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TD phénomènes de transport Diffusion thermique— Partie 1

 ;;;; Conduction thermique— cas général <<<<

1—  Nombre de Fourier [*]

On définit le nombre de Fourier par

Fo = a∆t

L2

où a = λ

µc
est la diffusivité thermique, ∆t la durée

étudiée et L la longueur caractérsitique d’étude.

1. D’après l’équation de la diffusion

∂T

∂t
= a

∂2T

∂x2

on sait que [a] = L2T−1.

On en déduit que [Fo] = 1 : le nombre de Fourier
est sans dimension.

2. Le temps caractéristique de la diffusion sur une
distance L est

∆tc = L2

a
.

On peut donc écrire

Fo = ∆t

∆tc
.

Un processus peut être considéré comme adia-
batique si les échanges thermiques diffusifs n’ont
« pas le temps » de se faire sur la durée du phéno-
mène considéré, c’est-à-dire si ∆t ¿ ∆tc, ce qui
revient à Fo ¿ 1 .

3. Le nombre de Fourier vaut

Fo = 13×1,5×10−2

7800×480×5×10−3 = 2×10−3 .

On a bien Fo ¿ 1 : l’hypothèse d’une transforma-
tion adiabatique est donc valide.

2—  Métabolisme d’unmammifère [*]

1. On considère la sphère de rayon r > R. Le bi-
lan thermique s’écrit, en régime stationnaire pour
une durée dt :

0 = δQreçu +Pprod dt ,

où P est la puissance totale créée dans l’animal
par son métabolisme.

La sphère, surface fermée, est conventionnelle-
ment orientée vers l’extérieur ; en notant Φ(r ) le
flux thermique sortant, le bilan s’écrit

0 =−Φ(r )dt +Pprod dt .

On en déduit :

Φ(x) =Φ0 =Pprod .

Le flux thermique à travers une sphère est indé-
pendant de son rayon, et est égal à la puissance
thermique produite à l’intérieur de la sphère, qui
est intégralement évacuée par transfert thermique
à travers sa surface.

2. Le problème étant à symétrie sphérique, le flux
thermique sortant s’écrit

Φ0 =
Ó

M∈Σ
#»ȷQ (M)d

#»
SM = 4πr 2 jQ (r ) .

La puissance totale produite dans la sphère de
rayon R est

P= 4

3
πR3pv .

Le bilan Φ0 =P conduit donc à

jQ (r ) = pvR3

3r 2
=−λdT (r )

dr

en utilisant la loi de Fourier. On a donc, la tempé-
rature loin de l’animal (r →∞) valant T0 :

ˆ T0

T (r )
dT =−pvR3

3λ

ˆ ∞

r

dr ′

r ′2 = pvR3

3λ

[
1

r ′

]∞
r
= pvR3

3λr

d’où

T (r ) = T0 + pvR3

3λr
.

On remarque que T (r ) > T0 comme attendu : le
métabolisme de l’animal réchauffe son corps.
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3. En considérant un contact parfait, la tempéra-
ture est continue à la surface de l’animal ; sa tem-
pérature cutanée vaut donc Tc = T (R), soit

Tc = T0 + pvR2

3λ
.

Quand R est fixée, Tc diminue quand λ augmente :
le milieu est meilleur conducteur de la chaleur
et évacue mieux la puissance thermique produite
par l’animal qui est plus refroidi.

Quand λ est fixé, Tc augmente, de façon affine,
quand R augmente. Une augmentation de R aug-
mente le flux thermique évacué selon R2 (propor-
tionnel à la surface de l’animal), mais la puissance
totale produite est proportionnelle au volume de
l’animal donc à R3. On a donc

puissance produite

puissance évacuée
∝ R .

4. Le métabolisme volumique est donné par

pv = 3λ

R2 (Tc −T0) ,

soit pv,air = 2,4 kW ·m−3 et pv,eau = 240 kW ·m−3

.

Comme λeau = 100λair, on a pv,eau = 100pv,air pour
une même taille R de l’animal.

De plus pv ∝ 1

R2
: pour un animal 10 fois plus pe-

tit, le métabolisme volumique nécessaire doit être
100 fois plus important.

Dans l’eau, où la conductivité est plus impor-
tante, le métabolisme serait trop important pour
un mammifère de petite dimension. Le plus pe-
tit mammifère marin est d’ailleurs le béé phoque,
dont environ la moitié de la masse corporelle est
constituée de graisse isolante !

3—  Modèle d’un fusible [*]

1. On considère la tranche de fusible comprise
entre les abscisses x et x +dx. En régime station-
naire, le bilan d’énergie interne s’écrit

0 = δ2Qreçu +δPprod dt .

Le transfert thermique reçu pendant dt vaut

δ2Qreçu = [
jQ (x)− jQ (x +dx)

]
S dt =−d jQ (x)

dx
S dx dt

soit avec la loi de Fourier

δ2Qreçu =λ
d2T (x)

dx2
S dx dt .

Le tronçon de longueur dx a pour résistance élec-
trique

δR = dx

γS
.

La puissance dissipée par effet Joule y est alors
donnée par

δPprod = δRI 2 = dx

γS
I 2 .

Le bilan d’énergie s’écrit alors

0 =λ
d2T (x)

dx2
S dx dt + dx

γS
I 2 dt ,

soit
d2T

dx2
+ I 2

λγS2
= 0 .

Avec la condition T (0) = T (L) = T0, la solution
s’écrit

T (x) = T0 + I 2

2λγS2
x(L−x) .

T (x)

T0

L/2 L x

2. La température est maximale au milieu du fu-
sible, en x = L/2. En cas de dépassement de Imax,
la rupture se produit donc en x = L/2.
On a alors

TF = T0 +
I 2

maxL2

8λγS2

d’où

S = ImaxL

2
√

2λγ(TF −T0)
.

Pour Imax = 16 A, on calcule

S16 = 16×2,5×10−2

2
√

2×1,2×106 ×65× (390−290)

= 1,6×10−6 m2

soit S16 = 1,6 mm2 , ordre de grandeur tout à fait
réaliste.
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3. Le vecteur densité de flux thermique est donné
par

jQ (x) =−λdT (x)

dx
=− I 2

2γS2 (L−2x) .

La puissance reçue par conduction en x = 0 (donc
transférée dans le sens +#»e x) vaut

Pth(0) = jQ (0)S =− I 2L

2γS
.

On a Pth(0) < 0 : la puissance est évacuée vers l’ex-
térieur. On calcule |Pth| = 0,65 W .

La puissance reçue par conduction en x = L (donc
transférée dans le sens −#»e x) vaut

Pth(L) =− jQ (L)S =− I 2L

2γS
.

Le problème étant invariant par symétrie par rap-
port au milieu x = L/2 du fusible, on a comme at-
tendu Pth(0) =Pth(L).

La puissance électrique produite par effet Joule
dans la tranche [x, x +dx] s’écrit

δPe = δRI 2 = I 2

γS
dx .

La puissance électrique fournie à l’ensemble du fil
s’écrit alors

Pe = I 2L

γS
.

Ce résultat était prévisible.

Le bilan d’énergie pour tout le fusible s’écrit

0 = δQreçu +Pe dt

avec δQreçu = [Pth(0)+Pth(L)] dt , d’où

Pth(0)+Pth(L)+Pe = 0 .

4—  Température de la planète Mars [*]

1. Le problème étant à symétrie sphérique, on a
T (M) = T (r ) et #»ȷQ (M) = jQ (r ) #»e r .

Prenons comme système une coquille sphérique
de rayon r et d’épaisseur dr , avec R1 < r < R2. En
régime stationnaire, le bilan enthalpique s’écrit

0 =+Φ(r )dt −Φ(r +dr )dt =−dΦ

dr
dr dt .

Le flux thermique à travers la sphère de rayon r est
donc indépendant de son rayon, soit

Φ=
Ó

Σ

#»ȷQ ·d
#»
S = 4πr 2 jQ (r ) =−4πλr 2 dT

dr
.

On a donc
dT

dr
=− Φ

4πλr 2
.

en séparant les variables, on peut écrire

ˆ T (r )

Tn

dT =− Φ

4πλ

ˆ r

R1

dr

r 2
(1)

en notant Tn la température dans le noyau, d’où

T (r ) = Tn + Φ

4πλ

(
1

r
− 1

R1

)
.

On élimine le flux thermique en écrivant (1) entre
les deux rayons du manteau :ˆ Ts

Tn

dT =− Φ

4πλ

ˆ R2

R1

dr

r 2

où Ts est la température du sol, soit

Ts −Tn = Φ

4πλ

(
1

R2
− 1

R1

)
d’où

Φ

4πλ
= (Tn −Ts)

R1R2

R2 −R1
.

On a donc

T (r ) = Tn + (Tn −Ts)
R1R2

R2 −R1

(
1

r
− 1

R1

)
.

ä On vérifie que l’on retrouve bien T (R1) = Tn et
T (R2) = Ts.

Graphe :
T (r )

Tn

Ts

rR1 R2

2. La puissance dissipée par le noyau est donnée
par le flux thermique Φ, soit

Φ= 4πλ(Tn −Ts)
R1R2

R2 −R1
.

On calcule Φ= 103 GW .
Cette énergie trouve son origine dans des désinté-
grations radioactives au sein du noyau de la pla-
nète.
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3. Au bout de 4 milliards d’année, on peut consi-
dérer que l’on est en régime permanent !

Considérons comme système la sphère de rayon r .
En régime permanent, le bilan enthalpique s’écrit

0 =−Φ(r )dt + 4

3
πr 3Pv dt

d’où

Φ(r ) =−4πr 2λ
dT

dr
= 4

3
πr 3Pv .

On a donc
dT

dr
=−r Pv

3λ
.

En notant Ts = T (R2) la température au sol, on a

T (r ) = Ts + Pv

6λ
(R2

2 − r 2) .

5—  Banc de Kofler [**]

1. On considère comme système la tranche com-
prise entre x et x +dx. On effectue un bilan d’en-
thalpie pendant dt en régime stationnaire :

0 =Φ(x)dt −Φ(x +dx)dt −h(T (x)−Ta)a dx dt ,

le transfert entre le banc et l’air se faisant à travers
la surface dS = (a +2b)dx ≈ a dx car b ¿ a.

On a donc

0 =−dΦ

dx
dx dt −h(T (x)−Ta)a dx dt

soit comme Φ(x) = ab jth(x)

0 =−d jth(x)

dx
ab −h(T (x)−Ta)a .

Avec la loi de Fourier on obtient

0 =λ
d2T

dx2
b −h(T (x)−Ta) ,

soit
d2T

dx2
− h

λb
(T (x)−Ta) = 0 .

En posant θ(x) = T (x)−Ta et δ=
√

λb

h
, on a

d2θ

dx2
− θ(x)

δ2
= 0

dont la solution générale est de la forme

θ(x) = B e−x/δ+C ex/δ ,

d’où le profil de température

T (x) = Ta +B e−x/δ+C ex/δ .

2. La distance δ caractérise la variation de la tem-
pérature dans la barre. On peut considérer cette
dernier infinie si L À δ (dans la pratique si L >
5δ l’approximation est valide).

La température ne pouvant diverge, on doit alors
avoir C = 0 , soit

T (x) = Ta +B e−x/δ .

On ne connaît pas la température en x = 0, mais
on connaît la puissance reçue : c’est la puissance
dissipée par la résistance R alimentée sous une
tension efficace U , donnée par

P = U 2

R
.

Par continuité du flux thermique en x = 0 à travers
la section ab, on peut écrire

P =Φ(x = 0) =−λab
dT

dx
(x = 0) =λab

B

δ
,

d’où

B = U 2δ

λabR
.

3. Dans le banc de longueur L, le temps caracté-
ristique des variations de températures est τ∗ =
ρc

λ
L2. On peut considérer que la température

dans le banc ne dépend pas de la température
si, du fait de son inertie thermique, il n’a « pas le
temps » de suivre les variations de températures
de la résistances, qui se font avec la période 1/ f
où f = 50 Hz. Il faut donc

λ

ρcL2
¿ f .

En considérant un banc en aluminium, on a
ρ = 2,7×103 kg ·m−3, c = 897 J ·K−1 ·kg−1 et λ =
237 W ·m−1 ·K−1 ; avec L = 0,4 m on obtient f À
6×10−4 Hz, ce qui est largement vérifié avec f =
50 Hz.
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4. La température dépend de l’abscisse x sur la
banc. Les cristaux restant solides jusqu’à une abs-
cisse xf, on en déduit la température de fusion

Tfus = Ta + U 2δ

λabR
e−xf/δ .

Cette température dépendant de la température
extérieure Ta et du coefficient d’échange h, il est
nécessaire d’étalonner le banc avant chaque utili-
sation.

La température de fusion maximale détectable est

Tfus,max = Ta + U 2δ

λabR
.

La valeur de R permet de choisir la valeur de la
température maximale de fusion détectable.

5. On a
dT

dx
=− U 2

λabR
e−x/δ .

Une incertitude ∆x sur la lecture de la position se
traduit par une incertitude sur la température

∆T = U 2

λabR
e−x/δ∆x

soit

∆T = Tfus −Ta

δ
∆x .

L’incertitude augmente quand Tfus augmente.

6—  Conduction thermique [**]

1. Bilan classique en régime stationnaire sur la
tranche comprise entre x et x +dx :

0 =Φ(x)−Φ(x +dx)−h[T (x)−Ta]2πR dx ,

avec Φ(x) =−λdT

dx
πR2, d’où

0 = d2T

dx2
− 2h

λR
[T (x)−Ta] .

On pose δ =
√

λR

2h
à pâtir de l’équation différen-

tielle. Le candidat pourra poser θ(x) = T (x) − Ta

pour se ramener à une équation différentielle ho-
mogène.

La solution générale est

T (x) = Ta + A e−x/δ+B ex/δ .

2. La température est imposée à l’extrémité x = 0,
soit T (0) = T0 = Ta + A+B .

Le flux thermique est continu à l’extrémité x = L,
soit

−λ
(

dT

dx

)
L
= h[T (L)−Ta] ,

qui donne

λ

δ

[
A e−L/δ−B eL/δ

]
= h

[
Ta + A e−L/δ+B eL/δ

]
.

3. Cette hypothèse revient à dire L À δ. On ob-
tient T (x) = Ta + (T0 −Ta)e−x/δ.

4. La température diminuant le long de la tige, la
paraffine est évidemment fondue entre x = 0 et xf !

L’abscisse de fusion est donnée par

T (xf) = Ta + (T0 −Ta)e−xf/δ = Tf ,

d’où

xf = δ ln

(
T0 −Ta

Tf −Ta

)
.

Pour les deux tiges, on a donc
x1

δ1
= x2

δ2
, soit

x1√
λ1

=
x2√
λ2

, d’où λ2 =λ1

(
x2

x1

)2

= 65,6 W ·m−1 ·K−1.

5. Le ventilateur augmente le flux conducto-
convectif (sa partie convective), donc h, donc δ

diminue; les abscisses de fusions sont donc plus
petites.

7—  Barre parcourue par un courant [**]

1. Le bilan d’énergie appliqué à la tranche [x, x +
dx] en régime stationnaire s’écrit

0 =Φ(x)dt −Φ(x +dx)dt =−dΦ

dx
dx dt ,

d’où Φ(x) = Φ0 uniforme. Comme Φ = jQ (x)S, jQ

est uniforme, et d’après la loi de Fourier on a donc

λ
dT

dx
= T (L)−T (0)

L
= T2 −T1

L
,

d’où

T (x) = T2 −T1

L
x +T1 .

La puissance fournie par la source en x = L est
donnée par le flux thermique en x = L (qui a la
même valeur pour tout x d’ailleurs), soit

P2 =−λdT

dx
S

d’où

P2 = λS

L
(T1 −T2) .
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2. Il faut ajouter un bilan d’énergie l’énergie créée
dans la tranche [x, x + dx] pendant dt par effet
Joule :

Pprod dt = ρdx

S
I 2 dt .

Le bilan d’énergie s’écrit alors

0 =λ
d2T

dx2
S dx dt + ρdx

S
I 2 dt ,

d’où
d2T

dx2
=−ρI 2

λS
.

On en déduit

T (x) =− ρI 2

2λS
x2 + Ax +B .

On a d’une part

T (0) = T1 = B

et d’autre part

T (L) = T2 =− ρI 2

2λS
L2 + AL+T1

d’où

A = T2 −T1

L
+ ρI 2

2λS
L .

On a donc

T (x) =− ρI 2

2λS
x2 + T2 −T1

L
x + ρI 2

2λS
Lx +T1 ,

soit

T (x) = ρI 2

2λS
x(L−x)+ T2 −T1

L
x +T1 .

La puissance à l’abscisse x est donnée par

P (x) =−λdT

dx
S = ρI 2x − ρI 2

2
L+ λS

L
(T1 −T2)

soit

P (x) = ρI 2
(

x − L

2

)
+ λS

L
(T1 −T2) .

3. La puissance cédée à l’extrémité x = L vaut
alors

P2 = ρI 2L

2
+ λS

L
(T1 −T2) .

Le premier terme correspond à la puissance éva-
cuée due à l’effet Joule, le second terme à la puis-
sance due à la différence de température entre les
extrémités de la barre.

4. En x = 0, on obtient

P1 =−ρI 2L

2
+ λS

L
(T1 −T2) .

Le terme dû à la différence de température est in-
changé (le flux correspondant est uniforme) ; le
terme dû à l’effet Joule est changé de signe : cette
puissance est ici aussi évacuée de la barre.

5. La température va évoluer de façon irréversible
vers un état d’équilibre caractérisé par une tempé-
rature uniforme Tf dans la barre.

Considérons une tranche [x, x+dx] de la barre ; un
bilan d’énergie entre l’état initial où l’on isole la
barre et l’état final d’équilibre s’écrit :

dU = ρcS dx[Tf −T (x)] .

L’énergie interne étant une grandeur extensive, la
variation d’énergie interne entre ces deux états
pour la totalité de la barre s’obtient en sommant
le terme précédent sur la totalité de la barre, soit :

∆U =
ˆ L

0
ρcS[Tf −T (x)]dx .

La barre étant calorifugée, le premier principe
conduit à ∆U = 0, d’où après simplification

ˆ L

0
[Tf −T (x)]dx = 0 = LTf −

ˆ L

0
T (x)dx

La température finale est donc donnée par

Tf =
1

L

ˆ L

0
T (x)dx .

ä On remarque que c’est l’expression de la valeur
moyenne de la température T (x) sur la barre à
l’instant initial.

On calcule

Tf =
ρI 2

2λS

(
L3

2L
− L3

3L

)
+ T2 −T1

L

L2

2L
+T1

soit

Tf =
ρL2I 2

12λS
+ T1 +T2

2
.
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8—  Compost [**]

1. Effectuons un bilan d’énergie en régime sta-
tionnaire pour une tranche de section S, comprise
entre z et z +dz :

0 =Φ(z)dt −Φ(z +dx)dt +Q sin
(πz

H

)
S dz dt

=−dΦ

dz
dz dt +Q sin

(πz

H

)
S dz dt ,

soit comme Φ(z) = jQ (z)S =−λdT

dz
S

0 =λ
d2T

dz2
S dz dt +Q sin

(πz

H

)
S dz dt .

On a donc
d2T

dz2
=−Q

λ
sin

(πz

H

)
.

On en déduit

dT

dz
= QH

λπ
cos

(πz

H

)
+ A .

Nous pouvons utiliser à ce stade la condition en
z = 0 : la surface au sol étant parfaitement isolé, le
flux thermique est nul en z = 0, soit

dT

dz
(z = 0) = 0 = QH

λπ
+ A .

On a donc A =−QH

λπ
, d’où

dT

dz
= QH

λπ
cos

(πz

H

)
− QH

λπ
.

On en déduit

T (z) = QH 2

λπ2
sin

(πz

H

)
− QH

λπ
z +B .

La condition au sommet du tas de compost, en
z = H , est donné par la continuité du flux ther-
mique, donné d’un côté de l’interface par la loi de
Fourier, et de l’autre par la loi de Newton :

−λdT

dz
(z = H) = h[T (H)−T0]

soit

−λ
[
−QH

λπ
− QH

λπ

]
= h

[
−QH 2

λπ
+B −T0

]
.

On a donc

B = 2QH

hπ
+ QH 2

λπ
+T0 ,

d’où

T (z) = QH 2

λπ2
sin

(πz

H

)
− QH

λπ
z + 2QH

hπ
+ QH 2

λπ+T0
.

La température dans le tas de compost est donnée
par

T (z) = QH 2

λπ

[
1

π
sin

(πz

H

)
+1− z

H
+ 2λ

hH

]
+T0 .

La température est maximum en z = 0 (dérivée
nulle par nullité du flux) et vaut

Tmax = QH 2

λπ

[
1+ 2λ

hH

]
+T0 .

La température au sommet vaut

T (H) = Tmin = QH 2

λπ

2λ

hH
+T0 = 2QH

πh
+T0 .

Pour 0 < z < H , on a

dT

dz
= QH

λπ

[
cos

(πz

H

)
−1

]
< 0.

La température diminue vers le haut du tas (le flux
thermique est partout dirigé vers le haut).

T (z)

z
H

T (H)

Tmax

2. La puissance dégagée par le compost pourrait
se calculer directement à partir de la puissance vo-
lumique donnée (en intégrant sur tout le volume
du tas). Il est cependant plus simple d’effectuer un
bilan d’énergie en prenant comme système le tas
de compost entier.

En régime stationnaire, pendant dt , on a

0 = δQreçu dt +Pdt ,

avec

δQreçu =−Φ(x = H)dt =λS
dT

dz
(z = H)dt .

On en déduit

P=−λS
dT

dz
(z = H) =−QHS

π
[cos(π)−1]

soit

P= 2QHS

π
.
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ä On obtient le même résultat bien sûr par le cal-
cul de

P=
ˆ H

0
Q sin

(πz

H

)
S dz .

ä Le volume du tas étant SH , la puissance volu-

mique moyenne créée vaut
2Q

π
.

9—  Diffusion thermique instationnaire

[**]

1. On vérifie que

T (0,0) = T0 et T (L,0) = T0 .

2. Le problème unidimensionnel sans source est
régi par l’équation de la chaleur

∂T

∂t
= a

∂2T

∂x2
avec a = λ

ρc
.

Écrivons que T (x, t ) = T0 + f (x)g (t ) vérifie cette
équation :

f (x)g ′(t ) = a f ′′(x)g (t )

soit

a
f ′′(x)

f (x)
= g ′(t )

g (t )
.

Le premier membre de cette égalité est indépen-
dant de t , tandis que le second membre est indé-
pendant de x (par construction) ; chacun de ses
membres ne dépend donc ni de t ni de x : ils sont
donc égaux à une constante.

On a donc d’une part

g ′(t )

g (t )
= A ,

d’où
g (t ) = g (0)eAt .

Physiquement, g (t ) ne peut diverger ; on doit donc
avoir A < 0. Comme A est homogène à l’inverse
d’un temps, on pose A =−1/τ, et

g (t ) = g (0)e−t/τ .

On a alors

a
f ′′(x)

f (x)
=−1

τ
,

soit

f ′′(x)+ 1

aτ
f (x) = 0.

On en déduit

f (x) =αsin

(
xp
aτ

)
+βcos

(
xp
aτ

)
.

La condition initiale s’écrit, en posant 1 g (0) = 1

T (x,0) = T0 +θ sin
(πx

L

)
= T0 + f (x)

d’où

f (x) =αsin

(
xp
aτ

)
+βcos

(
xp
aτ

)
= θ sin

(πx

L

)
.

On en déduit β = 0, α = θ et
1p
aτ

= π

L
, d’où τ =

L2

aπ2
.

On a donc

g (t ) = exp

(
−aπ2

L2
t

)
et f (x) = θ sin

(πx

L

)
.

La température dans la barre s’écrit donc

T (x, t ) = T0 +θ sin
(πx

L

)
exp

(
−aπ2

L2
t

)
.

3. Le vecteur densité de courant thermique est
donné par la loi de Fourier

jQ (x, t ) =−λ∂T

∂x
=−λθπ

L
cos

(πx

L

)
exp

(
−aπ2

L2
t

)
.

En notant S la section des plaques, le flux ther-
mique en x est donné par

Φ(x, t ) =−λSθ
π

L
cos

(πx

L

)
exp

(
−aπ2

L2
t

)

1. L’éventuelle constante multiplicative sera dans la fonction f .
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10—  Solidification d’une goutte [**]

1. Prenons comme système la goutte de rayon R.
Le premier principe pendant dt s’écrit

δU = δQreçu .

On a d’une part

dU = 4

3
πR3ρc dT = 4

3
πR3ρc

dT

dt
dt

et d’autre part

δQreçu =−h4πR2[T (t )−Ta]dt .

Après simplification, on obtient

ρcR
dT

dt
=−3h[T (t )−Ta] .

2. L’équation différentielle précédente s’écrit

τ
dT

dt
+T (t ) = Ta avec τ= ρcR

3h
.

On en déduit

T (t ) = A e−t/τ+Ta .

Avec la condition initiale T (0) = Te on obtient

T (t ) = (Te −Ta e−t/τ+Ta .

3. De la condition

(Te −Ta e−t1/τ+Ta = Tf

on déduit

t1 = τ ln

(
Te −Ta

Tf −Ta

)
.

On calcule t1 = 50 s .

4. Décrivons l’évolution :

état initial masse m d’eau liquide à Tf =−5 °C;

état final masse xm d’eau liquide et (1−x)m d’eau
solide à T0 = 0 °C.

L’ensemble est isolé ; l’énergie nécessaire à aug-
menter la température de la goutte provient de la
solidification, exothermique.

On considère l’état intermédiaire fictif où l’eau est
liquide à 0 °C. La variation d’enthalpie de la goutte
entre l’état initial et cet état est

∆H1 = mc(T0 −Tf) .

La variation d’enthalpie entre cet état et l’état final
correspond à la solidification d’une masse (1−x)m
d’eau :

∆H2 =−(1−x)m∆fush

L’enthalpie étant une fonction d’état, le bilan pour
toute l’évolution s’écrit

∆H = 0 =∆H1 +∆H2

soit

mc(T0 −Tf)− (1−x)m∆fush = 0.

On en déduit

x = 1− c(T0 −Tf)

∆fush
.

On calcule x = 0,94 : il reste 94 % de la masse de
la goutte sous forme liquide.

La goutte d’eau est dans un état de surfusion : elle
est liquide à une température Tf =−5 °C où elle de-
vrait être solide. Cet état est métastable : une petite
perturbation (choc, impureté) déclenche le chan-
gement d’état. C’est le principe des pluies vergla-
çantes.

5. La dernière phase est une solidification de
la goutte isobare, donc isotherme (propriété du
changement d’état). La température de la goutte
étant constante, son enthalpie ne varie pas (dH =
mc dT = 0). Le premier principe appliqué à cette
dernière phase de durée ∆t s’écrit alors

0 =Qreçu +Qprod

soit

0 =−h4πR2(T0 −Ta)∆t +x
4

3
πR3ρ∆fush .

On en déduit

∆t = x
ρR∆fush

3h(T0 −Ta)
.

On calcule ∆t = 1,4×102 s soit un peu plus de
2 minutes.
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11—  Neige artificielle [**]

1. On fait un bilan d’énergie à la goutte entre t et
t +dt :

dU = δQreçu

soit

4

3
πR3ρcℓdT =−Φdt =−h[T (t )−Te]4πR2 dt ,

d’où
dT

dt
=− 3h

ρcℓR
[T (t )−Te] .

La température suit donc l’équation différentielle

dT

dt
+ T (t )

τ
= Te

τ
avec τ= ρcℓR

3h
.

2. La solution de cette équation différentielle est

T (t ) = [Ti −Te]e−t/τ+Te .

On a
T (t0) = [Ti −Te]e−t0/τ+Te ,

d’où

t0 = τ ln

(
Ti −Te

T (t0)−Te

)
.

On calcule

τ= 103 ×4,2×103 ×0,2×10−3

3×65
= 4,3 s

puis
t0 = 3,9 s .

3. La goutte se retrouve liquide à la température
de −5 °C, température à laquelle son état stable
est solide. C’est ce qu’on appelle le phénomène
de surfusion. L’eau va rapidement évoluer vers son
état stable en se solidifiant partiellement.

L’évolution étant rapide, on peut la supposer adia-
batique (les transferts thermiques n’ont pas le
temps de se faire), et le premier principe appliqué
à la goutte s’écrit

∆H = 0.

L’enthalpie étant une fonction d’état, nous pou-
vons décomposer l’évolution en deux étapes fic-
tives pour calculer sa variation :

étape 1 : variation de température de T (t0) à
Tfus = 0 °C, avec une variation d’enthalpie
∆H1 ;

étape 2 : solidification d’une masse (1 − x)m
d’eau, avec une variation d’enthalpie ∆H2.

On a donc

∆H1 = mcℓ[Tfus −T (t0)]

et pour la solidification

∆H2 = (1−x)m(−∆fusH) .

De ∆H =∆H1 +∆H2 = 0 on tire

mcℓ[Tfus −T (t0)]− (1−x)m∆fusH = 0

d’où

x = 1− cℓ[Tfus −T (t0)]

∆fusH
.

On calcule x = 0,94 .

4. La solidification du reste de l’eau liquide se fait
à la température T0.

Appliquons le premier principe à la goutte pen-
dant la durée t1 de la solidification de la masse
dm :

∆H =−dm∆fusH =−4πR2h(T0 −Te)t1

avec

dm = xm = x
4

3
πρR3 ,

d’où

t1 = ρxR∆fusH

3h[T0 −Te]
.

On calcule t1 = 21,3 s .

12—  Transfert thermiquedansunepoutre

[**]

1. Effectuons un bilan enthalpique pendant dt à
la tranche de poutre comprise entre z et z +dz :

0 =Φ(z)dt −Φ(z +dz)dt −2πah[T (z)−Ta]dz dt

soit

0 =−dΦ

dz
−2πah[T (z)−Ta] .

La loi de Fourier conduit à

λ
d2T

dz2
−2πah[T (z)−Ta] = 0.

En posant θ(z) = T (z)−Ta, cette équation est de la
forme

d2θ

dz2
− θ(z)

δ2
avec δ=

√
λ

2πah
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où δ est une longueur caractéristique.

Compte tenu de la parité des conditions aux li-
mites, on a intérêt à écrire la solution sous la
forme

θ(z) = A cosh
( z

δ

)
+B sinh

( z

δ

)
.

Les conditions aux limites s’écrivent

Tm −Ta = A cosh

(
L

2δ

)
+B sinh

(
L

2δ

)
Tm −Ta = A cosh

(
L

2δ

)
−B sinh

(
L

2δ

)

La différence conduit à

0 = 2B sinh

(
L

2δ

)
d’où B = 0 (ce qui était prévisible, la solution de-
vant être paire), et la somme donne

2(Tm −Ta) = 2A cosh

(
L

2δ

)
d’où

A = Tm −Ta

cosh
( L

2δ

) .

On a donc

T (z) = Ta + (Tm −Ta)
cosh

( z
δ

)
cosh

( L
2δ

) .

ä On peut aussi écrire la solution générale sous la
forme

θ(z) = A ez/δ+B e−z/δ .

Les conditions aux limites s’écrivent alors

Tm −Ta = A eL/2δ+B e−L/2δ

Tm −Ta = A e−L/2δ+B eL/2δ

Il est plus calculatoire de déterminer les constantes

A et B (qui sont différentes des constantes précé-

dentes).

2. Soit Φs le transfert thermique sortant de la
poutre vers l’air.

Appliquons le premier principe à l’ensemble de la
poutre :

0 =Φ(−L/2)dt −Φ(L/2)dt −Φs dt

où Φ(−L/2) est le flux entrant en z = −L/2 et
Φ(L/2) est le flux sortant en z = L/2.

On a
dT

dz
= Tm −Ta

δ

sinh
( z
δ

)
cosh

( L
2δ

)
d’où

Φ(z) =−λdT

dz
πa2 =−λπa2

δ
(Tm −Ta)

sinh
( z
δ

)
cosh

( L
2δ

) .

On a donc

Φ(L/2) =−λπa2

δ
(Tm −Ta) tanh

(
L

2δ

)
=−Φ(−L/2)

d’où le flux sortant total

Φs = 2λπa2

δ
(Tm −Ta) tanh

(
L

2δ

)
.

ä On peut mener un calcul direct de ce flux en inté-
grant le flux sortant, donné par la loi de Newton, à
travers la section de la tranche [x, x +dx] :

Φs =
ˆ L/2

−L/2
(T (z)−Ta)2πa dz .

13—  La fine ou l’épaisse? [**]

1. Bilan d’énergie sur une tranche [x, x + dx] en
régime stationnaire :

Φ(x)−Φ(x +dx)−h[T (x)−Ta]2(a +b)dx = 0

d’où en linéarisant et en utilisant la loi de Fourier

d2T

dx2
− T (x)−Ta

δ2
= 0

avec

δ=
√

λab

2h(a +b)

homogène à une longueur d’après l’équation dif-
férentielle.

2. Solution générale

T (x) = A e−x/δ+B ex/δ+Ta .

Ailette « infinie » si L À δ. On a donc B = 0, et avec
T (0) = T0 on obtient

T (x) = (T0 −Ta)e−x/δ+Ta .
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3. On a

jQ (x) =−λdT

dx
=λ

T0 −Ta

δ
e−x/δ .

Le flux total évacué est donné par le flux entrant
en x = 0 (on peut le justifier par un bilan d’énergie
en prenant comme système la totalité de l’ailette),
soit

Φtot = jQ (0)ab .

On obtient

Φtot = λ

δ
(T0 −Ta)ab =λ(T0 −Ta)ab

√
2h(a +b)

λab

= (T0 −Ta)
√

2hλab(a +b) .

Le flux total est proportionnel à
p

ab(a +b). Le
rapport des flux est donné par

Φfine

Φépaisse
=

p
ab(a +b)p

a′b′(a′+b′)
= 2,28

1,4
= 2,2.

L’ailette fine permet d’évacuer plus de deux fois
plus d’énergie que l’ailette à section carrée.

4. Quand L est « grand » devant δ, on a T (x) ≈
Ta et l’ailette ne sert plus à rien. Compte tenu
du terme e−x/δ, on peut se limiter à L = 5δ par
exemple (ou L = 3δ).

Il vaut mieux donc plusieurs ailettes courtes en
parallèle qu’une ailette longue, et prendre des ai-
lettes les plus fines possibles. La photographie
confirme ces choix.

14—  Ailette de refroidissement [***]

1. Nous allons chercher la puissance évacuée par
une ailette. On effectue un bilan d’énergie pen-
dant dt sur la tranche comprise entre x et s +dx
en régime stationnaire :

0 =Φ(x)dt −Φ(x +dx)dt −δΦlat dt

=−dΦ

dx
dx dt −h[T (x)−θe]2πR dx dt

=λ
d2T

dx2
πR2 dx dt −h[T (x)−θe]2πR dx dt .

On en déduit

d2T

dx2
− 2h

λR
[T (x)−θe] = 0.

En posant la distance caractéristique

δ=
√

λR

2h
,

la solution générale de l’équation différentielle est

T (x) = θe + A e−x/δ+B ex/δ .

Nous allons faire l’hypothèse que le modèle de
l’ailette infinie peut s’appliquer (on discutera de
cette hypothèse a posteriori). On doit alors avoir
B = 0, et la condition à la limite T (0) = θ0 permet
d’écrire

T (x) = θe + (θ0 −θe)e−x/δ .

La puissance totale évacuée par l’ailette est don-
née par le flux thermique à travers sa section en
contact avec le moteur :

Φ1 =Φ(0) =−λdT

dx
(x = 0)πR2 .

ä Pour s’en convaincre, effectuons un bilan
d’énergie en considérant comme système la to-
talité de l’ailette. En régime stationnaire, on
peut écrire en notant Φtot > 0 le flux total sor-
tant de l’ailette (à travers sa face latérale et son
extrémité)

0 =+Φ(x = 0)dt −Φtot dt

d’où Φtot =Φ(x = 0).

On calcule

dT

dx
=−θ0 −θe

δ
e−x/δ ,

d’où

Φ1 = λ(θ0 −θe)

δ
πR2 =λ(θ0 −θe)

√
2h

λR
πR2 .

La puissance totale dissipée par une ailette vaut
donc

Φ1 =
√

2hλ

R
(θ0 −θe)πR2 .

On calcule Φ1 = 4,8 W.

Il faut donc 9 ailettes pour évacuer la puissance
ΦT = 40 W.

Discussion : l’hypothèse de l’ailette infinie est-elle
valide? Elle revient à considérer que la longueur
de la tige est grande devant la distance caractéris-
tique de l’évolution de la température dans celle-ci :
L À δ.

On calcule δ = 6,3 cm. L’approximation δ ¿ L
semble osée, mais des deux grandeurs apparaissent
dans le terme e−L/δ = 0,09 qui est « assez petit » de-
vant 1. L’hypothèse, sans être largement vérifiée, est
acceptable.
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2. On pourrait améliorer le système :

— en utilisant un ventilateur pour se mettre en si-
tuation de ventilation forcée; h est alors plus
élevé, ainsi que la puissance évacuée par une
ailette ;

— en prenant des ailettes de profil différent, qui
augmente la surface d’échange pour une sec-
tion donnée.

15—  Production d’entropie [***]

1. En régime stationnaire, l’entropie de l’élément
de longueur dx ne varie pas dans le temps. Sa va-
riation pendant dt est donc nulle et le bilan d’en-
tropie s’écrit

0 = δ2Sreçu +δ2Scréé .

L’élément reçoit en x le transfert thermique

δQ(x) = jQ (x)A dt

à travers sa frontière à la température T (x) ; l’en-
tropie reçue en x vaut donc

δSreçu,x = δQ(x)

T (x)
= jQ (x)

T (x)
A dt .

L’élément reçoit en x +dx le transfert thermique

δQ(x +dx) =− jQ (x +dx)A dt

à travers sa frontière à la température T (x +dx) ;
l’entropie reçue en x +dx vaut donc

δSreçu,x+dx = δQ(x +dx)

T (x +dx)
=− jQ (x +dx)

T (x +dx)
A dt .

L’entropie totale reçue s’écrit alors

δ2Sreçu = δSreçu,x+dx +δSreçu,x

=−
[

jQ (x +dx)

T (x +dx)
− jQ (x)

T (x)

]
A dt

=− d

dx

[
jQ (x)

T (x)

]
A dx dt .

En régime stationnaire, l’équation de la chaleur
s’écrit

d jQ (x)

dx
= 0.

Le flux thermique est alors indépendant de x, soit
jQ (x) = jQ . On a alors

δ2Sreçu =−A jQ
d

dx

[
1

T (x)

]
dx dt

= jQ
1

T 2(x)

dT (x)

dx
A dx dt

Avec la loi de Fourier, jQ =−λdT (x)

dx
et

δ2Sreçu =− λ

T 2(x)

(
dT (x)

dx

)2

A dx dt .

2. Le terme de production d’entropie s’écrivant
δ2Scréé =σS A dx dt , le bilan d’entropie conduit à

σS(x) = λ

T 2(x)

(
dT (x)

dx

)2

.

On a bien σS(x) > 0 , ce qui traduit le caractère
irréversible du transfert thermique.

Nous en en présence d’un état stationnaire hors
d’équilibre : les grandeurs intensives ne dé-
pendent pas du temps, mais ce n’est pas un état
d’équilibre car elle ne sont pas uniforme : il y a un
gradient de température, donc un flux thermique
dont le sens s’inverserait si on « passait le film à
l’envers ».

Le gradient de température est uniforme en ré-
gime stationnaire :

dT

dx
= T2 −T1

L
.

Le taux de production d’entropie est donc maxi-
mal à l’extrémité où la température est la plus
basse, c’est-à-dire enx = 0; on a

σS,max = λ(T2 −T1)2

L2T 2
1

.

On calcule σS,max = 1,78 J ·K−1 ·m−3 · s−1 .

16—  Gel d’un lac [***]

1. Représentons la situation :

glace

0

z(t )

Ts

Tf

dz
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Un bilan d’énergie dans la glace conduit à l’équa-
tion de la chaleur (problème unidimensionnel
sans source) :

ρgcg
∂Tg

∂t
=λ

∂2T

∂z2
.

Les conditions aux limites sont

Tg(0, t ) = Ts et Tg(z(t ), t ) = Tf .

2. Entre t et t + dt il se forme une épaisseur dz
de glace. Nous allons effectuer un bilan d’enthal-
pie pendant dt sur une section S de cette tranche
d’eau qui se solidifie.

Sa masse étant ρgS dz, sa variation d’enthalpie
lors de sa solidification est 2

dH =−ρgS dz∆fush .

Le bilan d’énergie s’écrit

dH = δQreçu

avec

δQreçu = jQ (z(t ))S dt =−λ∂Tg

∂z
S dt .

On a donc

−ρgS∆fush dz =−λ∂Tg

∂z
S dt

soit

λ
∂Tg

∂z
= ρg∆fush

dz

dt
.

3. Supposer z constant pendant dt revient à se
placer dans l’approximation des régimes quasi-
stationnaires.

4. La première équation différentielle devient
alors

d2Tg

dz2
= 0.

Le gradient 3 de température vaut alors

dTg

dz
= Tf −Ts

z(t )
.

5. L’équation différentielle établie à la question 2
s’écrit alors

λ
Tf −Ts

z(t )
= ρg∆fush

dz

dt

soit en séparant les variables :

z dz =λ
Tf −Ts

ρg∆fush
dt .

En prenant z(0) = 0 (la couche de glace commence
à se former à l’instant t = 0), on obtient

z2(t ) =λ
Tf −Ts

ρg∆fush
t ,

soit

z(t ) =
√

λ(Tf −Ts)

ρg∆fush

p
t .

On remarque que z(t ) ∝ p
t : l’épaisseur de la

couche de glace augmente « de moins en moins
vite » : l’écart de température entre les faces de la
couche reste constant, mais l’épaisseur augmen-
tant, le gradient de température diminue au cours
du temps; il en est donc de même du flux ther-
mique évacuant l’énergie libérée par la solidifica-
tion qui se trouve alors ralentie.

Les facteurs augmentant l’évacuation de l’éner-
gie produite lors de la solidification ont pour ef-
fet d’augmenter l’épaisseur de la couche de classe
pour une date t donnée :

— si la conductivité λ augmente, z(t ) augmente
donc;

— si ρg∆fush augmente, z(t ) diminue (il faut éva-
cuer plus d’énergie) ;

— si Tf−Ts augmente, z(t ) augmente (le flux ther-
mique augmente).

6. On calcule z(t ) =
√

2,1×30

940×335×103

p
t pour dif-

férentes valeurs de t .

Durée 1 minutes 1 jour 1 mois
Épaisseur 3,5 mm 13 cm 72 cm

Les ordres de grandeur sont cohérents.

2. Attention au signe : l’enthalpie de solidification est l’opposé de l’enthalpie de fusion.

3. On donne sa composante selon #»e z ; on a bien sûr
#      »

gradTg =
dTg

dz
#»e z .
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