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TD phénomènes de transport Diffusion thermique— Partie 1

 ;;;; Conduction thermique— cas général <<<<

1—  Nombre de Fourier [*]

On définit le nombre de Fourier par

Fo = a∆t

L2

où a = λ

µc
est la diffusivité thermique, ∆t la durée

étudiée et L la longueur caractérsitique d’étude.

1. Quelle est la dimension de Fo?

2. Montrer que l’on peut écrire Fo = ∆t

∆tc
où l’on

donnera l’interprétation de la durée ∆tc.

À quelle condition sur Fo peut-on considérer un
processus comme adiabatique ?

3. On étudie la compression du mélange
{air+carburant} dans le cylindre d’un moteur à
4 temps en acier. Avec un régime moteur d’envi-
ron 2000 tr ·min−1, la durée de la compression est
d’environ 1,5×10−2 s.

Données :

λacier = 13 W ·m−1 ·K−1

µacier = 7800 kg ·m−3

cacier = 480 J ·K−1 ·kg−1

L’hypothèse d’une compression adiabatique habi-
tuellement utilisée est-elle valide?

2—  Métabolisme d’unmammifère [*]

Les mammifères sont des êtres thermorégu-
lés, dits homéothermes (improprement « à sang
chaud »), contrairement aux reptiles ou aux pois-
sons, dit poïkilothermes (improprement « à sang
froid »). On modélise un mammifère par une
sphère de rayon R dont le métabolisme dégage
la puissance thermique volumique pv, uniformé-
ment dans tout son volume. L’air extérieur a une
conductivité thermique λ, et sa température loin
de l’animal est T0 = 20 °C. On s’intéresse à la tem-
pérature de l’air (donc pour r ⩾ R) en régime sta-
tionnaire. On considère le contact parfait entre
l’animal et le milieu extérieur (continuité de la
température).

1. Exprimer le flux thermique Φ(r ) à travers une
sphère de rayon r > R. Que remarque-t-on?
En déduire l’expression de jQ (r ) en fonction de pv,
R et r .

2. En déduire l’expression de la température T (r )
pour r ⩾R.

3. Quelle est la température cutanée Tc de l’ani-
mal? Commenter la variation de Tc d’une part
quand λ varie à R fixé, d’autre part quand R varie
à λ fixée.

4. Quelle doit être la valeur du métabolisme volu-
mique pv pour avoir Tc = 30 °C dans l’air puis dans
l’eau?
Pourquoi n’existe-t-il pas de petits mammifères
marins?

Données :
λair = 5 W ·m−1 ·K−1 et λeau = 500 W ·m−1 ·K−1.
On prendra R = 25 cm.

3—  Modèle d’un fusible [*]

Un fusible est constitué d’un fil conducteur cylin-
drique de section droite d’aire S, de longueur L, de
masse volumiqueµ et de capacité thermique mas-
sique c. Il possède une conductivité thermique λ

et une conductivité électrique γ.
Il est traversé par un courant électrique d’inten-
sité I . Ce fil est enfermé dans une capsule remplie
d’une substance assurant une isolation thermique
et électrique parfaite.
Les températures en x = 0 et x = L sont imposées
et égales à la température T0 du milieu ambiant.
Données :
λ= 65 W ·m−1 ·K−1,
γ= 1,2×106 S ·m−1,
c = 460 J ·K−1 ·kg−1,
µ= 2,7×103 kg ·m−3.
On prend T0 = 290 K et L = 2,5 cm
On rappelle que la résistance électrique d’un
conducteur cylindrique de conductivité élec-
trique γ, de longueur ℓ et de section S, parcouru
par un courant I est

R = ℓ

γS
.
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On se place en régime stationnaire.

1. Établir et résoudre l’équation différentielle vé-
rifiée par la température T (x) le long du fusible.
Représenter graphiquement T (x).

2. Le matériau constituant le fil fond à TF = 390 K.
On veut fabriquer un fusible qui admet une inten-
sité maximale Imax = 16 A. Préciser l’endroit de la
rupture en cas de dépassement de Imax. Détermi-
ner littéralement puis numériquement l’aire S16 à
prévoir.

3. On fixe I = 10 A. Le fil a la section S16. Éva-
luer littéralement puis numériquement la puis-
sance thermique Pth(0) transférée par conduction
en x = 0. Préciser si elle est reçue ou fournie par le
fil. Même question pour la puissance thermique
Pth(L) en x = L. Quelle relation a-t-on entre Pth(0),
Pth(L) et la puissance électrique Pe fournie à l’en-
semble du fil ? Commenter.

4—  Température de la planète Mars [*]

La température moyenne sur le sol martien est de
−50 °C. Le rayon de la planète est R2 = 3400 km et
on suppose pour simplifier qu’elle est formée de
deux parties bien distinctes à symétrie sphérique :

— un noyau homogène d’un mélange, entre
autres, de fer et de nickel à la température uni-
forme de 2500 °C, de rayon R1 = 1500 km;

— un manteau homogène composé essentielle-
ment de silice solide jusqu’à la surface, de
conductivité thermique λ.

1. Comment varie la température à l’intérieur de
Mars? Tracer l’allure de T (r ) pour 0⩽ r ⩽R2.

2. Quelle est la puissance dissipée par le noyau de
Mars si λ = 1,2 W ·m−1 ·K−1 ? Quelle est l’origine
de cette énergie?

3. Une autre théorie plus fine consiste à dire que
Mars a été formée il y a environ 4 milliards d’an-
nées par une très grande quantité de grains de
poussière identiques qui, en s’agglomérant, ont
fini par créer la planète que l’on connaît de nos
jours. Pour modéliser T (r ), on suppose qu’il se
dégage au sein de la planète une puissance volu-
mique Pv constante. On élimine donc la distinc-
tion entre le noyau et le manteau.

Justifier pourquoi on peut admettre que T (r ) ne
dépend pas du temps.

Déterminer la nouvelle expression de T (r ).

5—  Banc de Kofler [**]

Un banc de Kofler permet de mesurer avec préci-
sion la température de fusion de cristaux solides
en poudre. C’est une barre parallélépipédique ho-
rizontale de longueur L et de section a × b (avec
b ≪ a), constituée d’un matériau de conducti-
vité thermique λ et de chaleur massique à pres-
sion constante c. À l’une des extrémités du banc
est insérée une résistance électrique R. Quand on
branche le banc de Kofler, la résistance R est sou-
mise à une tension U . On admet que la totalité
de la puissance dégagée par effet Joule est trans-
mise au banc. Les échanges thermiques entre l’air
et le banc sont modélisés par une puissance P =
h(T − Ta)S, où T est la température du banc, Ta

la température de l’air et S la surface d’échange.
On considère la face inférieure isolée : le transfert
thermique avec l’extérieur s’effectue à travers la
face supérieure du banc. On applique une tension
de valeur efficace U aux bornes de la résistance R.

1. Trouver l’équation différentielle vérifiée par la
température du banc en régime stationnaire, en
supposant le problème unidimensionnel. Donner
la forme du profil de température.

2. À quelle condition sur L peut-on supposer le
banc comme semi-infini. Montrer que dans le
cadre de cette approximation le profil de tempé-
rature dans le banc est de la forme

T (x) = A+B e−x/δ .

Exprimer A, B et δ en fonction des données du
texte.

3. Si la tension U est la tension électrique déli-
vrée par le réseau domestique, à quelle condition
la température du banc peut-elle être considérée
comme stationnaire?

4. On saupoudre les cristaux à étudier dans le
sens de la longueur L. Expliquer ce que l’on ob-
serve et comment on en déduit la température de
fusion.

Justifier la nécessité d’un étalonnage et montrera
que le choix de la résistance R caractérise la plage
de température de fusion détectable.
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5. La précision des mesures de distance le long du
banc est de 0,5 mm. Discuter de la précision obte-
nue sur la mesure d’une température de fusion :
dépend-elle de Tfusion ? de R ?

6—  Conduction thermique [**]

Une tige cylindrique de longueur L et de rayon
R est constituée d’un métal de conductivité ther-
mique λ. Elle est encastrée à une de ses extré-
mités dans un récipient contenant de l’eau por-
tée à ébullition, imposant en x = 0 la température
constante T0 = 100 °C.

T0

Ta

L

0 x

Le reste de la tige est en contact avec l’atmosphère
de température constante Ta = 20 °C. On prend
en compte les transferts thermiques conducto-
convectifs entre la tige et l’air ambiant par la loi
de Newton : un élément de surface latérale dS à la
température T fournit à l’extérieur une puissance
thermique

dP = h(T −Ta)dS .

On se place en régime stationnaire.

1. Établir l’équation différentielle vérifiée par
T (x). On introduira une longueur caractéristique
δ dont on donnera l’expression. Donner la forme
générale de la solution T (x).

2. Écrire les conditions aux limites qui per-
mettent de déterminer les constantes d’intégra-
tion (le calcul n’est pas demandé).

3. Déterminer complètement l’expression de
T (x) dans le cas où la tige est infiniment longue
(préciser cette hypothèse).

4. On dispose de deux barres (1) et (2) de dimen-
sions identiques, constituées respectivement de
cuivre et d’étain, recouvertes d’une fine couche de
paraffine dont la température de fusion est Tf =
60 °C. Sur chacune des barres, on observe la fu-
sion de la paraffine aux abscisses x1 = 15,6 cm et
x2 = 6,4 cm. On admet que le coefficient h est in-
changé.

Sur quelle partie de la tige la paraffine est-elle fon-
due?

La conductivité thermique du cuivre étant λ1 =
390 W ·m−1 ·K−1, déterminer la valeur λ2 de celle
de l’étain.

5. Comment sont modifiés les résultats précé-
dents si l’on place un ventilateur dirigé vers la
tige?

7—  Barre parcourue par un courant [**]

Soit une barre de conductivité thermique λ, de
longueur L et section S. Sa surface latérale est
calorifugée. Ses extrémités sont en contact avec
deux sources à des températures T1 en x = 0 et T2

en x = L.

1. Déterminer T (x) et la puissance P2 fournie à la
source de température T2 en régime permanent.

2. La barre est de plus parcourue par un courant
d’intensité I . On note ρ la résistivité électrique de
la barre.

On rappelle l’expression de la résistance élec-
trique d’un cylindre de résistivité électrique ρ, de
longueur ℓ et de section S :

R = ρℓ

S
.

Déterminer T (x) et P (x), puissance traversant la
section de la barre

3. Déterminer P2. La mettre sous forme de deux
termes. Commenter.

4. Quelle est la puissance P1 sortant en x = 0?

5. Que se passe-t-il si on interrompe le courant
d’intensité I et que l’on calorifuge les extrémités?
Déterminer la température finale.

8—  Compost [**]

Du fait de la décomposition, un bloc de compost
de grande surface S et de hauteur H produit une
puissance volumique

pv =Q sin
(πz

H

)
,

l’axe des z étant choisi ascendant.
La surface en z = 0 est parfaitement isolée, celle en
z = H subit un échange conducto-convectif avec
l’extérieur. On rappelle la loi de Newton : jth =
h(T −T0), où h désigne le coefficient de transfert
thermique de surface.

1. Déterminer le profil de température T (z) en ré-
gime stationnaire et le tracer.

2. Calculer la puissance dégagée par le compost.
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9—  Diffusion thermique instationnaire

[**]

Deux plaques sont séparées d’une distance L. Il
règne à l’extérieur une température T0 ; on note
T (x, t ) la température à l’intérieur (pour 0 ⩽ x ⩽
L).
Le profil initial de température entre les plaques
est

T (x,0) = T0 +θ sin
(πx

L

)
avec θ > 0.

1. Vérifier que T (x,0) vérifie les conditions aux li-
mites.

2. On cherche des solution sous la forme T (x, t ) =
T0 + f (x)g (t ). Déterminer f (x) et g (t ).

3. Calculer le flux thermique en x à l’instant t .

10—  Solidification d’une goutte [**]

On considère une goutte d’eau à la température
Te = 10 °C que l’on pulvérise dans l’air à Ta =
−15 °C. Le rayon de la goutte est R = 0,1 cm.
À l’interface eau-air, le flux thermique de la goutte
de surface S et de température T (t ) vers l’exté-
rieur est donné par Φ = hS[T (t ) − Ta], avec h =
50 W ·m−2 ·K−1.
On note ρ = 1,0×103 kg ·m−3 la masse vo-
lumique de la goutte, supposée uniforme,
c = 4,18×103 J ·kg−1 ·K−1 la capacité calorifique
massique de l’eau et ∆fush = 335 kJ ·kg−1 l’enthal-
pie massique de fusion de la glace.

1. À l’aide du premier principe de la thermodyna-
mique, montrer que

ρcR
dT

dt
=−3h[T (t )−Ta] .

2. Déterminer T (t ). On pourra poser τ= ρcR

3h
.

3. Déterminer le temps t1, en fonction de τ, Te, Ta

et Tf au bout duquel T (t1) = Tf =−5 °C.

4. On considère que la goutte est liquide à Tf et
que la température remonte à T0 = 0 °C où elle
se solidifie partiellement. On considère la réaction
isobare et réversible. Déterminer la proportion x
de liquide restant.

5. Déterminer le temps t2 au bout duquel la
goutte est entièrement solide.

11—  Neige artificielle [**]

La neige artificielle est obtenue en pulvérisant de
fines gouttes d’eau liquide supposées sphériques
de rayon R = 0,2 mm à Ti = 10 °C dans l’air am-
biant à la température Te =−15 °C.
À l’interface eau-air, le flux thermique dϕ à travers
une surface dS dans le sens de la normale exté-
rieure #»n est donné par la loi

dϕ= h[T (t )−Te]dS .

1. Établir l’équation différentielle régissant l’évo-
lution temporelle de la température de la goutte
T (t ).

2. Déterminer le temps t0 mis par la goutte li-
quide pour atteindre la température de surfusion
T (t0) =−5 °C.

3. Lorsque la goutte a atteint la température de
−5 °C, il y a rupture de la surfusion : la tempéra-
ture remonte brutalement à 0 °C et la goutte est
partiellement solidifiée (phénomène également
brutal). Moyennant des hypothèses que vous ex-
pliciterez, calculer la fraction x de liquide restant
à solidifier après la rupture de la surfusion.

4. Calculer le temps nécessaire à la solidification
du reste de l’eau liquide.

 Données

Coefficient conducto-convectif : h = 65 W ·m−2 ·K−1

Chaleur latente de changement de phase solide-
liquide : ℓf = 333 kJ ·kg−1

Capacité thermique massique de l’eau liquide :
cℓ = 4,2 kJ ·kg−1 ·K−1

Capacité thermique massique de l’eau solide :
cs = 2,1 kJ ·kg−1 ·K−1

12—  Transfert thermiquedansunepoutre

[**]

Soit une poutre de longueur L, de section circu-
laire de rayon a et de conductivité thermique λ,
contenue entre deux murs de température Tm. On
note Ta la température de l’air entourant la poutre
et h le coefficient de transfert convecto-conductif.
On considère le régime permanent atteint. Le
point O est placé au milieu de la poutre et on défi-
nit un axe (Oz) dans le sens de la poutre.

1. Déterminer le profil de température T (z).

2. Quel est le transfert thermique entre la poutre
et l’air
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13—  La fine ou l’épaisse? [**]

On considère un transistor de puissance qui dis-
sipe de l’énergie lors de son fonctionnement, et
se comporte alors comme une source de chaleur.
Afin d’éviter une montée en température trop im-
portante, on utilise une ailette de refroidissement
pour favoriser les échanges thermiques avec le
milieu extérieur.
On étudie une ailette de longueur L, de section
rectangulaire S = a × b, dont la face en x = 0 est
en contact avec le transistor à la température T0 =
65 °C.

L

x
O

transistor
à T0

air à Ta

a

b

On se place en régime stationnaire, et on suppose
que le phénomène est unidimensionnel selon Ox :
la température dans l’ailette est T (x). La tempé-
rature de l’air ambiant est Ta. Le transfert ther-
mique de l’ailette vers l’air ambiant est tel que la
puissance thermique échangée par un élément de
surface latérale dS de longueur dx est donnée par
dP = h[T (x)−Ta]dS, où h est une constante ca-
ractéristique de cet échange thermique.
La conductivité thermique de l’ailette est λ.

1. Montrer que la température dans l’ailette véri-
fie une équation différentielle de la forme

d2T (x)

dx2
− T (x)−Ta

δ2
= 0 (1)

où δ est une grandeur caractéristique dont on
donnera l’expression en fonction de λ, a, b et h,
dont on précisera la dimension.

2. Quelle est la forme générale de la solution de
l’équation différentielle (1) ?

À quelle condition portant sur δ peut-on consi-
dérer l’ailette comme infinie? En se plaçant dans
ce cas, déterminer complètement l’expression de
T (x).

3. Exprimer en fonction de T0, Ta, a, b, λ et h la
puissance thermique totale évacuée par l’ailette.

Pour une même section S = 1 cm2, on considère
deux profils d’ailette :

— une fine, avec a = 0,1 cm et b = 10 cm;

— l’autre épaisse, avec a′ = b′ = 1 cm.

Quelle ailette vaut-il mieux choisir pour évacuer
une maximum de puissance thermique?

4. Est-il nécessaire de prendre une ailette aussi
longue que possible? Proposer une longueur L
d’ailette dans le cas où δ = 1 cm. Commenter la
structure du radiateur sur la photo suivante.

14—  Ailette de refroidissement [***]

On souhaite refroidir un moteur en fixant sur lui
un certain nombre d’ailettes de forme cylindrique
(rayon R, longueur L), de conductivité thermique
λ. Chaque ailette est au contact d’un fluide à la
température θe < θ0, où θ0 est la température du
moteur.

L

Moteur θ0

1. Combien doit-on placer d’ailettes sur le mo-
teur sachant que le flux thermique à évacuer vaut
ΦT = 40 W ?

2. Comment améliorer le système?

Données numériques
λ= 400 W ·m−1 ·K−1

h = 100 W ·m−2 ·K−1 (coefficient de transfert
conducto-convectif de Newton)
R = 2 mm
L = 15 cm
θ0 = 82 °C
θe = 22 °C

15—  Production d’entropie [***]

Les extrémités d’une barre calorifugée en acier
inox, de conductivité thermique λ, de lon-
gueur L = 1 m, sont maintenues aux températures
T1 = 300 K et T2 = 400 K. On se place en régime
stationnaire.
On donne λ= 16 W ·m−1 ·K−1.

CPGE PSI 2025-2026 Lycée Jean Perrin 5/6



TD phénomènes de transport Diffusion thermique— Partie 1

1. Quelle est la variation d’entropie d’un élément
de volume de section A et de longueur dx ?
Établir l’expression de l’entropie reçue par cet élé-
ment.

2. Calculer l’entropie σs produite dans la barre
par unité de volume et par unité de temps, au
point de la barre où elle est maximale.

16—  Gel d’un lac [***]

Un lac est recouvert d’un épaisseur z(t ) de glace,
l’axe des z étant orienté vers le bas, son origine
étant à la surface de glace en contact avec l’air,
cette surface étant à la température Ts =−30,0 °C.
On donne la température de fusion de l’eau
Tf = 0,0 °C, l’enthalpie massique de fusion de la
glace ∆fush = 335 kJ ·kg−1, la masse volumique
de la classe ρg = 940 kg ·m−3 et le coefficient
de transmission thermique de la glace λg =
2,1 W ·m−1 ·K−1.

1. Donner l’équation différentielle vérifiée par la
température Tg(z, t ) de la glace et les condition
aux limites sur Tg(z, t ).

2. À l’aide d’un bilan d’enthalpie, obtenir la rela-
tion

λ

(
∂Tg

∂z

)
ε(t )

= ρg∆fushż .

3. On suppose ż très faible, donc on considère
que z est constant : quel est le nom de cette ap-
proximation?

4. Que devient alors la première équation diffé-
rentielle ? Donner le gradient de Tg.

5. Donner l’équation différentielle vérifiée par
z(t ) et la résoudre. Le résultat obtenu est-il cohé-
rent? Donner son sens physique.

6. Donner l’épaisseur de la couche de glace au
bout d’une minute, d’une journée et d’un mois.
Est-ce cohérent?
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