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DS no 2 Solution

 Partie I— Convertisseur de puissance (CCINP PSI 2025)

Q1. Convertisseurs d’électronique de puissance :

onduleur du continu vers l’alternatif ;

redresseur de l’alternatif vers le continu ;

hacheur du continu vers le continu par modification de
la valeur moyenne.

Q2. L’intensité traversant l’interrupteur K1 est iK 1 =
iT 1 − iD1.

Pour le transistor et la diode, on a respectivement
(compte tenu de l’orientation de la diode)

vK 1

iT 1

0 vK 1

−iD1

0

En sommant ces deux caractéristiques selon l’axe des
ordonnées d’après la relation iK 1 = iT 1 − iD1 on en dé-
duit la caractéristique de l’interrupteur K1 :

vK 1

iK 1

0

Q3. On dresse le tableau de l’état des interrupteurs sur
une période (O : ouvert, F : fermé), et on en déduit la
valeur de uch pour chaque configuration. On remarque
que les intervalles [ 11T

12 , 13T
12 ] et [− T

12 , T
12 ] sont identiques

compte tenu de la périodicité du fonctionnement.

t [− T
12 , T

12 ] [ T
12 , 5T

12 ] [ 5T
12 , 7T

12 ] [ 7T
12 , 11T

12 ] [ 11T
12 , 13T

12 ]

K1 O F F O O
K2 O O F F O
K3 F O O F F
K4 F F O O F
uch 0 U O −U 0

On en déduit l’allure de uch(t ) sur une période du
convertisseur.

T
12

5T
12

7T
12

11T
12

T

t

−U

U

uch(t )

0

Sa valeur moyenne est

Umoy = 1

T

ˆ T

0
uch(t )dt =

(
5

12
− 1

12

)
U −

(
11

12
− 7

12

)
U

soit Umoy = 0 V .

Sa valeur efficace est donnée par

U 2
eff =

1

T

ˆ T

0
u2

ch(t )dt =
(

5

12
− 1

12

)
U 2 +

(
11

12
− 7

12

)
U 2

= 8

12
U 2 = 2

3
U 2

d’où

Ueff =U

√
2

3
.

Q4. Protocole de mesure :

— brancher le multimètre en parallèle de la charge;

— se placer en mode DC pour mesurer Umoy ;

— se placer en mode AC pour mesurer Ueff.

On choisira le calibre le plus élevé pour avoir la
meilleure précision.

Q5. D’après le graphe de ich(t ), on évalue la période du
convertisseur à T = 20 ms .

ä Cela correspond à la fréquence f = 50 Hz qui est
celle du secteur.

Q6. La période de la tension début à t = 0 et va jusqu’à
t = 20 ms.

On lit que la période de ich(t ) qui débute à ich = 0 débute
à environ 2,5 ms : le courant est en retard de phase sur
la tension.

La tension est donc en avance de phase sur le courant,
ce qui correspond 1 à une charge de nature inductive.

ä On peut répondre en remarquant que la tension
uch(t ) présente des discontinuités, tandis que le
courant traversant la charge est continu, ce qui ca-
ractérise une charge inductive.

1. Pour une inductance pure (une bobine idéale), on a Z = jLω et la tension est en avance de 90° sur le courant ; pour une inductance
réelle on a Z = R + jLω, d’argument positif, et la tension est en avance de phase sur le courant.
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Le retard temporel du courant sur la tension est ∆t =
2,5 ms. Le retard de phase vaut donc

φ= ∆t

T
2π= −2,5

20
2π

soit φ=−π

4
(ou φ=−45°).

Q7. Décrivons le circuit dans les différentes phases :

[0,T/12] soit 0 < t < 1,7 ms.

���-
�is

������ ��������� �

���� ������� ��
charge��� ������������������ �

���U

����
vK 1

On a is = 0 et iK 1 = 0.

[T/12,5T/12] soit 1,7 ms < t < 8,3 ms.

���-
�is

������ ���
	iK1 ����� ��charge


ich

�� ������
�

��������������� �
���U

On a iK1 = ich et is = ich.

[5T/12,7T/12] soit 8,3 ms < t < 11,7 ms.

���-
�is

������ ���
	iK1 ����� ��charge


ich

�� �
����
���������������� �

���U

On a is = 0, iK 1 = ich.

[7T/12,11T/12] soit 11,7 ms < t < 18,3 ms.

���-
�is

������ ������������ ����

���� ������� ��
charge


ich

�� �
����
�

���U

����
vK 1

On a is =−ich et iK 1 = 0.

[11T/12,T] soit 18,3 ms < t < 20 ms.

���-
�is

������ ��������� �

���� ������� ��
charge��� ������������������ �

���U

����
vK 1

On a is = 0 et iK 1 = 0.

Le courant iK 1 est non nul entre 1,7 ms et 11,7 ms, et est
égal à ich qui est négatif au tout début de cette phase,

puis positif d’après la courbe fournie. Seul le cas d peut
convenir.

Le courant is est non nul entre 1,7 ms et 8,3 ms et est
égal à ich : il est brièvement négatif avant d’être positif.
Il reprend la même évolution entre 11,7 ms et 18,3 ms.
Seul le cas e peut convenir.

La diode est passante quand iK 1 < 0. On a iT 1 = −iK 1 >
0. Seul le cas b peut convenir pour représenter iK 1.

Le transistor est passant quand iK 1 > 0.

On a iT 1 = iK 1 > 0. Seul le cas c peut convenir pour re-
présenter iT 1.

Résumons :

courant iK 1 iT 1 iD1 is

cas d c b e

Q8. À la date t = T /12, c’est la diode qui commence par
être passante (is < 0 comme on le voit sur le graphe du
cas e). Il est donc inutile de commander si tôt le transis-
tor ; il suffit de le commander quand il devient passant,
c’est-à-dire à la date T /8 (quand is = 0).

Q9. La puissance moyenne délivrée par la source de
tension est donnée par

Pmoy = 1

T

ˆ T

0
Uis(t )dt

= U

T

ˆ 5T /12

T /12
ich(t )dt + U

T

ˆ 11T /12

7T /12
[−ich(t )]dt .

On peut simplifier le calcul en remarquant que les deux
intégrales sont égales (cf. graphe du cas e) :

Pmoy = 2U Imax

T

ˆ 5T /12

T /12
sin(ωt +φ)dt

= 2U Imax

T

[
− 1

ω
cos(ωt +φ)

]5T /12

T /12
.

Comme ωT = 2π on a

Pmoy =−U Imax

π

[
cos

(
5π

6
+φ

)
−cos

(π
6
+φ

)]
= U Imax

2
sin

(π
2
+φ

)
sin

(
−4π

6

)
=−2U Imax

π
sin

(π
2
+φ

)
sin

(
2π

3

)
soit

Pmoy = 2U Imax

π
sin

(
2π

3

)
cosφ .

Comme sin(2π/3) =p
3/2, on peut écrire

Pmoy = U Imax

π

p
3cosφ .
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 Partie II – Le vélo hybride (Centrale PSI 2025)

 Interface entre les supercondensateurs et l’ensemble onduleur-moteur synchrone

Q1. La puissance moyenne délivrée par le pack de su-
percondensateurs est

P= 〈VeIe〉 .

En dehors de la résistance RC qui modélise la charge, les
autres composants ne consomment pas de puissance
moyenne :

— les interrupteurs sont idéaux;

— une bobine idéale ne consomme pas de puissance
en moyenne en régime périodique établi, la puis-

sance instantanée reçue s’écrivant pL(t ) = il L
diL

dt
=

L

2

di 2
L

dt
, dérivée d’une fonction périodique;

— un condensateur idéal ne consomme pas de puis-
sance en moyenne en régime périodique établi,
la puissance instantanée reçue s’écrivant pC (t ) =
C

duC

dt
uC = C

2

du2
C

dt
, dérivée d’une fonction pério-

dique.

La puissance moyenne reçue par la charge est donc
égale à la puissance moyenne délivrée par le générateur,
soit

P= 〈VeIe〉 = 〈VsIs〉 .

Les grandeurs Ve, Vs et Is étant constantes, on peut
écrire Ve〈Ie〉 =VsIs, d’où

〈Ie〉 = VsIs

Ve
.

La valeur moyenne de Ie est maximale pour la valeur mi-
nimale Ve = 27 V :

Ie,max = 36×10

27

soit Ie,max = 13 A .

Q2. En moyenne, on a

VL1 =
1

T

ˆ T

0
L1

dIe(t )

dt
dt = L1

T

[
Ie(t )

]T

0
= 0

car Ie(T ) = Ie(0) en régime périodique établi.

On a de même VL2 = 0.

La loi des mailles appliquée à la maille comprenant L2,
C1, L1 et la source Ve s’écrit

Ve =VL2 (t )+VC1 (t )+VL1 (t ) .

En valeur moyenne, on a donc

Ve = 0+〈VC1〉+0

d’où
〈VC1〉 =Ve .

Q3. Analysons les deux phases de fonctionnement :

0⩽ t <αT : comme K1 est fermé, la maille {L2, C1, K1}
permet d’écrire

VL2 (t )+VC1 +0 = 0

d’où VL2 (t ) =−VC1 .

αT ⩽ t < T : comme K2 est fermé la maille {L2, K2, RC }
permet d’écrire

VL2 (t )+0−Vs = 0

d’où VL2 (t ) =Vs.

On a donc

VL2 (t ) =
{
−VC1 =−Ve pour 0⩽ t <αT

Vs pour αT ⩽ t < T

ä Comme 〈VL2〉 = 0, les aires sous la courbes dans les
deux phases doivent être opposée.

Vs

−Ve

t0 αT T

VL2 (t )

Q4. En régime périodique on a 〈VL2〉 = 0, qui s’écrit
d’après le chronogramme précédent

〈VL2〉 =
1

T
(−αT Ve + (1−α)T Vs) = 0

d’où
Vs

Ve
= α

1−α
.

Lorsque les supercondensateurs se déchargent, la ten-
sion Ve à leurs bornes diminue. Le convertisseur SEPIC
permet de maintenir la tension Vs constante en ajustant
la valeur du rapport cyclique α.

Q5. Quand les supercondensateurs sont chargés, on a

Ve = 54 V, et
Vs

Ve
= 2

3
≈ 0,7. On lit sur la courbe du gain

α≈ 0,4.

Quand la tension d’entrée a diminué jusqu’à Ve = 27 V,

on a
Vs

Ve
= 4

3
≈ 1,3. On lit sur la courbe du gain α≈ 0,6.

Le rapport cyclique doit donc varier sur l’intervalle

0,4⩽α⩽ 0,6 .
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Sur cette plage de valeur de α, on constate que la courbe
du gain est quasi-confondue avec la courbe théorique
ne prenant pas en compte les résistances internes des
composants. L’application de la formule du gain obte-
nue à la question Q4 donne la même estimation de la
plage de variation de α.

Si on laisse les supercondensateurs se décharger com-
plètement, Ve devient très faible et le gain Vs/Ve devient
élevé, dépassant la valeur maximale de l’ordre de 4,6
(courbe réelle) : le convertisseur ne peut alors plus per-
mettre de maintenir constante la tension de sortie.

Q6. Sur la phase 0 ⩽ t < αT , la loi des mailles dans la
maille comprenant L1 et la source de tension s’écrit

Ve = L1
dIe

dt
.

On a donc
dIe

dt
= Ve

L1
> 0.

L’intensité Ie(t ) est donc croissante sur cette phase. Le
fonctionnement étant périodique, elle prend donc sa
valeur minimale au début de la phase (t = 0) et maxi-
male à la fin de la phase (t =αT ). On a donc

Ie(t ) = Ve

L1
t + Ie,min

et

Ie,max = Ie(αT ) = Ve

L1
αT + Ie,min .

L’ondulation ∆Ie = Ie,max − Ie,min du courant d’entrée
vaut donc

∆Ie = Ve

L1
αT .

On a montré à la question Q1 que

〈Ie〉 = VsIs

Ve
.

L’ondulation relative du courant d’entrée vaut donc

∆Ie

〈Ie〉
= αT

L1Is

V 2
e

Vs
⩽ 0,1.

La condition voulue est vérifiée si

L1 ⩾
T

0,1Is

αV 2
e

Vs
.

Les paramètres pouvant varier sont Ve (au fur et à me-
sure que les supercondensateurs se déchargent) et le
rapport cyclique α. Éliminons Ve de l’expression pour
étudier l’inégalité, en utilisant la relation

Ve = 1−α

α
Vs .

Il faut donc

L1 ⩾
T

0,1Is

α(1−α)2V 2
s

αVs

soit avec f = 1/T

L1 ⩾
T Vs

0,1Is

(1−α)2

α
= 10Vs

f Is

(1−α)2

α
.

La valeur minimale de L1 est donnée par la valeur maxi-
male du membre de droite de l’inégalité. Posons

f (α) = (1−α)2

α
.

On calcule

f ′(α) =−2(1−α)

α
− (1−α)2

α2 = α2 −1

α2 ⩽ 0

car 0 ⩽ α ⩽ 1. La fonction f est donc décroissante.
Quand α varie de 0,4 à 0,6, sa valeur maximale est donc
atteinte pour α= 0,4, d’où comme f = 1/T

L1,min = 10Vs

Is f

(1−0,4)2

0,4
.

On calcule L1,min = 10×36

300×103 ×10

(1−0,4)2

0,4
, soit

L1,min = 108 µH .

Q7. Sur la phase 0 ⩽ t < αT , l’interrupteur K2 est ou-
vert. En considérant l’intensité Is constante, on a donc

C2
dVC2

dt
=−Is .

Comme VC2 =Vs, on a donc

dVs

dt
=− Is

C2
< 0.

La tension Vs décroît donc sur cette phase, partant donc
de sa valeur maximale en régime périodique :

Vs(t ) =Vs,max − Is

C2
t .

La valeur minimale est atteinte à la fin de cette phase :

Vs,min =Vs,max − Is

C2
αT .

On a donc

∆Vs =Vs,max −Vs,min = IsαT

C2
.

L’ondulation relative de la tension de sortie est

∆Vs

Vs
= IsαT

C2Vs
⩽ 0,01

d’où

C2 ⩾
IsαT

0,01Vs
= 100Isα

f Vs
.

On se place dans le cas où Vs = Ve, soit
α

1−α
= 1, d’où

α= 0,5. On a donc

C2,min = 50Is

f Vs
.

On calcule C2,min = 50×10

300×103 ×36
, soit

C2,min = 46 mF .
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 Partie III – Observation côtière (Centrale MP 2025)

1—  Mesure d’une différence de fréquence
par détection synchrone

Q1. Le signal en sortie du multiplieur s’écrit

vi(t ) = kv1(t )v2(t ) = k AB cos(2π f1t )cos(2π f2t +φ0)

= k AB

2
cos

(
2π( f1 + f2)t +φ0

)
+ k AB

2
cos

(
2π( f1 − f2)t −φ0

)
.

Le signal v1 comporte donc deux composantes harmo-
niques de fréquences f1 + f2 et

∣∣ f2 − f1
∣∣.

Comme f1 + f2 À ∣∣ f2 − f1
∣∣, un filtre passe-bas permet

d’obtenir un signal de fréquence
∣∣ f2 − f1

∣∣.
Q2. Filtre passe-bas d’ordre 1 :

�� ��R �� ��� ����
�C ����� ��������� �

���vi ��� vd

Filtre passe-bas d’ordre 2 :

�� ��R �� ��L �� ��� ����
�C ����� ��������������� �

���vi ��� vd

Q3. Pour le filtre d’ordre 1, la fonction de transfert est

H 1(jω) = 1

1+ jRCω
.

Pour le filtre d’ordre 2, la fonction de transfert est

H 2(jω) = 1

1+ jRCω−LCω2 .

La fréquence haute à couper est

f1 + f2 ≈ 80 kHz.

En l’absence d’information, prenons comme fréquence
basse ∣∣ f2 − f1

∣∣≈ 10 Hz.

Il faut choisir une fréquence de coupure telle que∣∣ f2 − f1
∣∣< fc ¿ f2 + f1 .

Prenons fc = 100 Hz.

Filtre d’ordre 1 : H 1(jω) = 1

1+ j ω
ωc

.

On a

fc = ω0

2π
= 1

2πRC
.

Il faut prendre RC = 16 ms. On peur choisir
C = 100 nF et R = 16 kΩ .

Filtre d’ordre 2 : H 2(jω) = 1

1+ j ω
Qω0

− ω2

ω2
0

.

On a

fc = ω0

2π
= 1

2π
p

LC
et Q = 1

R

√
L

C
.

Il faut prendre LC = 2,5 µs. On peut choisir C = 10 µF

et L = 250 mH .

Le meilleur choix du facteur de qualité pour réaliser un
filtrage passe-bas est Q = 1/

p
2 (on évite la résonance

en f0 obtenue avec un facteur de qualité plus élevé, et le
gain reste meilleur dans la bande passante qu’avec une
valeur plus basse). On choisit donc

R =
√

2L

C
,

soit avec les valeurs précédentes R = 224 Ω .

Q4. En sortie du déphaseur, on a

v1Q = A cos
(
2π f1t + π

2

)
.

En sortie du second multiplieur :

vi,Q = k AB cos
(
2π f1t + π

2

)
cos

(
2π f2t +φ

)
= k AB

2
cos

(
2π( f1 + f2)t +φ+ π

2

)
+ k AB

2
cos

(
2π( f2 − f1)t +φ− π

2

)
À la sortie du second filtre passe-bas, on a

vd,Q = k AB

2
cos

(
2π( f2 − f1)t +φ− π

2

)
soit

vd,Q = k AB

2
sin

(
2π( f2 − f1)t +φ

)
.

On rappelle que l’on a d’ailleurs

vd(t ) = k AB

2
cos

(
2π( f2 − f1)t +φ

)
Il suffit alors d’envoyer le signal vd(t ) en voie I d’un os-
cilloscope et le signal vd,Q (t ) en voie II.

On observe en mode XY : le spot décrit la courbe para-
métrée {

X (t ) = k AB
2 cos

(
2π( f2 − f1)t +φ

)
Y (t ) = k AB

2 sin
(
2π( f2 − f1)t +φ

)
C’est un cercle. Le signe de f2 − f1 donne le sens de par-
cours de ce cercle :

— si le spot décrit le cercle dans le sens trigonomé-
trique, on a f2 − f1 > 0;

— si le spot décrit le cercle dans le sens horaire, on a
f2 − f1 < 0.
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2—  Mesure de distance par modulation de
fréquence

Q5. Sur l’intervalle [0,T ], la fréquence instantanée est
donnée par

f (t ) = f0 + B

Tm
t .

Le signal étant Tm-périodique, le graphe de f (t ) est une
fonction en dents de scie :

tTm

f0

f0 +B
f (t )

0

Q6. Le signal met la durée τ à faire un aller-retour
émetteur-récepteur-émetteur, c’est-à-dire à parcourir
la distance 2d , à la célérité c, d’où

τ= 2d

c
.

On calcule τ= 2×10×103

3×108 soit τ= 6,7×10−5 s .

Comme Tm est de l’ordre de 0,1 s, on a bien τ¿ Tm .

Tracé en prenant τ= Tm/10 par souci de lisibilité :

tTm

f0

f0 +B
f (t ), fr(t )

τ0

Q7. D’après l’étude de la détection synchrone, la fré-
quence du signal démodulé est fd = ∣∣ fr(t )− f (t )

∣∣, soit
comme f (t ) > fr(t ) d’après le graphe précédent

fd = f (t )− fr(t ) = f (t )− f (t −τ)

=
(

f0 + B t

Tm

)
−

(
f0 + B(t −τ)

Tm

)
soit

fd = Bτ

Tm
.

On en déduit

d = cTm
fd

2B
.

La mesure de fd permet de remonter à la distance d , les
autres grandeurs étant connues.

3—  Analyse spectrale par TFD

Q8. L’échantillonnage avec une fréquence d’échan-
tillonnage fe = 1/Te d’un signal comportant une com-
posante harmonique à) la fréquence f fait apparaître
deux composantes aux fréquences f et fe − f .

La partie exploitable du spectre est [0, fe/2]. Si f > fe/2,
il apparaît dans [0, fe/2] la fréquence fr − f « repliée »,
absente du spectre du signal initial.

Exemple en échantillonnant un signal sinusoïdal de fré-
quence f0 :

0

û

f
fe/2f0 fe − f0 fe

spectre correct

0

û

f
f0fe − f0 fe

repliement

f0 < fe/2 f0 > fe/2

Pour s’en prémunir, deux solutions :

— augmenter la fréquence d’échantillonnage telle que
fe > 2 fmax ;

— appliquer un filtre passe-bas avant échantillonnage
pour supprimer les fréquences supérieures à fe/2.

Q9. Sur les spectres, les pics sont séparés de δf .

Sur le spectre de gauche, on lit δf = 50

10
soit δf = 5 Hz :

c’est suffisant pour séparer les fréquences f1 et f2 dis-
tantes de 10 Hz.

Sur le spectre de gauche, on lit δf = 100

5
soit

δf = 20 Hz : c’est insuffisant pour séparer les fré-

quences f1 et f2 distantes de 10 Hz.

L’intervalle de fréquence [0,Fe] étant divisé en Ne inter-
valles, on a δf = Fe/Ne, soit

δf = 1

N Te
.

Pour le spectre de gauche, on calcule δ! f = 5 Hz .

Pour le spectre de droite, on calcule δf = 20 Hz .

1  Limite et résolution en vitesse

Q10. On fait une acquisition sur chaque rampe; la pé-
riode d’échantillonnage est donc Tm, et la fréquence
d’échantillonnage fe = 1/Tm.

D’après le critère de Shannon, on peut accéder à

( fr − f )max = 1

2Tm
= 1,91 Hz .

Avec fr − f =± fB + fD = 1

2Tm
, la valeur maximale de fD

atteignable est

fD,max = 1

2Tm
+ fB .
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On calcule fD,max = 2,47 Hz .

Avec la relation donnée, on en déduit

vx,max =
c fD,max

2 f

soit vx,max = 12,4 m · s−1 .

Q11. La résolution spectrale est reliée à la durée totale
d’acquisition Ta = N Tm selon

δ f = 1

N Tm
.

On calcule δ f = 9×10−4 Hz .

En différenciant la relation

vx = c fD

2 f

par rapport à vx (déterminé) et fD (mesuré) on obtient

dvx = c

2 f
d fD .

La résolution est donc

∆vx = c

2 f
δ f .

On calcule ∆vx = 3×108

2×29,85×106

1

4096×0,262
soit

∆vx = 5×10−3 m · s−1 .

2  Limite et résolution en distance

Q12. La période d’échantillonnage est Te = Tm

M
et la

fréquence d’échantillonnage est donc fe = M

Tm
. D’après

le critère de Shannon, la fréquence maximale accessible
est donc

fd,max =
M

2Tm
.

Avec la relation d = cTm fd

2B
établie à la question Q7, on

en déduit

dmax = cTm

2B
fd,max =

cM

4B
,

soit

M = 4Bdmax

c
= 4×125×103 ×50×103

3×108 ≈ 84.

On peut prendre M = 84 .

Q13. La résolution spectrale pour une acquisition de
durée Tm est

δ fd = 1

Tm
.

On en déduit

∆d = cTm

2B
δ fd = cTm

2B

1

Tm

soit

∆d = c

4B
.

On calcule ∆d = 1,2 km.

On retrouve la valeur maximale donnée par le construc-
teur.

 Partie IV – Origine du Blue Fire (Centrale TSI 2025)

1—  Gaz naturel

Q1. Le carbone est tétravalent (configuration électro-
nique 1s22s22p2 avec 4 électrons de valence). L’hydro-
gène est monovalent. On en déduit le schéma de Lewis
de CH4 :

C H

H

H

H

L’azote est trivalent (configuration électronique
1s22s22p3 avec 5 électrons de valence dont un doublet
non liant). On en déduit le schéma de Lewis de N2 :

N N

L’oxygène est divalent (configuration électronique
1s22s22p4 avec 6 électrons de valence dont deux dou-
blet non liant). On en déduit le schéma de Lewis de
CO2 :

C OO

Q2. La combustion du méthane est modélisée par le bi-
lan

CH4(g)+2O2(g) = 2H2O(g)+CO2(g) .

Q3. On calcule

∆rH o = 2∆fH
o(H2O(g))+∆fH

o(CO2(g))−∆fH
o(CH4(g))

−2∆fH
o(O2(g))

= 2× (−241,8)−393,5+74,6

soit ∆rH o =−802,5 kJ ·mol−1 .

On a ∆rH o < 0 : la réaction est exothermique.
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DS no 2 Solution

Q4. Un volume V de méthane pur correspond à une
quantité

n = PV

RT

d’après l’équation d’état du gaz parfait.

La variation d’enthalpie du milieu réaction due à la
combustion de n moles de CH4 est donc donnée par

∆H = n∆rH o = PV

RT
∆rH o .

L’énergie thermique libérée (donc cédée à l’extérieur)
est −∆H , soit

PCI =−PV

RT
∆rH o .

On calcule

PCI = 1,013×105 ×1

8,314×273
×802,5×103

soit PCI = 35,8 MJ .

Avec la conversion 1 kWh = 103 × 3000 = 3,6×106 J on

obtient PCI = 9,95 kWh ·m−3 .

Cette valeur est en accord avec l’encadrement proposé
de la valeur commerciale.

Q5. La France consomme un volume V = 33,9×109 m3

de méthane, soit une quantité

n = PV

RT
= 1,013×105 ×33,9×109

8,314×273
= 1,51×1012 mol,

formant la même quantité de CO2. La masse de CO2 for-
mée vaut donc

mCO2
= nM(CO2) = 1,013×105 ×33,9×109

8,314×273
×44×10−3

= 66,6×109 kg

soit 66,6 millions de tonnes. Rapportée à l’emprunte
carbone nationale, la consommation de gaz naturel re-
présente donc 10 % .

Q6. Considérons la combustion de n moles de CH4. Les
réactifs étant pris en proportions stœchiométriques, on
a 2n moles de O2, et donc 8n moles de N2.

En fin de réaction totale, on a formé 2n moles de H2O et
n moles de CO2.

Le réacteur étant adiabatique, la variation d’enthalpie
du mélange réaction entre le début et la fin de la réac-
tion est

∆H = 0.

Décomposons la transformation par un chemin fictif :

1re étape : réaction isotherme à 293 K. La variation d’en-
thalpie du mélange est

∆H1 = n∆rH o .

2e étape : variation de température du mélange de fin
de réaction (produits et diazote initialement pré-
sent) de Ti = 293 K à Tf. La variation d’enthalpie
du mélange est

∆H2 =C (Tf −Ti)

avec

C = 2nCp,m(H2O)+nCp,m(CO2)+8nCp,m(N2) .

L’enthalpie étant une fonction d’état, on a

∆H =∆H1 +∆H2

soit

n∆rH o + [
2nCp,m(H2O)+nCp,m(CO2)

+8nCp,m(N2

]
(Tf −Ti) = 0

d’où

Tf = Ti − ∆rH o

2Cp,m(H2O)+Cp,m(CO2)+8Cp,m(N2)
.

On calcule

Tf = 293+ 802,5×103

2×37,6+45,4+8×30,1

soit Tf = 2514 K = 2241 °C .

2—  Le Power to Gaz

Q7. On calcule ∆rH o = −74,6+ 2× (−241,8)− (−393,5)
soit

∆rH o =−164,7 kJ ·mol−1 ,

ainsi que ∆rSo = 186,3+2×188,8−213,8−4×130,7 soit

∆rSo =−172,7 J ·K−1 ·mol−1 .

Q8. On a

∆rG
o =−RT lnK o =∆rH o −T∆rSo

d’où

K o = exp

(
−∆rH o

RT
+ ∆rSo

R

)
.

On calcule

K o = exp

(
164,7×103

8,314×673
− 172,7

8,314

)
soit K o = 5786 .

On a K o À 1 (K o > 103) : on peut considérer la réaction
comme quantitative.

Q9. Comme ∆rH o < 0, on a d’après la loi de van’t Hoff

d lnK o

dT
< 0.

La constante d’équilibre est fonction décroissante de la
température. Une augmentation de température défa-
vorise donc le rendement de cette réaction.

D’un point de vue thermodynamique, il faut opérer à
basse température pour améliorer le rendement, mais
la vitesse de la réaction sera plus lente. Il faut donc faire
un compromis entre le rendement (température basse)
et la cinétique de la réaction (température élevée).
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