TD de thermodynamique

Formulation infinitésimale des principes

1 — Machine thermique avec pseudo- 2. Quelle est l'efficacité de cette pompe? sources

Une machine thermique ditherme fonctionne en moteur, avec deux sources thermiques de capacités calorifiques identiques $C = 4.0 \times 10^5 \,\text{J} \cdot \text{K}^{-1}$ dont les températures initiales sont $\theta_{1.0} = 10$ °C et $\theta_{2.0} = 100$ °C.

1. Représenter schématiquement la machine en indiquant le sens des transferts énergétiques. Quel est le système étudié?

Justifier qualitativement que la machine finira par s'arrêter; que peut-on dire de l'état final?

- 2. La machine est supposée fonctionner de façon réversible. À quelle relation conduit alors le second principe? En écrivant cette relation sous forme différentielle, puis en l'intégrant, déterminer la température des sources lorsque le moteur cesse de fonctionner.
- **3.** Calculer le travail total W fourni par le moteur au cours de son fonctionnement.
- 4. Calculer le rendement, et comparer au rendement dans le cas où la capacité thermique des sources est infinie.

2 — Congélation d'une masse d'eau

Une masse m = 1 kg d'eau initialement à la température $\theta_1 = 20$ °C passe sous forme de glace à $\theta_2 = -10$ °C lors d'un séjour dans un congélateur fonctionnant dans une pièce à θ_e = 25 °C. On suppose que le fluide du congélateur décrit des cycles réversibles. Schématiser ce système et déterminer la durée τ du séjour de l'eau dans le congélateur.

Données:

 $c_1 = 4.1 \; \mathrm{kJ} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$ (eau liquide); $c_2 = 2.3 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$ (eau glace); $P_{\text{moteur}} = 50 \text{ W};$ $L_{\rm fus} = 334 \text{ kJ} \cdot \text{kg}^{-1}.$

3 — Pompe à chaleur

On considère une pompe à chaleur fonctionnant par cycle réversibles très courts et servant à chauffer 1 m³ d'eau dont la température initiale est $T_1 = 280 \,\mathrm{K}$. La source froide est constituée par l'atmosphère de température $T_2 = 280 \text{ K}$.

1. Quel est le travail reçu par la pompe lorsque T_{1f} = 320 K?

Calorifique massique de l'eau : $c = 4,18 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$.

4 — Moteur

Deux solides S₁ et S₂ de capacités thermiques massiques respectives C_1 et C_2 , de températures initiales T_{01} et T_{02} , sont mis en contact, et on attend l'équilibre ther-

- 1. Déterminer la température d'équilibre et la variation d'entropie du système. Quel est son signe?
- 2. On utilise ces deux sources pour faire fonctionner un moteur. Déterminer le travail fourni et la température finale, que l'on comparera avec la température d'équilibre précédente.

5 — Patinoire

Une machine thermique fonctionne entre une patinoire de dimensions 20 m×30×3 cm et une piscine de dimensions $20 \text{ m} \times 30 \text{ m} \times 3 \text{ m}$. À l'état initial, la patinoire et la piscine sont remplies d'eau liquide à température T_0 ; à l'état final, la glace de la patinoire est à la température T_1 , l'eau de la piscine à T_2 .

Calculer T_2 et le travail W fourni à la machine.

On donne:

 $T_0 = 12 \, ^{\circ}\text{C} \text{ et } T_1 = -5 \, ^{\circ}\text{C};$ $c_1 = 4.18 \text{ kJ} \cdot \text{kg}^{-1}$ (eau liquide), $c_2 = 1.9 \text{ kJ} \cdot \text{kg}^{-1}$ (glace) et pour l'eau $L_{\text{fusion}} = 334 \text{ kJ} \cdot \text{kg}^{-1}$.

6 — Patinoire (bis)

Une machine thermique, alimentée par un moteur de puissance P = 20 kW, refroidit de manière réversible une patinoire de volume $V_1 = 20 \text{ m}^3$ et accessoirement réchauffe une piscine de volume $V_2 = 500 \,\mathrm{m}^3$. Initialement, patinoire et piscine sont à 20 °C. On veut que la température finale de la patinoire soit $T_1 = -5$ °C.

- 1. Schématiser la machine et noter les sens réels des échanges.
- **2.** Calculer Q_1 et Q_2 les transferts thermiques reçus par la machine.
- **3.** Faire un bilan d'entropie et déterminer T_2 la température finale de la piscine.
- 4. Faire un bilan d'énergie et en déduire la durée de fonctionnement de la machine.
- 5. Définir le rendement et le calculer.