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Mathématiques & physique — solution

1 — Calcul de gradient et de divergence

1. On calcule

wir=[2) 7 (3) ),

0x oy 0z
l.a)
grad f =2x @, +3y* @, +42°¢,.
1.b)

—
grad f =2xy° 2 €, +3x°y*2" €, +4x* )’ 2> ¢,

1.c)
e*siny_,

—
grad f =e*sinylnze, +e*cosylnz e, + —

f(x,y,2) =e*sinylnz.

2. On calcule en cartérsiennes

- 0A, 0Ay 0A,
divA = 2+ ——X,Z2+——X,).
iv o V2 ayxz 3z Y
2.a)
divA=1+1=2.
2.b)
divA=0+0=0.
- 1d(rA
2.c) On calcule divA = - (rA,) en coordonnées cy-
r o dr

lindriques pour un champ radial dont la composante
ne dépend que de r.

> A 2 1 r
divA = —°(1—3r—) :Ao(——3—).
r a? r a?

-~ 1 d(r?E
2.d) OncalculedivE:_2 (r"Ey)

r r
lindriques pour un champ radial dont la composante
ne dépend que de r.

en coordonnées cy-

divfzo.
0°G %G %G
3. OncalculeAGz(—z) +(—2J +(—2) .
0x .2 oy vz 0z X,y
3.a)
AG=2.
3.b)

AG = —sinxsin ysinz—sinxsin ysinz—sinxsin ysinz

= -3sinxsinysinz.
3.0)

AG =5%e > sin(4y) cos(3z) — 4% e > sin(4y) cos(3z)
—32e7% sin(4y) cos(3z) =0.

2 — Legradient

1. En coordonnées cartésiennes, le déplacement élé-
mentaire s’écrit

df =dx@,+dy?,+dz¢,.
On a donc
gradG~d7:Axdx+Aydy+Azdz. (1)

La différentielle de G(x, y, z) s’écrit

dG=g—§dx+g—idy+g—jdz. 2)
En identifiant (1) et (2) on obtient
Ax=a—G; y=a—G et Az=a—G,
0x oy 0z
d’ou 'expression du gradient
0G_, 0G_,

radG—aG_e'+ e, +—e
Batb = 5x 4T 5y G T 5z o%

2. En coordonnées cylindriques, le déplacement élé-
mentaire s’écrit

df =dr e, +rdo ey +dze,.
On a donc
gradG-dZ = A, dr + Agrdtheta+ A,dz.  (3)

La différentielle de G(r,0, z) s’écrit

dG=g—fdr+g—gd0+g—jdz. (4)
En identifiant (3) et (4) on obtient
Ar:a—G; rAgza—G et Az:a—G,
or 00 0z
d’ou1 'expression du gradient
gradG = ?3—(:?3} + %2—5?9 + g—cz;_e’z.

3. En coordonnées sphériques, le déplacement élé-
mentaire s’écrit

dl =dr@, +rdo ey + rsind dge,.
On adonc

@G-d?z Apdr+ Agrdtheta+ Ayrsinfde. (5)
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La différentielle de G(r,8, ¢) s’écrit

3G . 3G . 4G
d6=Ldar+ L a0+ L dg. 6
G=5r It 5990+ 5,92 ©)

En identifiant (5) et (6) on obtient

0G oG . oG
=—:; TrAp= et rsinf=—,
or

AI‘ rg—£

d’ou I'expression du gradient

— 0G_, 100G, 1
gradG = 3 e,+;% eg+

OG_e,
rsinfdp ¥’

3 — Gradient et force conservative

- —

1. La circulation élémentaire F -d¢ représente le tra-
—
vail élémentaire de la force F.

Cette grandeur est une forme différentielle, mais n’est
a priori pas une différentielle : on la note donc 6 W.

» Du point de vue du physique, cette grandeur est la
petite quantité d’énergie cédée par la force au cours
du déplacement, d’ot1 la notation « 6 ».

2.a) Ona
SW=F-d’.

Par définition du gradient, on a
dé, =gradé,-d’ .
Par identification, on en déduit
F = —gradé,.

2.b) Le travail WA_,B(F) entre deux points A et B
s’écrit alors

WA_.B(F):/ 6W:/ F'dZ:—/ dé,
A A A

Wa—p(F) = £p(A) - Ep(B),

soit

indépendant du chemin suivi.

2.c) Lelong d’'un contour, les points de départ et d’ar-
rivée sont identiques, d’oul

F-dl = €,(A) - Ep(A) =0.
MeT

W =

Une force conservative ne travaille pas le long d'un
contour.
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4 — Potentiel de Yukawa

Le potentiel de Yukawa s’écrit en coordonnées sphé-
riques sous la forme

—mr

Vi(r)= —gze

ol g et m sont deux constantes positives.

1. Ona
limV(r)=-oco0 et lim V(r)=0.
r—0 r—o00

De plus V(R) <0, Vr.

V(r)
A
2. Le champ de force associé est donné par
F=-gradV=——79¢,=- 2e_mr(— ——)_’
& ar -8 ror2) "
soit )
- m 1)\
F=18 o-mr 1+—) er
r mr
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5 — Ladivergence

Considérons le cube de cotés dx, dy et dz, de volume
dr =dxdydz. R

Le flux sortant de A atravers les faces perpendiculaires
a @, situées en x et en x + dx fait intervenir la compo-
sante A, de A normale a ces faces et §'écrit

0D, =—-Ax(x,y,2,)dydz+ Ax(x +dx, y,2,£)dydz
_0A
~ 0x

De méme en considérant les faces perpendiculaires a
—> . 2 .
ey situéesen yety+dy:

dxdydz.

0@, =-Ay(x,y,z,1)dxdz+ Ay(x,y +dy, z,1)dxdz

—aAyddd
=%y ydxdz.

En considérant les faces perpendiculaires a €, situées
enzetz+dz:

6D, =-A;(x,y,z, 1)dxdy+ A;(x,y,z+dz, t)dxdy

0A
azZ dzdxdy.
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Finalement, le flux sortant total s’écrit

0A,
0x

0A A
ydr+a £

6D =
oy 0z

dr + dr.

En identifiant avec

s5O(1) = div A(M, 1) dr

on obtient I'expression de la divergence en carté-
siennes :
0Ax N 0Ay

0A,
+
ox 0y

divA = .
v 0z

6 — Une colline

1. Lavariation de la hauteur pour un déplacement élé-
mentaire de dx selon Ox et dy selon Oy est donné par
la différentielle

dh:@d +%d
0x oy

soit
dh=102y—-6x—-18)dx+102x—-8y+28)dy.

Le sommet de la colline correspond a 'extremum de
h(x,y), soit dh = 0. On détermine donc sa position en
résolvant le systeme

{—6x+2y— 18=0

2x—-8y+28=0
On obtient
x=—2km et y=3km.

2. Laltitude de la colline vaut alors H = h(-2,3), soit
H=720m.

3. Ona

oh_,

oh_,
gradh—a— €x+—

e
oy J
=102y —6x—18) €, +102x -8y +28) ¢y
Au point xy = 1 km, y9 =1 km, on calcule

grad hi(xo, yo) = —220 €y +220¢€),.
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La pente est donnée par

lgrad hll = V2202 + 2202 = V/2 x 2202 = 2202

=311 m-km™!
On a une pente de 311 m/km™! au point (xo, yo).

soit ||grad k||

La pente est la plus raide dans la direction du gradient,
soit U = — €y + €y : C'est la direction nord-ouest.

7 — Retour vers le futur

Ona
d?x  d*x
dr?2  de2’

dx
dr

1. L'équation

dx ot
S dr

2y )
— +twyx(r) =0

dr?
devient alors
d’®x
42 +w0x(t) =
Elle est invariante par renversement du temps.
Léquation
d?x L@ dx +oa(n) =
— w3x
a Qdr °
devient
d’x  wo dx

m—6@+w%x(t’) =0

Elle n’est pas invariante par renversement du temps.

2. La premiere équation est celle de l'oscillateur har-
monique. Elle décrit I'évolution d'un systéme conser-
vatif (par exemple un point matériel soumis a la force
conservation F = —kx@ +). En l'absence de phéno-
mene dissipatif, I'évolution d’un tel systeme est réver-
sible.

La seconde équation est celle d'un oscillateur linéaire
amorti. L'évolution est donc irréversible (présence de
phénomene dissipatif). Le renversement du temps dé-
crit alors un oscillateur linéaire amplifié.
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