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TD phénomènes de transport Diffusion thermique— Partie 2

 ;;;; ARQS et résistance thermique <<<<

1—  Chauffage d’un igloo [*]

Pour passer la nuit, un inuit veut construire un igloo
fait d’un mur constitué de neige compactée de 4 m2

de surface. La neige compactée est un bon isolant de
conductivité thermique λ= 0,25 W ·m−1 ·K−1.

1. Exprimer la résistance thermique des parois de
l’igloo en fonction de l’épaisseur e de la paroi. On né-
gligera la courbure des parois.

2. Pendant son sommeil, l’inuit dégage 0,5 MJ de cha-
leur par heure. Exprimer la puissance de l’inuit en tant
que source de chaleur dans les unités du système inter-
national.

3. Pendant la nuit, quand le feu à l’intérieur de l’igloo
s’est éteint, la température intérieure est Tint = 20 °C,
tandis que celle à l’extérieur est Text = −40 °C. Si la
conduction thermique à travers les murs de l’igloo est
le facteur dominant dans les pertes thermiques, quelle
est la valeur de e pour que l’intérieur de l’igloo ne se
refroidisse pas?

4. En fait, l’épaisseur est trop importante pour que l’on
puisse négliger la courbure des parois. Faire la bilan
thermique en coordonnées sphériques, et trouver la
résistance thermique Rth en fonction des rayons inté-
rieur et extérieur de l’igloo, demi-sphérique. Étude de
la limite si e ≪ Rint.

2—  Diffusion thermique dans une barre [**]

On considère une barre (représentée en gris sur le
schéma) homogène de longueur L, de conductivité
thermique λ, de section S et de masse volumique ρ.
Deux sources de température sont placées à ses deux
extrémités comme indiqué sur le schéma.

T1, C1 T2, C2

L0 x

1. On suppose les sources idéales.

1.a) Que valent C1 et C2 ?

1.b) On se place en régime permanent. Donner T (x).

2. On considère plus que les sources ne sont plus
idéales, et on se place en régime quasi-stationnaire.

2.a) Discuter de la validité de l’hypothèse.

2.b) Déterminer T1(t ) et T2(t ).

3—  Le parpaing a un petit creux [**]

1. On considère un phénomène de diffusion ther-
mique unidimensionnel dans un matériau de longueur
L, de section S et de conductivité thermique λ.

Rappeler la définition de la résistance thermique d’un
milieu en précisant les hypothèses nécessaires, puis
établir son expression dans le cas du matériau consi-
déré. Préciser son unité.

On considère un parpaing creux en béton, dont les
dimensions sont indiquées sur la figure ci-dessous
(l’épaisseur de la paroi est constante, égale à e). On
note λa la conductivité thermique de l’air et λb celle
du béton.
On donne a = 20 cm, b = 15 cm, c = 40 cm, e = 2 cm,
λa = 2,6×10−2 W ·m−1 ·K−1 et λb = 0,92 W ·m−1 ·K−1.

x

b

ca

e
e

2. On impose les températures T1 à la face x = 0 et T2

à la face x = b. Déterminer le flux thermique traversant
le parpaing en régime permanent.

3. Quelle serait l’épaisseur b′ d’un parpaing de béton
plein qui serait traversé par le même flux thermique,
les dimensions a et c étant inchangées? Commenter.

4—  Isolation d’une canalisation [**]

a

b

On considère une canalisa-
tion cylindrique de longueur
L, de rayons intérieur a et
extérieur b, et de conducti-
vité thermique λ. On étudie
la diffusion thermique en régime stationnaire entre la
face interne et la face externe en négligeant les effets
de bords : la température dans le tube s’écrit T (r ) en
coordonnées cylindriques d’axe l’axe du tube.
On rappelle que pour T (r ) en coordonnées cylin-

driques, on a
#      »

gradT = dT

dr
#»e r et ∆T = 1

r

d

dr

(
r

dT

dr

)
.

1. Rappeler la définition générale de la résistance ther-
mique.

2. Donner l’expression du flux thermique sortant Φ(r )
à travers un cylindre de rayon r ∈ [a,b] de de longueur

L en fonction des données et de
dT

dr
.
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Que peut-on dire de ∆T en régime stationnaire? En dé-
duire que le flux thermique Φ(r ) = Φ est indépendant
de r .

On note T1 la température de la face interne du tube et
T2 celle de sa face externe. Relier alors T1−T2 à Φ et aux
données du problème, et en déduire l’expression de la
résistance thermique Rth,1 du tube en fonction de a, b,
λ et L.

3. On rappelle la loi de Newton donnant le flux ther-
mique à travers une surface S d’un solide à la tempé-
rature TS vers un fluide à la température Te : ΦS→e =
hS(TS −Te), où h est le coefficient de transfert convec-
tif. Montrer que l’on peut associer une résistance ther-
mique Rconv à ce transfert convectif, dont on donnera
l’expression en fonction de h et S.

4. Un fluide circule dans le tube, qui est entouré d’air ;
il se produit donc des transferts convectifs sur les deux
faces de la canalisation, caractérisés par les coefficients
de transfert h1 pour la face interne et h2 pour la face ex-
terne.

Donner la résistance thermique totale Rth caractéri-
sant le transfert thermique de l’intérieur du tube vers
l’air extérieur.

5. On cherche à minimiser les pertes thermique en en-
veloppant le tube d’un matériau isolant de conducti-
vité λiso, de rayon r .

a
b

r

Que devient la résistance thermique R ′
th de l’en-

semble?

Montrer que la résistance thermique passe par un ex-
tremum pour une valeur critique rc de r que l’on dé-
terminera. À quelle condition cette situation sera pos-
sible? Est-ce un minimum ou un maximum?

6. En étudiant le signe de R ′
th − Rth, discuter de l’in-

fluence de l’isolant sur le flux thermique.

On parle du « paradoxe de l’isolant » : discuter.

5—  Isolation d’une conduite [***]

Version moins guidée de l’exercice précédent.
On considère une conduite entourée d’un isolant.
Les phénomènes de convection sont modélisés par la
loi de Newton : dΦ= h(T −Te)dS.
On note h1 le coefficient d’échange air/conduite et h2

le coefficient d’échange isolant/air.
On donne également l’expression de la résistance ther-
mique en coordonnées cylindriques

Rth = 1

2πλL
ln

(
R2

R1

)
,

où R1 est le rayon intérieur, R2 le rayon extérieur, λ la
conductivité thermique du cylindre de longueur L.

R1

Conduite épaisseur e
conductivité thermique λc

Isolant épaisseur x
conductivité thermique λi

Est-il vrai que plus il y a d’isolant, meilleure est l’isola-
tion? Si non, quelle est la condition sur x pour avoir la
meilleure isolation?

6—  Expérience de regel [***]

On pose un fil métallique de section rectangulaire de
côtés b selon (O y) et c selon (Oz) aux extrémités du-
quel sont fixées deux masses m/2 sur un gros bloc de
glace. On constate que la glace fond sous le fil, que le fil
descend doucement à vitesse constante v et que l’eau
regèle au-dessus du fil.

1. Évaluer, à l’aide notamment du diagramme (P,T ) et
des données, la différence de température Ti −Ts entre
le dessous (indice i )et le dessus (indice s).

On donne m = 5 kg; a = 20 cm; b = 0,5 mm et c =
5 mm.

2. On suppose que le régime de diffusion thermique
dans le fil est stationnaire.

En appliquant le premier principe à la couche d’eau so-
lide d’épaisseur dz qui fond sous le fil, en déduire la vi-

tesse v = dz

dt
.

Données : λ = 80 W ·m−1 ·K−1 ; enthalpie massique de
fusion de l’eau à 0 °C : ∆fusH = 330 kJ ·kg−1.

ä On appelle enthalpie massique de changement
d’état ∆h1→2(T ), ou chaleur latente de changement
d’état ℓ1→2(T ), la variation d’enthalpie massique du
corps pur lors de la transition de phase 1 → 2. Cette
grandeur est tabulée en, fonction de la température
car elle ne dépend que de T .
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ä Pour une masse m de corps pur, passant de
l’état initial {phase 1,T,Péq(T )} à l’état final
{phase 2,T,Péq(T )} on peut calculer la variation
d’enthalpie due au changement d’état par

∆H1→2 = mℓ1→2(T ) .

7—  Trois barres en contact [***]

On considère le dispositif représenté ci-dessous dans
lequel les deux extrémités A et B sont maintenues aux
températures stationnaires TA et TB . Les trois barres
(d’indices 0, I et II) sont caractérisées respectivement
par des sections d’aires respectives S0, SI et SII et par
des conductivités thermiques λ0, λI et λII et de même
longueur notée L0.
On note TC la température à la jonction C et Tx la tem-
pérature en un point d’abscisse x de la barre 0, de lon-
gueur totale L0 = 20 cm.

A B

C

III

0

Tx

x

On mesure Tx = TC pour x = 4 cm. En déduire la
conductivité thermique de la barre II.
Données numériques
Les aires sont toutes égales à 1 cm2

Les barres 0 et I sont en acier, pour lequel λ =
50,2 W ·m−1 ·K−1.
TA = 273 K et TB = 373 K.

8—  Détermination d’une conductivité thermique
[**]

On souhaite déterminer la conductivité thermique λ

d’une barre cylindrique de section S et de longueur L.
On utilise le dispositif suivant :

tige métallique calorifugée

bain thermostaté calorimètre

T1

sonde
thermo-
métrique
T2(t )

La tige, calorifugé latéralement, plonge d’un côté dans
un bain thermostaté maintenu à la température T1

constante, et de l’autre dans un calorimètre de capacité
thermique C , rempli d’une masse m = 400 g d’eau. Ini-
tialement, T2(0) < T1, et on relève l’évolution de T2(t )
au cours du temps.

1. On fait l’hypothèse d’un état quasi-stationnaire :
l’évolution de T2(t ) est « suffisamment lente » pour que
l’on puisse considérer le régime stationnaire atteint à
chaque instant dans la tige.

Établir alors l’expression de la résistance thermique de
la tige en fonction de L, S et λ. En déduire l’expres-
sion du flux thermique traversant la barre dans le sens
thermostat → calorimètre en fonction des tempéra-
tures T1 et T2(t ).

2. En effectuant un bilan d’énergie au système {eau+
calorimètre}, établir l’équation différentielle vérifiée
par T2(t ). On notera C2 la capacité thermique totale de
l’eau et du calorimètre.
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Montrer que l’évolution est décrite par une constante
de temps τ que l’on exprimera, et en déduire l’expres-
sion de T2(t ).

3. On donne le graphe de t en fonction de

ln

(
T2(0)−T1

T2(t )−T1

)
, sur lequel on représente la régression

linéaire effectuée avec les points expérimentaux.

La tige a pour longueur L = 68 cm et pour dia-
mètre D = 1,2 cm. La capacité du calorimètre est
C = 180 J ·K−1 ; on y a placé m = 400 g d’eau, et on
donne ceau = 4,186 J ·g−1K−1.

En déduire une estimation de la conductivité λ de la
tige.

On donne :

λAl = 237 W ·m−1 ·K−1 ;

λCu = 401 W ·m−1 ·K−1.

De quel métal est constituée la tige?

4. On rappelle l’équation de la chaleur unidimension-

nelle : ρc
∂T

∂t
= λ

∂2T

∂x2 . Par analyse dimensionnelle,

donner l’expression du temps caractéristique du phé-
nomène de diffusion thermique dans la barre en fonc-
tion des grandeurs physiques en jeu.

On a considéré l’évolution quasi-stationnaire (cf. ques-
tion 1). À quoi revient cette approximation en raison-
nant sur les échelles de temps du problème?

Est-elle vérifiée ici?

Données :

— pour l’aluminium ρAl = 2,7 g ·cm−3

et cAl = 897 J ·K−1 ·kg−1 ;

— pour le cuivre ρCu = 8,9 g ·cm−3

et cCu = 386 J ·K−1 ·kg−1.

5. Si l’évolution ne peut être considérée comme quasi-
statique, notre évaluation expérimentale de λ serait-
elle sur-estimée ou sous-estimée par rapport à la valeur
réel ?

9—  Conductivité du givre [***]

Exercice calculatoire. . .
On modélise le givre comme la répétition d’un même
motif : un cube de côté a, comprenant un sous-cube
d’air de côté b, le reste de la matière du motif étant de
la glace.

Conductivités thermique : λglace = 2,1 W ·m−1 ·K−1 et
λair = 0,022 W ·m−1 ·K−1.

1. Exprimer la résistance thermique du motif.

2. Exprimer la conductivité thermique λ du givre.

3. Tracer la courbe λ= F

(
b

a

)
.

4. Calculer la conductivité thermique du givre pour
une fraction volumique de l’air dans le givre de 0,4.
Conclure sur la nécessité de dégivrer régulièrement un
congélateur.

10—  Igloo de survie [**]

Un alpiniste, surpris par le mauvais temps, dévide de
construire un igloo de survie.
Le volume de son igloo doit valoir 1 m−3. Il utilise des
blocs de neige d’épaisseur e = 10 cm et de conductivité
thermique λ= 0,2 W ·m−1 ·K−1.
Il hésite entre trois formes : un igloo cubique de côté
a, un igloo cylindrique dont la hauteur est égale à son
rayon Rc et un igloo hémisphérique de rayon Rh.

1. Quel igloo présente la résistance thermique la plus
élevée?

2. L’alpiniste dégage une puissance thermique de
100 W. En considérant l’igloo choisi à la question pré-
cédente, déterminer la différence de température entre
l’intérieur et l’extérieur de l’igloo.

11—  Dauphin—oral CCINP MP 2024

On considère un dauphin de longueur 2 m et de masse
220 kg. Les poissons qu’il mange apportent 100 kilo ca-
lories par jour pour 100 g de poisson (1 kcal = 4 kJ).
La température corporelle du dauphin est de 36 °C.
Le dauphin possède une couche de graisse de conduc-
tivité thermique λ= 0,2 W ·m−1 ·K−1 et d’épaisseur e =
3 cm (considérée fine).

CPGE PSI 2024-2025 Lycée Jean Perrin 4/5



TD phénomènes de transport Diffusion thermique— Partie 2

Quelle masse de poisson doit-il manger par jour pour
lutter contre le froid de l’eau dans laquelle il vit à 10 °C?
Il s’agit d’un problème ouvert. On pourra considérer en
première approximation que la masse volumique du
dauphin est à peu près égale à celle de l’eau.

12—  Double vitrage—oral CCINP MP 2023

On considère une pièce à la température Ti séparée de
l’extérieur à la température Te par une vitre en verre
d’épaisseur e, de surface S orthogonale à l’axe Ox, de
conductivité thermique λ.
On se place en régime permanent.

1. Exprimer le flux ϕ1 qui sort de la pièce et la résis-
tance thermique Rth de la vitre.

2. On rajoute une deuxième vitre identique à la pre-
mière, séparée de celle-ci par une couche d’air d’épais-
seur e ′ et de conductivité thermique λ′.
Calculer le flux sortant ϕ2 puis le rapport ϕ2/ϕ1.

13—  Isolation d’une pièce—oral Mines-Ponts MP

Une pièce a une température de 20 °C et la tem-
pérature extérieure est de 10 °C. La résistance ther-
mique des murs vaut 10×10−3 K ·W−1, celle du toit
2×10−3 K ·W−1.

1. Calculer la puissance P de chauffage à fournir à la
pièce pour que sa température soit constante.

2. On procède à une isolation du plafond en ajoutant
un isolant de résistance thermique R. Calculer R telle
que P soit divisée par 2.

3. On arrête de chauffer. Donner la loi T (t ) décrivant
l’évolution de la température dans la pièce.

4. Dans quelle mesure ce modèle est-il valide?

14—  Cylindres concentriques—oralMines-Ponts 2021

On considère deux cylindres coaxiaux Γ1 et Γ2 de
rayons respectifs a et b > a, séparés par un matériau
de conductivité λ. Le cylindre Γ1 est à la température
T1 et Γ2 est à la température T2.

1. Calculer la résistance thermique du matériau entre
Γ1 et Γ2 en régime permanent.

2. On suppose maintenant que Γ1 a une capacité ther-
mique C1 et Γ2 a une capacité thermique C2, ces deux
capacités étant très grandes. Les températures T1 et T2

vont donc varier au cours du temps.

À quelle condition a-t-on le droit de considérer une ré-
sistance thermique ?

Calculer alors T1(t ) et T2(t ).

15—  Isolation d’un mur [*]

On donne la conductivité thermique de la brique, λ1 =
1,2 W ·m−1 ·K−1, et celle du polystyrène expansé, λ2 =
4,0×10−2 W ·m−1 ·K−1. Un mur de brique d’épaisseur
e = 15 cm sépare l’intérieur d’une pièce à Ti = 19 °C de
l’extérieur à Te = 4 °C. La surface du mur est S = 8,7 m2.

1. Calculer la puissance thermique perdue à travers le
mur de brique.

2. Quelle épaisseur de polystyrène faut-il ajouter pour
réduire ces pertes d’un facteur 5 ?
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