Oy) et ¢ selon (Oz) aux extrémités du-
quel sont fixées deux masses m/2 sur un gros bloc de
glace. On constate que la glace fond sous le fil, que le fil
descend doucement a vitesse constante v et que 'eau
regele au-dessus du fil.

'

glace

™ il

m/2

m/2

1. Evaluer, a 'aide notamment du diagramme (P, T) et
des données, la différence de température T; — T entre
le dessous (indice i )et le dessus (indice s).

On donne m = 5kg; a =20cm; b = 0,5mm et ¢ =
5 mm.

2. On suppose que le régime de diffusion thermique
dans le fil est stationnaire.

En appliquantle premier principe ala couche d’eau so-
lide d’épaisseur dz qui fond sous le fil, en déduire la vi-

dz
tesse v=—.

Données : 1 = 80 W-m™!-K~!; enthalpie massique de
fusion de 'eau a0 °C : Ag,s H =330 kJ - kg™!.

» On appelle enthalpie massique de changement
d’état Ah,_.o(T), ou chaleur latente de changement
d'état ¢,_.,(T),lavariation d'enthalpie massique du
corps pur lors de la transition de phase 1 — 2. Cette
grandeur est tabulée en, fonction de la température
car elle ne dépend quede T.

» Pour une masse m de corps pur, passant de
I'état initial {phase 1, T, Psq(T)} a [I'état final

{phase 2, T, P¢q(T)} on peut calculer la variation
d’enthalpie due au changement d’état par

AHy—p =mly_.»(T).
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pression (atm)

solide
(glace)

gaz
(vapeur)

liquide

0,006
Point triple

latm = 1,01325 bar = 101 325 Pa

Pression (bar) Température (°C)
1,01325 0,0026
50 -0,362
100 -0,741
150 -1,125
200 -1,517
250 -1,9151
300 -2,321
400 -3,153
500 -4,016
600 -4.91
800 -6,79
1000 -8,80

Figure 1

24 — Trois barres en contact

On considere le dispositif représenté ci-dessous dans
lequel les deux extrémités A et B sont maintenues aux
températures stationnaires T4 et Tp. Les trois barres
(d’indices 0, I et II) sont caractérisées respectivement
par des sections d’aires respectives Sy, St et Sy et par
des conductivités thermiques Ag, A; et A1 et de méme
longueur notée L.

On note T¢ la température a la jonction C et Ty la tem-
pérature en un point d’abscisse x de la barre 0, de lon-
gueur totale Ly = 20 cm.

CPGE PSI 2025-2026
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Point critique
218 atm, 374 °C

JTx

A B
0

On mesure Ty = T¢c pour x = 4cm. En déduire la
conductivité thermique de la barre II.

Données numériques

Les aires sont toutes égales a 1 cm?

Les barres 0 et I sont en acier, pour lequel A =

temperatugQ| 2OW - m1-K1

Tp=273Ket Tp =373 K.

25 — Détermination d’'une conductivité
thermique
On souhaite déterminer la conductivité thermique A

d’une barre cylindrique de section S et de longueur L.
On utilise le dispositif suivant :

tige métallique calorifugée

sonde
_—" thermo-
métrique
= Tx(D)

@ AVAVAVAVAVAVAVAVAVAVAVAV AV AVAV AN AV A AV AV A AV A AN AV A 44

calorimetre

bain thermostaté

La tige, calorifugé latéralement, plonge d'un c6té dans
un bain thermostaté maintenu a la température T
constante, et de’autre dans un calorimeétre de capacité
thermique C, rempli d'une masse m =400 g d’eau. Ini-
tialement, 7»(0) < T, et on releve I'évolution de T» ()
au cours du temps.

1. On fait I'hypothése d’'un état quasi-stationnaire :
I'évolution de T;(¢) est « suffisamment lente » pour que
I'on puisse considérer le régime stationnaire atteint a
chaque instant dans la tige.

Etablir alors I'expression de la résistance thermique de
la tige en fonction de L, S et A. En déduire I'expres-
sion du flux thermique traversant la barre dans le sens
thermostat — calorimeétre en fonction des tempéra-
tures T et T, (7).

2. En effectuant un bilan d’énergie au systeme {eau +
calorimetre}, établir 'équation différentielle vérifiée
par T»(#). On notera C; la capacité thermique totale de
I'eau et du calorimetre.
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Montrer que I'évolution est décrite par une constante

de temps 7 que I'on exprimera, et en déduire I'expres-

sion de T (1).

3. On donne le graphe de ¢ en fonction de
( T>(0) - T}

N\LO-T1) . .
linéaire effectuée avec les points expérimentaux.

), sur lequel on représente la régression

2000 C‘onduct‘lon daljs la tlgie

3500+

3000

2500 -

2000

i(s)

1500 -

1000 -

500+

—500 i i i i i L i L
000 001 002 003 004 005 006 007 008 009

La tige a pour longueur L = 68cm et pour dia-
metre D=1,2cm. La capacité du calorimetre est
C=180J-K!; on y a placé m = 400 g d’eau, et on
donne ceay = 4,186J-g 1K1

En déduire une estimation de la conductivité A de la
tige.

On donne:

A =237W-m™1-K7!;

Acu =401 W-m~ 1. K 1.

De quel métal est constituée la tige?

4. Onrappelle I'équation de la chaleur unidimension-
T _ }LazT
PCor = "ox2 -
donner I'expression du temps caractéristique du phé-

nomene de diffusion thermique dans la barre en fonc-
tion des grandeurs physiques en jeu.

nelle : Par analyse dimensionnelle,

On a considéré I’évolution quasi-stationnaire (cf. ques-
tion 1). A quoi revient cette approximation en raison-
nant sur les échelles de temps du probléme?

Est-elle vérifiée ici?
Données :

— pour 'aluminium pa = 2,7 g-cm™

etca=8977-K1-kg!;
— pour le cuivre pcy, =8,9 g-cm™
etccy=3867-K!-kg™!.

3

5. Sil’évolution ne peut étre considérée comme quasi-
statique, notre évaluation expérimentale de A serait-
elle sur-estimée ou sous-estimée par rapport a la valeur
réel?

26 — Conductivité du givre

On modélise le givre comme la répétition d’'un méme
motif : un cube de c6té a, comprenant un sous-cube
d’air de coté b, le reste de la matiere du motif étant de
la glace.

air

glace

a
Conductivités thermique : Agiace = 2,1 W-m™-K™! et
Aair = 0,022 W-m~1- K7L,
1. Exprimer la résistance thermique du motif.

2. Exprimer la conductivité thermique A du givre.

w

b
. Tracerla courbe A = F (—)
a

4. Calculer la conductivité thermique du givre pour
une fraction volumique de I'air dans le givre de 0,4.
Conclure sur la nécessité de dégivrer régulierement un
congélateur.

enwnen Ondes thermiques cvmomome

27 — Oscillations thermiques

Le plan x = 0 sépare 'air (x < 0) d'un milieu (x > 0) de
conductivité thermique A, de masse volumique p, de
masse volumique p et de capacité thermique massique
c. Latempérature en x = 0 est

T(0,t) =Ty +0gcos(wt).

CPGE PSI 2025-2026
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1. Etablir 'équation aux dérivées partielles régissant
T (x, t) dans le milieu.

2. La solution est recherchée en complexe sous la
forme

T(x,1)=0(x)e +Cx+D.

Trouver 6(x) en introduisant une longueur caractéris-
tique 8. Déterminer complétement T'(x, t). Commen-
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ter.

A

3. On donne a = — = 7x107' m?-s™1. Calculer §
c

pour la variation jour-nuit. Commenter.

4. Quelle doit étre I'épaisseur d'un mur pour atténuer
les variations de température d'un facteur 10?

28 — Diffusion thermique dans un cable

On considere un cable cylindrique de section S, de
rayon a, de longueur L, de masse volumique y, de
conductivité thermique A et de capacité thermique
massique c. On le suppose parfaitement calorifugé;
son état de dépend que I'abscisse x et du temps ¢.

1. Une perturbation thermique a lieu a I'extrémité x =
0. Etablir I'équation aux dérivées partielles vérifiée par
la température T'(x, ).

2. L'extrémité en x = 0 est maintenue a la tempéra-
ture T; alors que l'autre est maintenue a la tempéra-
ture T, < T;. Calculer A sachant que le flux thermique
a travers une section S est de 2400 J-min~!. On donne
§=100cm?, T} =300K, T, = 280K et L = 1 m. Com-
menter la valeur obtenue.
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3. On impose des variations sinusoidales de tempéra-
ture autour d’'une température moyenne Ty :

T(x=0,1)=Ty+ Acos(wt).

Lexpression de la température en un point d’abscisse
x est de la forme

T(x,t)=To+ Ae " cos(wt—ax+@).

3.a) Commenter, et déterminer ¢, m et a en fonction
dew, u, Letc.

3.b) On a relevé expérimentalement les amplitudes
d’oscillation suivantes pour un céble de longueur L =
10m:

X (m) 0 1 2 |3
amplitude (K) | 19,5 | 11,5 | 6,8 | 4

Quel parametre caractérisant I’évolution de la tempé-
rature peut-on en déduire?

3.c¢) On appelle profondeur d’inversion I’abscisse mi-
nimale pour laquelle les oscillations thermiques sont
en opposition de phase avec celles de I'origine. Calcu-
ler cette profondeur.
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