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TD phénomènes de transport Mathématiques & physique— solution

1—  Calcul de gradient et de divergence

1. On calcule

#      »

grad f =
(
∂ f

∂x

)
y,z

#»e x +
(
∂ f

∂y

)
x,z

#»e y +
(
∂ f

∂z

)
x,y

#»e z .

1.a)
#      »

grad f = 2x #»e x +3y2 #»e y +4z3 #»e z .

1.b)
#      »

grad f = 2x y3z4 #»e x +3x2 y2z4 #»e y +4x2 y3z3 #»e z .

1.c)

#      »

grad f = ex sin y ln z #»e x +ex cos y ln z #»e y + ex sin y

z
#»e z .

f (x, y, z) = ex sin y ln z.

2. On calcule en cartérsiennes

div
#»
A = ∂Ax

∂x
y, z + ∂Ay

∂y
x, z + ∂Az

∂z
x, y .

2.a)
div

#»
A = 1+1 = 2.

2.b)
div

#»
A = 0+0 = 0.

2.c) On calcule div
#»
A = 1

r

d(r Ar )

dr
en coordonnées cy-

lindriques pour un champ radial dont la composante
ne dépend que de r .

div
#»
A = A0

r

(
1−3

r 2

a2

)
= A0

(
1

r
−3

r

a2

)
.

2.d) On calcule div
#»
E = 1

r 2

d(r 2Er )

dr
en coordonnées cy-

lindriques pour un champ radial dont la composante
ne dépend que de r .

div
#»
E = 0.

3. On calcule ∆G =
(
∂2G

∂x2

)
y,z

+
(
∂2G

∂y2

)
x,z

+
(
∂2G

∂z2

)
x,y

.

3.a)
∆G = 2.

3.b)

∆G =−sin x sin y sin z−sin x sin y sin z−sin x sin y sin z

=−3sin x sin y sin z .

3.c)

∆G = 52 e−5x sin(4y)cos(3z)−42 e−5x sin(4y)cos(3z)

−32 e−5x sin(4y)cos(3z) = 0.

2—  Le gradient

1. En coordonnées cartésiennes, le déplacement élé-
mentaire s’écrit

d
#»

ℓ = dx #»e x +dy #»e y +dz #»e z .

On a donc

#      »

gradG ·d
#»

ℓ = Ax dx + Ay dy + Az dz . (1)

La différentielle de G(x, y, z) s’écrit

dG = ∂G

∂x
dx + ∂G

∂y
dy + ∂G

∂z
dz . (2)

En identifiant (1) et (2) on obtient

Ax = ∂G

∂x
; Ay = ∂G

∂y
et Az = ∂G

∂z
,

d’où l’expression du gradient

#      »

gradG = ∂G

∂x
#»e x + ∂G

∂y
#»e y + ∂G

∂z
#»e z .

2. En coordonnées cylindriques, le déplacement élé-
mentaire s’écrit

d
#»

ℓ = dr #»e r + r dθ #»e θ+dz #»e z .

On a donc

#      »

gradG ·d
#»

ℓ = Ar dr + Aθr dthet a + Az dz . (3)

La différentielle de G(r,θ, z) s’écrit

dG = ∂G

∂r
dr + ∂G

∂θ
dθ+ ∂G

∂z
dz . (4)

En identifiant (3) et (4) on obtient

Ar = ∂G

∂r
; r Aθ =

∂G

∂θ
et Az = ∂G

∂z
,

d’où l’expression du gradient

#      »

gradG = ∂G

∂r
#»e r + 1

r

∂G

∂θ
#»e θ+

∂G

∂z
#»e z .

3. En coordonnées sphériques, le déplacement élé-
mentaire s’écrit

d
#»

ℓ = dr #»e r + r dθ #»e θ+ r sinθdφ#»eφ .

On a donc

#      »

gradG ·d
#»

ℓ = Ar dr + Aθr dthet a + Aφr sinθdφ . (5)
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La différentielle de G(r,θ,φ) s’écrit

dG = ∂G

∂r
dr + ∂G

∂θ
dθ+ ∂G

∂φ
dφ . (6)

En identifiant (5) et (6) on obtient

Ar = ∂G

∂r
; r Aθ =

∂G

∂θ
et r sinθ = ∂G

∂φ
,

d’où l’expression du gradient

#      »

gradG = ∂G

∂r
#»e r + 1

r

∂G

∂θ
#»e θ+

1

r sinθ

∂G

∂φ
#»eφ .

3—  Gradient et force conservative

1. La circulation élémentaire
#»
F ·d

#»

ℓ représente le tra-
vail élémentaire de la force

#»
F .

Cette grandeur est une forme différentielle, mais n’est
a priori pas une différentielle : on la note donc δW .

ä Du point de vue du physique, cette grandeur est la
petite quantité d’énergie cédée par la force au cours
du déplacement, d’où la notation « δ ».

2.a) On a

δW = #»
F ·d

#»

ℓ .

Par définition du gradient, on a

dEp = #      »

gradEp ·d
#»

ℓ .

Par identification, on en déduit

#»
F =−#      »

gradEp .

2.b) Le travail WA→B (
#»
F ) entre deux points A et B

s’écrit alors

WA→B (
#»
F ) =

ˆ B

A
δW =

ˆ B

A

#»
F ·d

#»

ℓ =−
ˆ B

A
dEp

soit

WA→B (
#»
F ) =Ep(A)−Ep(B) ,

indépendant du chemin suivi.

2.c) Le long d’un contour, les points de départ et d’ar-
rivée sont identiques, d’où

W =
˛

M∈Γ
#»
F ·d

#»

ℓ =Ep(A)−Ep(A) = 0.

Une force conservative ne travaille pas le long d’un
contour.

4—  Potentiel de Yukawa

Le potentiel de Yukawa s’écrit en coordonnées sphé-
riques sous la forme

V (r ) =−g 2 e−mr

r

où g et m sont deux constantes positives.

1. On a

lim
r→0

V (r ) =−∞ et lim
r→∞V (r ) = 0.

De plus V (R) < 0, ∀r .

r

V (r )

2. Le champ de force associé est donné par

#»
F =−#      »

gradV =−dV

dr
#»e r =−g 2 e−mr

(
−m

r
− 1

r 2

)
#»e r

soit
#»
F = mg 2

r
e−mr

(
1+ 1

mr

)
#»e r .

5—  La divergence

Considérons le cube de côtés dx, dy et dz, de volume
dτ= dx dy dz.
Le flux sortant de

#»
A à travers les faces perpendiculaires

à #»e x situées en x et en x +dx fait intervenir la compo-
sante Ax de

#»
A normale à ces faces et s’écrit

δΦx =−Ax (x, y, z, t )dy dz + Ax (x +dx, y, z, t )dy dz

= ∂Ax

∂x
dx dy dz .

De même en considérant les faces perpendiculaires à
#»e y situées en y et y +dy :

δΦy =−Ay (x, y, z, t )dx dz + Ay (x, y +dy, z, t )dx dz

= ∂Ay

∂y
dy dx dz .

En considérant les faces perpendiculaires à #»e z situées
en z et z +dz :

δΦz =−Az (x, y, z, t )dx dy + Az (x, y, z +dz, t )dx dy

= ∂Az

∂z
dz dx dy .
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Finalement, le flux sortant total s’écrit

δΦ= ∂Ax

∂x
dτ+ ∂Ay

∂y
dτ+ ∂Az

∂z
dτ .

En identifiant avec

δΦ(t ) = div
#»
A (M , t )dτ

on obtient l’expression de la divergence en carté-
siennes :

div
#»
A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
.

6—  Une colline

1. La variation de la hauteur pour un déplacement élé-
mentaire de dx selon Ox et dy selon O y est donné par
la différentielle

dh = ∂h

∂x
dx + ∂h

∂y
dy

soit

dh = 10(2y −6x −18)dx +10(2x −8y +28)dy .

Le sommet de la colline correspond à l’extremum de
h(x, y), soit dh = 0. On détermine donc sa position en
résolvant le système{−6x +2y −18 = 0

2x −8y +28 = 0

On obtient

x =−2 km et y = 3 km.

2. L’altitude de la colline vaut alors H = h(−2,3), soit
H = 720 m.

3. On a

#      »

gradh = ∂h

∂x
#»e x + ∂h

∂y
#»e y

= 10(2y −6x −18) #»e x +10(2x −8y +28) #»e y

Au point x0 = 1 km, y0 = 1 km, on calcule

#      »

gradh(x0, y0) =−220 #»e x +220 #»e y .

La pente est donnée par

‖#      »

gradh‖ =
√

2202 +2202 =
√

2×2202 = 220
p

2

soit ‖#      »

gradh‖ = 311 m ·km−1.

On a une pente de 311 m/km−1 au point (x0, y0).

La pente est la plus raide dans la direction du gradient,
soit #»u =−#»e x + #»e y : c’est la direction nord-ouest.

7—  Retour vers le futur

On a
dx

dt ′
=−dx

dt
et

d2x

dt ′2
= d2x

dt 2 .

1. L’équation

d2x

dt 2 +ω2
0x(t ) = 0

devient alors
d2x

dt ′2
+ω2

0x(t ′) = 0.

Elle est invariante par renversement du temps.

L’équation

d2x

dt 2 + ω0

Q

dx

dt
+ω2

0x(t ) = 0

devient
d2x

dt ′2
− ω0

Q

dx

dt ′
+ω2

0x(t ′) = 0.

Elle n’est pas invariante par renversement du temps.

2. La première équation est celle de l’oscillateur har-
monique. Elle décrit l’évolution d’un système conser-
vatif (par exemple un point matériel soumis à la force
conservation

#»
F = −kx #»e x ). En l’absence de phéno-

mène dissipatif, l’évolution d’un tel système est réver-
sible.

La seconde équation est celle d’un oscillateur linéaire
amorti. L’évolution est donc irréversible (présence de
phénomène dissipatif). Le renversement du temps dé-
crit alors un oscillateur linéaire amplifié.
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