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TD phénomenes de transport

Jean

Perrin E. SAUDRAIS

Diffusion thermique — Partie 1

envnen Conduction thermique — cas général aomomots

[*]

1 — Nombre de Fourier
On définit le nombre de Fourier par

alt
Fo=—-
L2

A
ou a = — est la diffusivité thermique, At la durée
e

étudiée et L la longueur caractérsitique d’étude.

1. D’apres I’équation de la diffusion

oT  0°T

—=a—

ot 0x?
on sait que [a] = LT,
On en déduit que [Fo] = 1 : le nombre de Fourier
est sans dimension.

2. Letemps caractéristique de la diffusion sur une
distance L est

LZ
Atc - —.
a
On peut donc écrire
At
Fo=—.

Un processus peut étre considéré comme adia-
batique si les échanges thermiques diffusifs n’ont
«pas le temps » de se faire sur la durée du phéno-
mene considéré, c’est-a-dire si At < At ce qui
revienta Fo<1 .

3. Le nombre de Fourier vaut

13x1,5% 1072
0=
7800 x 480 x 5 x 1073

=2x1073,

On a bien Fo « 1 : 'hypothése d'une transforma-
tion adiabatique est donc valide.

2 — Métabolisme d’'un mammifere

[*]
1. On considere la sphére de rayon r > R. Le bi-

lan thermique s’écrit, en régime stationnaire pour
une durée d¢ :

0= 5Qrequ + iPprod dz,

ol P est la puissance totale créée dans I’animal
par son métabolisme.

La sphere, surface fermée, est conventionnelle-
ment orientée vers 1'extérieur; en notant ®(r) le
flux thermique sortant, le bilan s’écrit

0=-®(r)dr+ ?pmd dr.
On en déduit :

D(x) =g = j)prod .

Le flux thermique a travers une spheére est indé-
pendant de son rayon, et est égal a la puissance
thermique produite a l'intérieur de la sphere, qui
estintégralement évacuée par transfert thermique
a travers sa surface.

2. Le probleme étant a symétrie sphérique, le flux
thermique sortant s’écrit

To(M)dSy = 4mr? jo(r).
MeZX

DOy =

La puissance totale produite dans la sphére de
rayon R est

4
P=—nR3p,.
g Py
Le bilan ®y = P conduit donc a

pvR® _

T
3r2 __Ad =

dr

Jo(r) =

en utilisant la loi de Fourier. On a donc, la tempé-
rature loin de I'animal (r — oo) valant T :

/TOdT:_pVR3 /ood_r/ _ PvR3 [i]oo: pVR3
T(r) 31 r I"Z 31 r’ r 3Ar

On remarque que T(r) > Tp comme attendu : le
métabolisme de I’animal réchauffe son corps.
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3. En considérant un contact parfait, la tempéra-
ture est continue a la surface de ’animal; sa tem-
pérature cutanée vaut donc T, = T(R), soit

pvRZ

31

TC:TO+

Quand R est fixée, T, diminue quand A augmente :
le milieu est meilleur conducteur de la chaleur
et évacue mieux la puissance thermique produite
par 'animal qui est plus refroidi.

Quand A est fixé, T, augmente, de facon affine,
quand R augmente. Une augmentation de R aug-
mente le flux thermique évacué selon R? (propor-
tionnel a la surface de I'’animal), mais la puissance
totale produite est proportionnelle au volume de
I'animal donc a R®. On a donc

puissance produite
puissance évacuée

X

4. Le métabolisme volumique est donné par

31
pV:ﬁ(Tc_TO);

SOit pvyair = 2,4 kW' m_3 et pvyeau = 240 kW' m_3

Comme Agay = 100A4ir, 0N @ Py eau = 100py qir pour
une méme taille R de 'animal.

1
De plus py < — : pour un animal 10 fois plus pe-

tit, le métabolisme volumique nécessaire doit étre
100 fois plus important.

Dans l'eau, ou la conductivité est plus impor-
tante, le métabolisme serait trop important pour
un mammifere de petite dimension. Le plus pe-
tit mammifere marin est d’ailleurs le béé phoque,
dont environ la moitié de la masse corporelle est
constituée de graisse isolante!

3 — Modéle d’un fusible [*]

1. On considere la tranche de fusible comprise
entre les abscisses x et x + dx. En régime station-
naire, le bilan d’énergie interne s’écrit

0= 6% Qrecu + 0Pproa dt.
Le transfert thermique recu pendant d¢ vaut

djo(x)
52Qregu = []Q(x) —jQ(x+dx)] Sdr = JQ
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soit avec la loi de Fourier
d? T(x)
52 Qregu =A——

Sdxdz.
Le troncon de longueur dx a pour résistance élec-
trique

La puissance dissipée par effet Joule y est alors
donnée par

dx
)

8Pprod = ORI* = —1I°.

Le bilan d’énergie s’écrit alors

O—AdZT(x)Sd dr+ ¥ r2ar,
dx? YS
soit
*T  F
W'FAYSZ =0.

Avec la condition T(0) = T(L) = Ty, la solution
s’écrit

2

21y S?

Tx)=Ty+ ——x(L—x) .

T(x)

|

|

:

|
L/2 L x

2. La température est maximale au milieu du fu-
sible, en x = L/2. En cas de dépassement de Iy,
la rupture se produit donc en x = L/2.

On a alors
12, I?
Tg =T+ ——
0 81y S?
d’ou

2422y (Ts - To) |
Pour I,,x = 16 A, on calcule
16 x2,5x 1072

2v/2 x 1,2 x 108 x 65 x (390 — 290)
=1,6x10"%m?

S16 =

2

301t S16=1,6 mm* , ordre de grandeur tout a fait

2/14
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3. Levecteur densité de flux thermique est donné
par

dT(x) I
dx  2ySs?

Jo(x) =-A (L-2x).

La puissance recue par conduction en x = 0 (donc
transférée dans le sens + €,) vaut

I
Tth(o) = jQ(O)S = _T .

On a Py, (0) < 0: la puissance est évacuée vers I'ex-
térieur. On calcule  |Py,|=0,65W .

La puissance recue par conduction en x = L (donc
transférée dans le sens — e,) vaut

2

P (L) =—7j (L)S——IL
thL) = —JQ = 2)/8'

Le probléme étant invariant par symétrie par rap-
port au milieu x = L/2 du fusible, on a comme at-
tendu Py, (0) = P (L).

La puissance électrique produite par effet Joule
dans la tranche [x, x + dx] s’écrit

1'2
6P =6RI?> = —dx.
rS

La puissance électrique fournie a I'ensemble du fil
s’écrit alors

Ce résultat était prévisible.
Le bilan d’énergie pour tout le fusible s’écrit

0=06Qrecy +Pedr
avec 6 Qrecu = [P (0) + P (L)] dz, d’otr

Pn(0) +Pn(L) +Pe=0 .

[*]
1. Le probleme étant a symétrie sphérique, on a
T(M) =T(r) et Jo(M) = jo(r)eé;.

Prenons comme systéme une coquille sphérique

de rayon r et d’épaisseur dr, avec R <1 < Ry. En
régime stationnaire, le bilan enthalpique s’écrit

4 — Température de la planéte Mars

)
0=+P(r)dt—D(r+dr)dt = —(Cil—drdt.
r
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Le flux thermique a travers la sphére de rayon r est
donc indépendant de son rayon, soit

S > dT
d :# Jo-dS =47‘[I‘2jQ(I‘) = —AmAr®—.
> dr

On adonc
dT 3 0]

dr agAre’
en séparant les variables, on peut écrire

T ® [7dr
/‘dT:——— dr
4 R r2

en notant T, la température dans le noyau, d’ou

(1)

n

T(r) = Ty 4 — (1— 1)
T ama\r Ry

On élimine le flux thermique en écrivant (1) entre
les deux rayons du manteau :

Ts ) R qr
dr=-— [ =
Ty 47 A R r

ou T est la température du sol, soit

. T_®(1 1)
YY)

R, R,
d’olt
S L
4N R, — R;
On a donc
ﬂn:n+mrn)m&(l~iy
R —Ri\r R;

» On vérifie que I'on retrouve bien T'(R;) = Ty, et
T(Ry) = Ts.

Graphe:

T(r)

Tn

Ts

R R, r

2. La puissance dissipée par le noyau est donnée
par le flux thermique @, soit

RiR,

O =4gAMT, - T. .
(Tn S)RZ_R1

On calcule | ® =103 GW .

Cette énergie trouve son origine dans des désinté-
grations radioactives au sein du noyau de la pla-
nete.

3/14
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3. Au bout de 4 milliards d’année, on peut consi-
dérer que |'on est en régime permanent!

Considérons comme systeme la sphere de rayon r.
En régime permanent, le bilan enthalpique s’écrit

4
0=—-d(r)dr+ gnr3Pth

d’ou AT 4
O(r) = —47rr2/15 = gnr?’PV.
On adonc
d_T _ rPy
dr  31°

En notant T = T(R») la température au sol, on a

P.
T(r)=Ts+ ﬁ(Rg —ry|.

5 — Banc de Kofler [**]

1. On considére comme systéme la tranche com-
prise entre x et x + dx. On effectue un bilan d’en-
thalpie pendant dz en régime stationnaire :

0=d(x)dt—d(x+dx)dt— h(T(x)— T,)adxdt,

le transfert entre le banc et 'air se faisant a travers
la surface dS = (a+2b)dx =~ adx car b < a.

On adonc
do
0= “Ix dxdt—- h(T(x) - T,)adxdt

soit comme D (x) = ab ji (x)

0= 4™ - Toa
dx

Avec la loi de Fourier on obtient

2
T
0=29 Ty nere -1,

dx?
soit
ﬂ—i(T(x)—T)—O
dx? Ab ol

Ab
Enposant0(x) =T(x)—Tyet 6= o ,ona

dx®  6?
dont la solution générale est de la forme

d2e
0(x) 0

0(x) = Be % +Ce*?,

d’ou le profil de température
T(x)=Ta+Be ™% +Ce™? |
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2. Ladistance 6 caractérise la variation de la tem-
pérature dans la barre. On peut considérer cette
dernier infiniesi L> ¢ (dans la pratique si L >
56 'approximation est valide).

La température ne pouvant diverge, on doit alors
avoir C=0 , soit

T(x)=T,+Be ™.

On ne connait pas la température en x = 0, mais
on connait la puissance recue : c’est la puissance
dissipée par la résistance R alimentée sous une
tension efficace U, donnée par

Par continuité du flux thermique en x = 0 a travers
la section ab, on peut écrire

dT B
P=®(x=0=-Aab—(x=0)=Aab—,
dx o

d’ou

B U®é
" AabR

3. Dans le banc de longueur L, le temps caracté-
ristique des variations de températures est 7* =

c 1 P
P2, On peut considérer que la température

dans le banc ne dépend pas de la température
si, du fait de son inertie thermique, il n’a « pas le
temps » de suivre les variations de températures
de la résistances, qui se font avec la période 1/ f
ol f =50 Hz. Il faut donc

PE <f.

En considérant un banc en aluminium, on a
p=27x103kg-m™3, c=897]-K!-kg7! et A =
237W-m™!-K™!; avec L = 0,4m on obtient f >
6 x 107* Hz, ce qui est largement vérifié avec f =
50 Hz.

4/14
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4. La température dépend de I'abscisse x sur la
banc. Les cristaux restant solides jusqu’a une abs-
cisse xt, on en déduit la température de fusion
2
5 e—Xf/5

Tius = Ta +
fus a 1abR

Cette température dépendant de la température
extérieure T, et du coefficient d’échange £, il est
nécessaire d’étalonner le banc avant chaque utili-
sation.

La température de fusion maximale détectable est

L U
AabR’

Tfus,max =T

La valeur de R permet de choisir la valeur de la
température maximale de fusion détectable.

5. Ona
dr  U?
dx ~  AabR
Une incertitude Ax sur la lecture de la position se
traduit par une incertitude sur la température

—-x/6

U2
T=— e Ay
AabR
soit T .
AT = %Ax.

Lincertitude augmente quand Ty, augmente.

[**]

1. Bilan classique en régime stationnaire sur la
tranche comprise entre x et x +dx :

6 — Conduction thermique

0=D(x)—P(x+dx)— h[T(x)- Ts]2nRdx,

dT
avec ®(x) = —A—nR?, d’olt

dx
o—dzT—Zh[T()—T]
T Az AR YTl

On pose § = \/g a patir de I'équation différen-
tielle. Le candidat pourra poser 0(x) = T(x) — T,
pour se ramener a une équation différentielle ho-
mogene.

La solution générale est

T(x)=T,+Ae *° +Be*?
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2. Latempérature est imposée al’extrémité x = 0,
soit T(0) = Top = Ta+ A+ B.

Le flux thermique est continu a I'extrémité x = L,
soit

-2 (d—T) = h[T(L) - Tal,
dx L

qui donne

A

5 |[Ae 0 —Bel?| = h|Ty+ Ae™H? +Bet?|
3. Cette hypothese revient a dire L > §. On ob-
tient T'(x) = Ty + (T — T,) e~ */9.
4. La température diminuant le long de la tige, la

paraffine est évidemment fondue entre x = 0 et x;!
L'abscisse de fusion est donnée par

Txp) = Ty + (To— T)e ™0 = T,

d’ou T
xf:6ln( 0 a).
Ti— Ty
X1 X X
Pour les deux tiges, on a donc L= 22 soit —— =
61 06> VA1

2
X

dott Ay = Ay (—2) =656 W-m~!-KL,
X1

X2
Vs
5. Le ventilateur augmente le flux conducto-
convectif (sa partie convective), donc h, donc 6
diminue; les abscisses de fusions sont donc plus
petites.

[**]

1. Le bilan d’énergie appliqué a la tranche [x, x +
dx] en régime stationnaire s’écrit

7 — Barre parcourue par un courant

do
0=0(x)dt—DP(x+dx)dt = “Ix dxdz,

d’olt ®(x) = ®¢ uniforme. Comme ® = jo(x)S, jo

est uniforme, et d’apres la loi de Fourier on a donc
dT T()-TO) T-T
dx L L

)

-1

T(x)= x+T17 .

La puissance fournie par la source en x = L est
donnée par le flux thermique en x = L (qui a la
méme valeur pour tout x d’ailleurs), soit

P,=-1—3S§
2 dx

P—AS(T 1)
2= =12

5/14
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2. Il faut ajouter un bilan d’énergie I'énergie créée
dans la tranche [x,x + dx] pendant d¢ par effet

Joule :

d
Poroadt = p—Sszdt.

Le bilan d’énergie s’écrit alors

d’r d
0=AS2 sdxdr+ 255 2 qr,
dx? S
d’ ou
d*T  pI?
dx2 AS’

On en déduit

2

pl© ,
| =——x“+Ax+B.
(x) o X X

On a d'une part
T0)=T,=B
et d’autre part

TL) =T, = P o arsT
T 27 7os !

T, — T, I?
=22 1+p—L.

A
L 218

On adonc

pI?
+
*Toas

pI? », -1

T(x) = —
) =-15" 3

Lx+ T,

soit

I? T,— T
T(x):g/l—sx(L—x)+ 2= 1

x+ 1T .

La puissance a I’abscisse x est donnée par

P = a2 s o1y pIZL+AS(T )
TP 2 Lol

soit

P(x)=pl? (x— 5) +E(T1 —Ty)|.
2] L

3. La puissance cédée a l'extrémité x = L vaut
alors

AS

pI’L
= +T(T1— Tz) .

2

Le premier terme correspond a la puissance éva-
cuée due a 'effet Joule, le second terme a la puis-
sance due a la différence de température entre les
extrémités de la barre.

2
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4. En x =0, on obtient

AS

pI’L
= 4P T(Tl = Tg) .

2

P =

Le terme di a la différence de température est in-
changé (le flux correspondant est uniforme); le
terme da a I'effet Joule est changé de signe : cette
puissance est ici aussi évacuée de la barre.

5. Latempérature va évoluer de fagon irréversible
vers un état d’équilibre caractérisé par une tempé-
rature uniforme T; dans la barre.

Considérons une tranche [x, x+dx] de la barre; un
bilan d’énergie entre 1’état initial ou 'on isole la
barre et I’état final d’équilibre s’écrit :

dU = pcSdx[Ts— T(x)].
L'énergie interne étant une grandeur extensive, la
variation d’énergie interne entre ces deux états

pour la totalité de la barre s’obtient en sommant
le terme précédent sur la totalité de la barre, soit :

L
AU:/ pcS[Ts— T(x)]dx.
0

La barre étant calorifugée, le premier principe
conduita AU =0, d’ou apres simplification

L L
/[Tf—T(x)]dx:O:LTf—/ T(x)dx
0 0

La température finale est donc donnée par

1 L
T; = z/o T(x)dx.

» Onremarque que c’est]’expression de la valeur
moyenne de la température T'(x) sur la barre a
I'instant initial.

On calcule
I? (13 13\ Th-T,I2
S RN LY S
2AS8\2L 3L L 2L
soit
EE T T
Tf:P Lt
1218 2

6/14
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[**]

1. Effectuons un bilan d’énergie en régime sta-
tionnaire pour une tranche de section S, comprise
entre zetz+dz:

8 — Compost

0=d(z)dr - CI>(z+dx)dt+Qs1n( H)Sdzdt

= —i—dzdt+Qsm( H)Sdzdt

. . dT
soit comme ®(z) = jo(z)S=-1—3§

dz
d’T
0= AFSdzdt+ Qsm( 7 ) Sdzdzt.

On adonc

d’T Qs_n(ﬂZ)

—_— T — 1 —

dz? A H
On en déduit

Nous pouvons utiliser a ce stade la condition en
z =0:la surface au sol étant parfaitement isolé, le
flux thermique est nul en z = 0, soit

dT(z—O)—O—QH+A
dz = 7 A '

H
Onadonc A= —Q—, d’ou
An

dT  QH nz
dz An < (37)

On en déduit

QH nZ

T(z) = S m(—)
A

La condition au sommet du tas de compost, en

z = H, est donné par la continuité du flux ther-

mique, donné d’'un c6té de I'interface par la loi de
Fourier, et de 'autre par la loi de Newton :

dT
—A—(z=H) = h[T(H) - Tpl
dz
soit
QH QH QH? ]
A T ﬂn’] h[ e +B-Tp| .
On adonc
2QH QH?
B=—— To,
hm An 1o
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d’ou

T(z)=

H? (ﬂZ) QH .2QH+ QH?
sSIN|— | — Z .
Am? H) An hn  An+T,

La température dans le tas de compost est donnée
par

QH?
AT

T(z) = %sin(ﬂ)+1_£+ﬂ

H

La température est maximum en z = 0 (dérivée
nulle par nullité du flux) et vaut

fnnm(ztgffz lﬁ-fék -+]b
Am hH
La température au sommet vaut
T(H) = Tin = QHZ 2A —+Tp= 2QH + Tp.
“An hH nh

Pour0<z< H,ona

jizr (if[cos(TZ) 1]<0.

La température diminue vers le haut du tas (le flux
thermique est partout dirigé vers le haut).

T(z2)

Tmax

T(H)

2. La puissance dégagée par le compost pourrait
se calculer directement a partir de la puissance vo-
lumique donnée (en intégrant sur tout le volume
du tas). Il est cependant plus simple d’effectuer un
bilan d’énergie en prenant comme systeme le tas
de compost entier.

En régime stationnaire, pendant d¢, on a

0=6Qreudr +Pdt,
avec
dr
6Qrequ=~®(x= H)dt = 15— (z= H)d.

On en déduit
QHS

?:—ASd—T(z:H):— [cos(m) — 1]
dz

soit
2QHS
= |

P =

7/14
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» On obtient le méme résultat bien str par le cal-

cul de
fP:/ Qsm(jr )Sdz
0

» Le volume du tas étant SH, la puissance volu-
. > 2
mique moyenne creee vaut —Q
/4

9 — Diffusion thermique instationnaire
[**]
1. On vérifie que

T0,00=Ty et T(L,0)=Tp .

2. Le probléeme unidimensionnel sans source est
régi par I’équation de la chaleur

o7 aa2 avec a
=a— av =—.
or ox? oc
Ecrivons que T(x,1) = Ty + f(x)g(t) vérifie cette
équation :
fwg'w=af"x)gt)
soit
f”(x) _8W®
f (x) g

Le premier membre de cette égalité est indépen-
dant de ¢, tandis que le second membre est indé-
pendant de x (par construction); chacun de ses
membres ne dépend donc ni de ¢ ni de x : ils sont
donc égaux a une constante.

On a donc d’'une part

g'(n) _
g(1)

d’ou

g(t)=g(0)e?! .

Physiquement, g(#) ne peut diverger; on doit donc
avoir A < 0. Comme A est homogene a l'inverse
d'un temps, on pose A=—1/1, et

gt)y=g0e "',
On a alors
fll(x) ~ l
f (x) T’
soit

" i _
)+ mf(x) =

On en déduit

fx) = asin(\/%) +ﬁcos(

=)
ar)’
La condition initiale s’écrit, en posant1 g0)=1

T(x,0) =T, +9sin(”—Lx) = Ty + f(x)

d’ou

fx)= asin(\/%) + fcos (\/%) = Hsin(n—Lx) .

1 7T
Onendéduit =0, a=0et—=—,dourt=
p var L
L2
an?’
On adonc

2

g(t) =exp (—ﬂ t) et | f(x)= Hsin(ﬂ) .
L
La température dans la barre s’écrit donc

. (WX am?
T(x,t):T0+651n(T)exp —71‘ .

3. Le vecteur densité de courant thermique est
donné par la loi de Fourier

. oT b3 X an?
jolx, ) =—A—= —)LHZ cos(T) exp (——t)

0x 12

En notant S la section des plaques, le flux ther-
mique en x est donné par

2
D(x, 1) = —ASG% cos (%) exp (—ﬂ t)

L2

1. L'éventuelle constante multiplicative sera dans la fonction f.

CPGE PSI12025-2026
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[**]

1. Prenons comme systeme la goutte de rayon R.
Le premier principe pendant d¢ s’écrit

10 — Solidification d'une goutte

On a d'une part

4

4 dT
dU = 37'£R3pCdT: gnRspc—

dz
dr

et d’autre part
8 Qrecu = —hATR?[T (1) - Tl dt.

Apres simplification, on obtient

cRdT— 3h[T(t) — Tyl
Py T al

2. L'équation différentielle précédente s’écrit

TdT +T(t)=T, avec T= pcR
dt e "~ 3h
On en déduit
T(t)=Ae " +T,.
Avec la condition initiale T'(0) = T, on obtient
T()=(Te—Tye " +T, .
3. Dela condition
(Te—Tae VT4 T,=T;

on déduit

Te—T.
Z'1:‘L'll’l( ° a)'

Tf_ Ta

Oncalcule # =50s .

4. Décrivons I'évolution :

état initial masse m d’eau liquide a Ty = -5 °C;

état final masse xm d’eauliquide et (1—x)m d’eau
solide a T =0 °C.

Lensemble est isolé; I'énergie nécessaire a aug-

menter la température de la goutte provient de la

solidification, exothermique.

On considere I'état intermédiaire fictif o1]’eau est

liquide a 0 °C. La variation d’enthalpie de la goutte

entre I’état initial et cet état est

AHI = mC(T() — Tf) .

CPGE PSI12025-2026

Lycée Jean Perrin

La variation d’enthalpie entre cet état et |’état final
correspond a la solidification d'une masse (1-x)m
d’eau:

AH, = —(1— x)mAgysh

L'enthalpie étant une fonction d’état, le bilan pour
toute I'évolution s’écrit

AH=0=AH, +AH,

soit
mc(Ty—Tp) — (1 — x)mAgsh =0.

On en déduit

_c(To=Tp
Afush

=1

On calcule | x=0,94 |: il reste 94 % de la masse de
la goutte sous forme liquide.

La goutte d’eau est dans un état de surfusion : elle
est liquide a une température Tr = =5 °C ot elle de-
vrait étre solide. Cet état est métastable : une petite
perturbation (choc, impureté) déclenche le chan-
gement d’état. C'est le principe des pluies vergla-
cantes.

5. La derniere phase est une solidification de
la goutte isobare, donc isotherme (propriété du
changement d’état). La température de la goutte
étant constante, son enthalpie ne varie pas (dH =
mcdT = 0). Le premier principe appliqué a cette
derniere phase de durée At s’écrit alors

0= Qregu + Qprod
soit
2 4 3
0=—h4nR*(Ty - L)AL+ x27R PAfush.
On en déduit

pRAfush

ANt=x——— .
*3h(To - T

On calcule At=1,4x10%s soitun peu plus de
2 minutes.
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[**]

1. On fait un bilan d’énergie a la goutte entre ¢ et
t+de:

11 — Neige artificielle

du = 6Qre(;u

soit
4
57:1!?3,0cng =—®dt=-h[T(t) - T.)JAnR*dt,

d’ou
dT  3h (T - T.]
dt  pcR e

La température suit donc I’équation différentielle

dT T T,
+—=—

_ pceR
dt T T - '

3h

T

2. Lasolution de cette équation différentielle est

T()=[T,— Tele " +T,.

Ona
T(to) = [T, Tele /" + T,
d’ou
T — T,
th= Tln(#)
T(fo) - Te
On calcule
103x4,2x103x0,2x1073
T= =43s

3 x65
puis

1Hh=39s .

3. La goutte se retrouve liquide a la température
de -5 °C, température a laquelle son état stable
est solide. C’est ce qu'on appelle le phénomene
de surfusion. L'eau va rapidement évoluer vers son
état stable en se solidifiant partiellement.
L'évolution étant rapide, on peut la supposer adia-
batique (les transferts thermiques n'ont pas le
temps de se faire), et le premier principe appliqué
ala goutte s’écrit

AH=0.

Lenthalpie étant une fonction d’état, nous pou-
vons décomposer "évolution en deux étapes fic-
tives pour calculer sa variation :

étape 1: variation de température de T(f) a
Ttus = 0°C, avec une variation d’enthalpie
AHl N
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étape 2: solidification d'une masse (1 — x)m
d’eau, avec une variation d’enthalpie A H,.

On adonc
AH), = mcy[Tis — T(to)]
et pour la solidification
AH, = (1 — x)m(—Agys H) .
De AH =AH; + AH, =0 on tire
mcy[Trs — T(tp)] — (1 = x)mAgs H=0

d’ou

_ Cl[Tfus - T(l‘o)]
AfusI_I .

x=1

On calcule x=0,94 .

4. Lasolidification du reste de I’eau liquide se fait
ala température Ty.

Appliquons le premier principe a la goutte pen-
dant la durée #; de la solidification de la masse
dm:

AH = —-dmAgH = —4nR*h(Ty - To)

avec A
dm=xm= xgnpR3,
d’ ot
H = pXRAfusH
' 3R[T-Te)

On calcule # =21,3s .

12 — Transfert thermique dans une poutre
[**]

1. Effectuons un bilan enthalpique pendant dz a
la tranche de poutre comprise entre z et z+dz:

0=PD(2)dt—D(z+dz)dt—2nah[T(z)— T,)dzdt
soit
do
0=——-2mah([T(2) - T,].
dz

La loi de Fourier conduit a

d?T
A— —2mah([T(z) - T,] =0.
dz?

En posant 0(z) = T(z) — T,, cette équation est de la
forme

2nah
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ol 6 est une longueur caractéristique.

Compte tenu de la parité des conditions aux li-
mites, on a intérét a écrire la solution sous la
forme

0(2) = Acosh(g) +Bsinh(§) .

Les conditions aux limites s’écrivent

L L
Tm—Ta= Acosh(%) +Bsinh( )

26
L . L
Tm—Ta= Acosh(ﬁ) - Bsmh(%)

La différence conduit a

L
0=2Bsinh|—
sin (26)

d’ou B = 0 (ce qui était prévisible, la solution de-
vant étre paire), et la somme donne

L
2T —Ty) = 2Acosh(—)

26
d’ou
 Tm-Ta
cosh(%) '

On adonc

cosh ()

T(2)=Ta+ (T;y — Ta) i
cosh (5)

» On peut aussi écrire la solution générale sous la
forme
0(z) = Ae*® +Be*?

Les conditions aux limites s’écrivent alors

Ty — T, = Ael? 4 Be~1120

To— T, = Ae 1120 4 Bel120

11 est plus calculatoire de déterminer les constantes
A et B (qui sont différentes des constantes précé-
dentes).

2. Soit @y le transfert thermique sortant de la
poutre vers lair.

Appliquons le premier principe a 'ensemble de la
poutre :

0=®(-L/2)dt-D(L/2)dt—Dsdt

ol ®(—L/2) est le flux entrant en z = —L/2 et
®(L/2) estle flux sortanten z = L/2.
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Ona
dT T T, sinh(3)
dz 0 cosh(%)
d’ou
dTr A7 a? sinh (£
() = -Amga? =22~ T (‘2)
d 0 cos (%)
On adonc
A a? L
D(L/2)=—- (T — Ty) tanh % =-—P(-L/2)

d’ou1 le flux sortant total

2Ama?
(DS = 6

L
(Tyn — T3) tanh (%) .

» On peut mener un calcul direct de ce flux en inté-
grant le flux sortant, donné par la loi de Newton, a
travers la section de la tranche [x, x + dx] :

Li2
D = / (T(2) - Ta)2madz.
-L/2

[**]

1. Bilan d’énergie sur une tranche [x,x + dx] en
régime stationnaire :

13 — Lafine ou lI'épaisse?

O(x)—P(x+dx)—h[T(x)-Tal2(a+b)dx =0

d’ou en linéarisant et en utilisant la loi de Fourier

d?T T -T,
dx? 52
avec
B Aab
“\ 2h(a+Db)

homogeéne a une longueur d’apres I'équation dif-
férentielle.

2. Solution générale
T(x)=Ae *° +Be"? +T,.

Ailette «infinie» si L >> . On adonc B =0, et avec
T(0) = T, on obtient

T(x)=(To-Ty)e " +T, .
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3. Ona

dr
jQ(x) =-1—=A

To— Ty e—x/5
dx 1) '

Le flux total évacué est donné par le flux entrant
en x = 0 (on peut le justifier par un bilan d’énergie
en prenant comme systeme la totalité de 'ailette),
soit

Dot = jo(0)ab.

On obtient

2h(a+ b)
Aab

=(To—Ta)V2hAab(a+Db).

Le flux total est proportionnel a vab(a+ b). Le
rapport des flux est donné par

A
Dior = E(TO —Tyab=A(Ty—Ty)ab

Ofne  Vabla+b) 2,28 )
(Dépaisse vab(a +b) 1,4 a

Lailette fine permet d’évacuer plus de deux fois
plus d’énergie que 'ailette a section carrée.

4. Quand L est « grand » devant §, on a T(x) =
T, et l'ailette ne sert plus a rien. Compte tenu
du terme e *'°, on peut se limiter 2 L = 55 par
exemple (ou L = 30).

II vaut mieux donc plusieurs ailettes courtes en
paralléle qu'une ailette longue, et prendre des ai-
lettes les plus fines possibles. La photographie
confirme ces choix.

14 — Ailette de refroidissement [***]

1. Nous allons chercher la puissance évacuée par
une ailette. On effectue un bilan d’énergie pen-
dant d¢ sur la tranche comprise entre x et s+ dx
en régime stationnaire :

0=0(x)dt —D(x+dx)dr— 6D, dt

do
= P dxdt—h[T(x)—6.12nRdxdt
x

T,
=A——=nR*dxdr—- h[T(x) —0.]12nRdxdt.

dx?

On en déduit
d’°T Zh[T(x) 6.1=0
dx2 AR e

En posant la distance caractéristique

AR

0= ,
2h

CPGE PSI12025-2026

Lycée Jean Perrin

la solution générale de I'’équation différentielle est
T(x) =0+ Ae % +Be*? .

Nous allons faire I'hypothese que le modéle de
l'ailette infinie peut s’appliquer (on discutera de
cette hypothese a posteriori). On doit alors avoir
B =0, et la condition a la limite T'(0) = 6y permet
d’écrire

T(x) = 0p + (Og — Oe) e /0 .

La puissance totale évacuée par l'ailette est don-
née par le flux thermique a travers sa section en
contact avec le moteur :

dT
®;=00)=-A—(x=0)7R>.
dx

» Pour sen convaincre, effectuons un bilan
d’énergie en considérant comme systeme la to-
talité de lailette. En régime stationnaire, on
peut écrire en notant o > 0 le flux total sor-
tant de l'ailette (a travers sa face latérale et son
extrémité)

0=+D(x=0)dt— Dy dt

d'ont (I)tOt =P(x=0).
On calcule
dTr B 0y — 0,

-x/0
— == e
dx

5 )

d’ou

- [2
P, = wn# = Ay —06,) A—ZnRZ.

La puissance totale dissipée par une ailette vaut

donc
2hA
®; = \/T(Go—ee)n}ez.

On calcule ®; =4,8 W.

Il faut donc 9 ailettes pour évacuer la puissance
O =40W.

Discussion : 'hypothese de lailette infinie est-elle
valide? Elle revient a considérer que la longueur
de la tige est grande devant la distance caractéris-
tique de l'évolution de la température dans celle-ci :
L>4.

On calcule 6 = 6,3 cm. Lapproximation 6 < L
semble osée, mais des deux grandeurs apparaissent
dans le terme e™'% = 0,09 qui est « assez petit » de-
vant 1. Lhypothése, sans étre largement vérifiée, est
acceptable.
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2. On pourrait améliorer le systeme :

— en utilisant un ventilateur pour se mettre en si-
tuation de ventilation forcée; h est alors plus
élevé, ainsi que la puissance évacuée par une
ailette;

en prenant des ailettes de profil différent, qui
augmente la surface d’échange pour une sec-
tion donnée.

15 — Production d’entropie [***]

1. Enrégime stationnaire, 'entropie de I'élément
de longueur dx ne varie pas dans le temps. Sa va-
riation pendant d¢ est donc nulle et le bilan d’en-
tropie s’écrit

0= 528regu + 5250réé .
Lélément recoit en x le transfert thermique
0Q(x) = jo(x)Adr

a travers sa frontiere a la température 7'(x); I'en-
tropie recue en x vaut donc

5Q() _ jolx)

— = Adt.
T (x) T(x)

5Sre(;u,x =

L'élément regoit en x + dx le transfert thermique
0Q(x+dx) =—jo(x+dx)Adz

a travers sa frontiere a la température T (x + dx);
I'entropie recue en x + dx vaut donc

6Q(x+dx) _jQ(x+dx)
T(x+dx)  T(x+dx)

Lentropie totale recue s’écrit alors

5Sre(;u,x+dx =

2
6 Sre(;u = 5Srequ,x+dx + 5Sre§u,x

_ jQ(x+dx)_jQ(x) dr
| Tx+dx) T
_ 4 [JeWT s
dx | T(x)

En régime stationnaire, ’équation de la chaleur
s’écrit d4i

Jo) _ 0

dx
Le flux thermique est alors indépendant de x, soit
Jo(x) = jo. On aalors

dJ 1
6%Siocy = —Ajo— | —— | dxdr
regu Jde[T(x) .
1 dTW)
= Adxdr
Q2 Tax 4
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dr
Avec la loi de Fourier, jo=-A1 d(x) et
X
6 Srou = — (dT(x))zAdxdt
T 20 | dx '

2. Le terme de production d’entropie s’écrivant
52Scré6 = 0sAdxdt, le bilan d’entropie conduit a

On a bien og(x) >0 , ce qui traduit le caractere
irréversible du transfert thermique.

Nous en en présence d'un état stationnaire hors
d’équilibre : les grandeurs intensives ne dé-
pendent pas du temps, mais ce n’est pas un état
d’équilibre car elle ne sont pas uniforme : il y a un
gradient de température, donc un flux thermique
dont le sens s’inverserait si on « passait le film a
I'envers ».

Le gradient de température est uniforme en ré-
gime stationnaire :

AT T-T
dx L

Le taux de production d’entropie est donc maxi-
mal a I'extrémité ol la température est la plus
basse, c’est-a-direenx=0;ona

_MD-T)?
Tsmax= "
1

-3 -1

On calcule  O§max=1,78]-K1-m™3-s

16 — Gel d’un lac [***]
1. Représentons la situation :
T
O S
glace
z(t) 1dz
Tt
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Un bilan d’énergie dans la glace conduit a I'équa-
tion de la chaleur (probleme unidimensionnel
sans source) :

0Ty  0°T
Pecs g, =5z

Les conditions aux limites sont

T50,0)=Ts et Tg(z(t),1)=T; .

2. Entre t et t +dt il se forme une épaisseur dz
de glace. Nous allons effectuer un bilan d’enthal-
pie pendant d¢ sur une section S de cette tranche
d’eau qui se solidifie.

Sa masse étant pgSdz, sa variation d’enthalpie
lors de sa solidification est?

dH = —pgSdzAgyh.

Le bilan d’énergie s’écrit

dH:aQrequ
avec
. 0Ty
6Qre(;u = ]Q(Z([))Sdt = —AESdI.
On adonc
0T,
—pgSAfshdz = -A——S8dt
0z
soit
0T, dz
— = poArygsh— .
0z Pgltus dr

3. Supposer z constant pendant d¢ revient a se
placer dans |'approximation des régimes quasi-
stationnaires.

4. La premiere équation différentielle devient

alors
d*T,

dz2

Le gradient 3 de température vaut alors

dTg
dz

Tf_ T

z(1)

5. L'équation différentielle établie a la question 2
s’écrit alors
Ty — T
z(1)

dz

= PgAfusha

soit en séparant les variables :

En prenant z(0) = 0 (la couche de glace commence
a se former a l'instant ¢t = 0), on obtient

Te— T
Zz(t) :A#L
pgAfush
soit
AMTi— T,
z(t) = M\/f .
pgAfush

On remarque que z(f) « /t : 'épaisseur de la
couche de glace augmente « de moins en moins
vite » : I'écart de température entre les faces de la
couche reste constant, mais I'épaisseur augmen-
tant, le gradient de température diminue au cours
du temps; il en est donc de méme du flux ther-
mique évacuant I'énergie libérée par la solidifica-
tion qui se trouve alors ralentie.

Les facteurs augmentant 1’évacuation de 1'éner-
gie produite lors de la solidification ont pour ef-
fet d’augmenter 1'épaisseur de la couche de classe
pour une date ¢t donnée :

— si la conductivité A augmente, z(f) augmente
donc;

— si pgAgsh augmente, z(f) diminue (il faut éva-
cuer plus d’énergie) ;

— si Tf— Ty augmente, z(f) augmente (le flux ther-
mique augmente).

2,1 x30

940 x 335 x 103 Vit pour dif-

6. Oncalcule z(t) = \/

férentes valeurs de t.

1 mois
72 cm

1 minutes
3,5 mm

Durée
Epaisseur

1 jour
13 cm

Les ordres de grandeur sont cohérents.

2. Attention au signe : 'enthalpie de solidification est]’opposé de 'enthalpie de fusion.

g —

—
3. On donne sa composante selon € ; on a bien stir grad Ty = @ e,.
z
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