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TD phénomènes de transport Diffusion thermique— Partie 2

 ;;;; ARQS et résistance thermique - solution <<<<

1—  Chauffage d’un igloo [*]

1. Négliger la courbure des parois revient à les consi-
dérer comme planes. On se ramène donc à un phéno-
mène unidimensionnel en coordonnées cartésiennes.

Se reporter au cours pour établir l’expression de la ré-
sistance thermique :

Rth = e

λS
.

2. La puissance dégagée par l’inuit est

P = 0,5×106

3600
= 1,4×102 W = 0,14 kW.

3. Le flux thermique sortant est donné par

Φ= Tint −Text

Rth
= λS

e
(Tint −Text) .

La température de l’igloo reste constante si Φ= P , soit
pour une épaisseur

e = λS

P
(Tint −Text) .

On calcule e = 43 cm .

4. On se place en coordonnées sphériques, en consi-
dérant T (r ) et #»ȷ th = jth(r )#»e r .

En régime stationnaire, le flux est indépendant de r ,
soit 1

Φ(r ) =Φ0 = jth(r )2πr 2 =−λdT

dr
2πr 2 .

On a donc

dT =− Φ0

2πλ

dr

r 2 .

On en déduit en intégrant de Rint à Rext :

T (Rext)−T (Rint) = Φ0

2πλ

(
1

Rext
− 1

Rint

)
=Φ0

Rint −Rext

2πλRintRext
.

La résistance donnée par T (Rint) − T (Rext) = RthΦ0

s’écrit alors

Rth = Rext −Rint

2πλRintRext
.

Dans le cas où Rext = Rint +e avec e ≪ Rint, on a

Rth ≈ e

2πR2
intλ

= e

λS

où S = 2πR2
int est la surface de l’igloo. On retrouve l’ex-

pression d’un mur plan, ce qui revient à négliger la
courbure de la paroi.

2—  Diffusion thermique dans une barre [**]

1. Cas de sources idéales

1.a) On a donc C1 →∞ et C2 →∞ . En effet, la
variation de température d’une source dont l’énergie
varie de ∆U est ∆T = ∆U

C ; une source idéale est carac-
térisée par ∆T = 0.

1.b) En régime permanent, un bilan d’énergie sur une
tranche [x, x +dx] s’écrit

0 = [
j (x)− j (x +dx)

]
S dt

d’où
d j

dx
= 0 =−λd2T

dx2 .

On a donc
d2T

dx2 et

T (x) = T1 + x

L
(T2 −T1) .

2. Cas de sources non idéales

2.a) Le régime quasi-stationnaire suppose que les
températures des sources varient suffisamment len-
tement pour que l’on puisse considérer que le ré-
gime stationnaire de diffusion thermique est réalisé à
chaque instant dans la barre ; on peut alors écrire

T (x, t ) = T1 + x

L
[T2(t )−T1(t )] .

On a bien un profil affine, caractéristique du régime
stationnaire. . . mais dont la pente varie lentement au
cours du temps.

2.b) Effectuons un bilan d’énergie pour la source 1
pendant dt . Sa température varie de dT1 avec

C1dT1 =−Φ(0)dt =− j (0)S dt .

Le courant thermique est donné par

j (x) =−λ∂T

∂x
= λ

L
[T1(t )−T2(t )] .

On a donc

C1
dT1

dt
=−λS

L
[T1(t )−T2(t )] .

1. L’igloo étant hémisphérique, on prend la moitié de la surface d’une sphère.
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Le bilan d’énergie pour la source 2 s’écrit de même

C2 dT2 =+ϕ(L)dt .

Comme le flux est uniforme dans la barre, on a

C2
dT2

dt
= λS

L
[T1(t )−T2(t )] .

On peut poser deux temps caractéristiques

τ1 = C1L

λS
et τ2 = C2L

λS
.

Les températures des sources vérifient le système
τ1

dT1

dt
=−T1(t ) +T2(t )

τ2
dT2

dt
= T1(t ) −T2(t )

ä Vérifions la pertinence :

— si T1(t ) = T2(t ), les températures restent
constantes comme attendu;

— si T1(t ) > T2(t ), T1(t ) diminue et T2(t ) augmente
comme attendu.

On a
dτ1T1(t )+τ2T2(t )

dt
= 0

d’où compte tenu des conditions initiales

τ1T1(t )+τ2T2(t ) = τ1T o
1 +τ2T o

2 ,

en notant T o
1 et T o

1 les températures initiales des deux
sources.

On a donc

T2(t ) = τ1T o
1 +τ2T o

2

τ2
− τ1

τ2
T1(t )

qui donne avec la première équation

τ1
dT1

dt
=−τ1 +τ2

τ2
T1(t )+ τ1T o

1 +τ2T o
2

τ2

soit
dT1

dt
+ T1(t )

τ
= τ1T o

1 +τ2T o
2

τ1τ2

en posant

τ= τ1τ2

τ1 +τ2
.

La solution générale s’écrit

T1(t ) = A e−t/τ+τ1T o
1 +τ2T o

2

τ1 +τ2
.

La condition initiale donne

T o
1 = A+ τ1T o

1 +τ2T o
2

τ1 +τ2

d’où
A = τ2

τ1 +τ2
(T o

1 −T o
2 ) .

On a donc

T1(t ) = τ2

τ1 +τ2
(T o

1 −T o
2 )e−t/τ+τ1T o

1 +τ2T o
2

τ1 +τ2
.

La solution pour T2(t ) s’obtient directement par per-
mutation des indices 1 et 2.

On montrerait que T2(t ) vérifie la même équation dif-
férentielle que T1(t ), dont la solution générale est de la
forme

T2(t ) = B e−t/τ+τ1T o
1 +τ2T o

2

τ1 +τ2
.

La condition T2(t ) = T o
2 permet de déterminer B , et on

trouve

T2(t ) = τ1

τ1 +τ2
(T o

2 −T o
1 )e−t/τ+τ1T o

1 +τ2T o
2

τ1 +τ2
.

Compte tenu des expressions de τ1 et τ2, on a

T1(t ) = C2

C1 +C2
(T o

1 −T o
2 )e−t/τ+C1T o

1 +C2T o
2

C1 +C2
.

et

T2(t ) = C1

C1 +C2
(T o

2 −T o
1 )e−t/τ+C1T o

1 +C2T o
2

C1 +C2
,

avec

C = C1C2

C1 +C2
.

ä Les deux sources tendent vers la même tempéra-
ture finale

Tf =
C1T o

1 +C2T o
2

C1 +C2
,

qui ne dépend de des capacités thermiques des
sources et des températures initiales.

ä Cette évolution se fait avec un temps caractéris-
tique τ ; elle est d’autant plus rapide que λ est grand
(barre bonne conductrice thermique), que S est
grand ou que L est petit, c’est-à-dire en fait que la
résistance thermique de la barre est faible.

ä Le temps caractéristique de la diffusion thermique
dans la barre est

T ∗ ≈ ρc

λ
L2

où c est la capacité thermique massique de la barre.

L’hypothèse du régime quasi-stationnaire est valide
si T ∗ ≪ τ. Plaçons-nous dans le cas où C1 =C2 ; on
a alors C = C1

2 et l’hypothèse s’écrit 2

ρc

λ
L2 ≪ C L

λS
,

2. On ne reporte pas le coefficient 1/2 en ordre de grandeur.
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soit
C ≫ ρcSL .

La capacité thermique des sources doit être très
grande devant celle de la barre (le volume de cette
dernière étant SL, le terme ρcSL représente sa ca-
pacité calorifique).

3—  Le parpaing a un petit creux [**]

1. Se reporter au cours.

L’hypothèse nécessaire est que le régime soit station-
naire.

On établit

Rth = L

λS
.

Le résistance thermique s’exprime en K ·W−1.

2. On utilise les lois d’association en série et en paral-
lèle.

On décompose le parpaing :

(1) plaque de section S = ac, d’épaisseur e

en série avec

(2) association en parallèle de deux plaques de section
ae, d’épaisseur b − 2e et d’une « plaque d’air » de sec-
tion a(c −2e)

en série avec

(3) plaque de section S = ac, d’épaisseur e.

La résistance thermique des éléments (1) et (3) est

Rth,1 = Rth,3 =
e

λbac
.

En regroupant les éléments de (2), on se ramène à une
plaque de béton de section 2ae, d’épaisseur b −2e, de
résistance thermique

R ′
th,2 =

b −2e

2λbae

en parallèle avec une plaque d’air de résistance ther-
mique

R ′′
th,2 =

b −2e

λaa(c −2e)
.

La résistance totale de cet élément est telle que

1

Rth,2
= 1

R ′
th,2

+ 1

R ′′
th,2

= 2λbae

b −2e
+ λaa(c −2e)

b −2e

= 2λbae +λaa(c −2e)

b −2e

d’où

Rth,2 =
b −2e

2λbe +λaa(c −2e)

La résistance totale est Rth = Rth,1 +Rth,2 +Rth,3 soit

Rth = 2e

λaac
+ b −2e

λaa(c −2e)+2λbae
.

On calcule Rth = 12,5 K ·W−1 .

3. L’épaisseur b′ d’un parpaing plein de même résis-
tance thermique est donnée par

Rth = b′

λbac

d’où b′ =λbacRth.

On calcule b′ = 92 cm : l’air intérieur au parpaing est
essentiel pour l’isolation thermique !

4—  Isolation d’une canalisation [**]

1. Définition générale T1 −T2 = RthΦ1→2 .

2. On a #»ȷ th =−λdT

dr
#»e r et Φ(r ) = 2πr L jth, soit

Φ(r ) =−2πλLr
dT

dr
.

L’équation de la chaleur en régime stationnaire s’écrit

∆T = 0 , soit
d

dr

(
r

dT

dr

)
= 0. Compte tenu de l’expres-

sion du flux, on en déduit
dΦ

dr
= 0 : il est indépendant

de r , soit Φ(r ) =Φ.

D’après l’expression de Φ établie à la question précé-
dente, on a

ˆ T2

T1

dT =− Φ

2πλL

ˆ b

a

dr

r

soit

T1 −T2 = Φ

2πλL
ln

(
b

a

)
.

On a donc Rth = 1

2πλL
ln

(
b

a

)
.

3. La résistance thermique étant définie par Φ =
Rconv(Ts −Te) ; on obtient

Rconv = 1

hS
.

4. Les résistances thermiques étant associées en série,
on a

Rth = 1

2πh1aL
+ 1

2πλL
ln

(
b

a

)
+ 1

2πh2bL
.

5. On ajoute la résistance thermique de l’isolant.
Comme le transfert convectif se fait à la surface de l’iso-
lant, on obtient

R ′
th = 1

2πh1aL
+ 1

2πλL
ln

(
b

a

)
+ 1

2πλisoL
ln

( r

b

)
+ 1

2πh2r L
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On calcule

dR ′
th

dr
= 1

2πL

(
1

λisor
− 1

h2r 2

)
= 1

2πLλisor

(
1− rc

r

)

avec rc = λiso

h2
.

Comme
dR ′

th

dr
< 0 pour r < rc et

dR ′
th

dr
> 0 pour r > rc, la

résistance thermique est minimale pour r = rc. C’est
possible si rc > R2 .

6. On a

2πL(R ′
th −Rth) = 1

λiso
ln

( r

b

)
+ 1

h2r
− 1

h2b
= f (r ) ,

d’où

f ′(r ) = 1

λisor
− 1

h2r 2 = 1

λisor

[
1− rc

r

]
.

On a bien sûr f (r = b) = 0 : on retrouve la situation
sans isolant. Comme f ′(r ) < 0 pour r < rc, f (r ) < 0
(la fonction décroît à partir de 0) : la résistance ther-
mique de l’ensemble est plus faible que sans l’isolant.
L’ajout de l’isolant se traduit, tant que son épaisseur est
« faible », par une augmentation du flux thermique! On
voit le paradoxe, qui s’explique par une augmentation
du flux convectif du fait de l’augmentation de la surface
d’échange.

5—  Isolation d’une conduite [***]

Au transfert conducto-convectif est associé la résis-
tance thermique

Rth = 1

hS
.

Le même flux traverse :

— l’interface air/conduite ;

— la conduite ;

— l’isolant ;

— l’interface isolant/air.

Les 4 résistances thermiques correspondantes sont
donc associées en série.
Pour l’interface air/conduite :

Rth,1 =
1

h12πR1L
.

Pour la traversée de la conduite :

Rth,2 =
1

2πλcL
ln

(
R1 +e

R1

)
.

Pour la traversée de l’isolant :

Rth,3 =
1

2πλiL
ln

(
R1 +e +x

R1 +e

)
.

Pour l’interface isolant/air :

Rth,4 =
1

h22π(R1 +E +X )L
.

La résistance thermique totale est

Rth = Rth,1 +Rth,2 +Rth,3 +Rth,4 .

On peut simplifier l’étude en notant

Rth = 1

2πL
f (x)

avec

f (x) = 1

h1R1
+ 1

λc
ln

(
R1 +e

R1

)
+ 1

λi
ln

(
R1 +e +x

R1 +e

)
+ 1

h2(R1 +e +x)
.

Pour étudier ses variations avec x, on calcule

f ′(x) = 1

λi(R1 +e +x)
− 1

h2(R1 +e +x)2

= h2(R1 +e +x)−λi

λih2(R1 +e +x)2 .

L’extremum est pour xm tel que f ′(xm = 0, soit

xm = λi

h2
−R1 −e .

On remarque que f ′(x) < 0 pour x < xm et f ′(x) > 0
pour x > xm : il s’agit donc d’un maximum.

1er cas : xm < 0. Dans ce cas, comme on a physique-
ment x > 0, on a toujours f ′(x) > 0, Rth est une fonc-
tion croissante de x. Plus il y a d’isolant, meilleure est
l’isolation.

2e cas : xm > 0.
Tableau de variation :

x

f ′(x)

f (x)

0 xm +∞

− 0 +

f (0)f (0)

f (xmf (xm

+∞+∞

Quand on commence par ajouter de l’isolant, la ré-
sistance thermique globale diminue : c’est le « pa-
radoxe de l’isolant ». Certes, la résistance thermique
de l’isolant augmente, mais la résistance thermique
conducto-convective à l’interface isolant/air diminue
du fait de l’augmentation de la surface extérieure de
l’isolant. Au début, c’est cette diminution qui l’em-
porte.
Au-delà de xm, l’ajout d’isolant augmente la résis-
tance thermique. Compte-tenu des variations de f (x),
il existe une épaisseur x1 telle que f (x1) = f (0). Pour
x > x1, l’isolant est meilleure avec isolant que sans iso-
lant, et l’ajout d’isolant améliore l’isolation.
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6—  Expérience de regel [***]

1. Le diagramme (P,T ) relie la pression et la tempéra-
ture dans la glace. On peut donc déterminer la diffé-
rence de température entre le dessous et le dessus du
fil en estimant la différence de pression entre les deux
faces du fil.

La force due aux deux masses s’exerçant sur le fil est
mg . Elle s’applique sur la surface ab ; la surpression
correspondante est donc

∆P = mg

ab
.

On calcule

∆P = 5×9,8

0,2×0,5×10−3 = 4,90×105 Pa = 4,90 bar.

D’après le tableau donnant P (T ), on obtient une loi af-
fine, avec une pente

dP

dT
=−114,16 bar ·K−1 .

On peut donc écrire

Ti −Ts = Pi −Ps

dP

dT

= 4,90

−114,16
,

soit
Ti −Ts =−4,3×10−2 K .

La température est plus faible en dessous du fil qu’au
dessus.

2. Explication préliminaire : la température étant plus
faible sous le fil, il existe un flux thermique dans le fil,
dirigé du haut vers le bas. La glace située sous le fil re-
çoit donc une énergie thermique de la part du fil, ce qui
permet la fonte de la glace située sous le fil.

Le vecteur densité de courant thermique dans le fil est
donné par la loi de Fourier

#»ȷQ =−λdT

dz
#»e z =−λTi −Ts

c
#»e z .

Le flux thermique traversant le fil vers le bas est donc

Φ= jQ ab =−ab

c
λ(Ti −Ts) .

Soit dz la couche de glace sous le fil, qui fond pendant
la durée dt . Le premier principe s’écrit

dH =Φdt .

Le volume dτ= ab dz changeant d’état a une masse

dm =µ,dτ=µab dz ,

d’où une variation d’enthalpie

dH =∆fusH dm =µab∆fusH dz .

On a donc

µab∆fusH dz =−ab

c
λ(Ti −Ts)dt .

La vitesse du fil, qui descend au fur et à mesure que la
glace fond, vaut donc

v = dz

dt
=−λ(Ti −Ts)

µc∆fusH
.

On calcule

v = 80×4,3×10−2

103 ×5×10−3 ×330×103

soit v = 2,1 µm · s−1 .

Le phénomène est très lent.

7—  Trois barres en contact [***]

En régime stationnaire, nous pouvons décrire chaque
barre par sa résistance thermique, et donner un équi-
valent électrique du dispositif, en notant M le point de
prise de température à l’abscisse x de la barre 0.
Les barres I et II étant traversées par un même flux,
elles sont en série.

ÿ
�
��

��� ��
RII

�� �ÿ�� ��
RIII

�� �
�
��

�

ÿ
�
��

�
�
��

�

�� ��
RAM

�� �ÿ�� ��
RB M

�� �
�
��

�A B

C

M

�
�
�
∆T

On cherche la condition pour annuler la différence de
température ∆T = TC −Tx .
On peut appliquer deux fois la relation du « pont divi-
seur de différence de températures » :

TC −TB = RI

RI +RII
(TA −TB )

et

Tx −TB = RB M

RAM +RB M
(TA −TB ) .

En soustrayant ces deux équations, on obtient

∆T =
(

RI

RI +RII
− RB M

RAM +RB M

)
(TA −TB )

= RIRAM −RIIRB M

(RI +RII)(RAM +RB M )
(TA −TB ) .

La condition ∆T = 0 est donc réalisée pour

RIRAM = RIIRB M . (1)

Les résistances thermiques sont données par

RI = L0

λISI
; RII = L0

λIISII
; RAM = x

λ0S0
; RB M = L0 −x

λ0S0
.
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La condition (1) s’écrit alors

L0

λISI

x

λ0S0
= L0

λIISII

(L0 −x)

λ0S0
,

soit
x

λISI
= L0 −x

λIISII
.

Les sections des barres étant identiques, on en déduit

λII = L0 −x

x
λI .

On calcule λII = 200 W ·m−1 ·K−1 .

ä Vous aurez bien sûr reconnu le montage équivalent
au pont de Wheatstone. . .

8—  Détermination d’une conductivité thermique
[**]

1. Résultat de cours : Rth = L

λS
.

On en déduit Φ= T1 −T2(t )

Rth
.

2. Bilan thermique pendant dt :

C2 dT2 =Φdt = T1 −T2(t )

Rth
dt ,

d’où
dT2

dt
= 1

RthC2
[T1 −T2(t )] .

Système du 1er ordre, avec τ= RthC2 .

Résolution : T2(t ) = T1 + [T2(0)−T1]e−t/τ .

3. De le loi précédente on déduit

t = τ ln

(
T2(0)−T1

T2(t )−T1

)
.

Le graphe est une droite de pente

τ= RthC2 = Rth (C +mceau) .

On mesure sur le graphe τ= 3250−500

0,08−0,02
.

La conductivité est donnée par λ= 4C2L

τπD2 .

Avec les valeurs proposées λ= 243 W ·m−1 ·K−1 : la
tige est en aluminium.

4. Temps caractéristique : T ∗ ≃ ρc

λ
L2. Le régime est

quasi-stationnaire si T ∗ ≪ τ, soit si

ρcL2

λ
≪ L

λS
C2 ,

d’où ρcLS ≪ C2 : la capacité thermique de la tige doit
être bien inférieure à celle du calorimètre et de l’eau.

On a C2 ≈ 2×103 J ·K−1.

On calcule ρcLS ≈ 2×102 J ·K−1.

On a donc C2 ≈ 10c : l’approximation est correcte, mais
a priori sans plus.

5. Si l’évolution n’est pas quasi-stationnaire, la tempé-
rature T2(t ) augmente « trop vite » : le profil de tempé-
rature dans la tige n’a donc pas le temps d’atteindre la
profil affine stationnaire à chaque instant.

Compte tenu du sens de l’évolution de T2(t ), ce profil
présente donc une concavité vers la haut. À tout ins-
tant, la tangente au profil T (x) est donc plus petite que
pour le profil affine.

D’après la loi de Fourier, le flux thermique réel est donc
plus faible que le flux théorique (quasi-stationnaire) :

Φréel <Φthéo. Comme Φ= ∆T

Rth
, on a Rth,réel > Rth,théo.

De l’expression Rth = L

λS
, on en déduit λréel < λthéo :

l’hypothèse a donc tendance à surestimer la valeur de
la conductivité de la tige.

9—  Conductivité du givre [***]

1. On considère un flux thermique « vertical » sur la fi-
gure.

Dans un premier temps, le cube d’air de côté b est en
série avec le parallélépipède de glace de section b2 et
de longueur b.

La résistance thermique du cube d’air est

Rth,1 =
b

λab2 = 1

λab
.

Celle du parallélépipède de glace est

Rth,2 =
a −b

λgb2 .

La résistance thermique de l’ensemble en série est

Rth,1,2 = Rth,1 +Rth,2 =
1

λab
+ a −b

λgb2 = λgb +λa(a −b)

λaλg b2 .

Ce parallélépipède « vertical » de section b2 et de lon-
gueur a est en parallèle avec le restant du motif, de sec-
tion a2−b2, de longueur a, constitué de glace, de résis-
tance thermique

Rth,3 =
a

λg(a2 −b2)
.

La résistance thermique du motif est donc donnée par

1

Rth
= 1

Rth,1,2
+ 1

Rth,3
= λg(a2 −b2)

a
+ λaλgb2

λgb +λa(a −b)
.
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2. En notant λ la conductivité thermique du givre, la
résistance thermique du motif de longueur a et de sec-
tion a2 s’écrit

Rth = a

λa2 = 1

λa
.

La conductivité λ= 1

Rtha
est alors donnée par

λ= λg(a2 −b2)

a2 + λaλgb2

λgab +λaa(a −b)
.

3. On peut écrire

λ=λg

(
1− b2

a2

)
+ λaλg

b2

a2

λg
b
a +λa

(
1− b

a

) .

On posant x = b/a, on a donc

λ= f (x) =λg(1−x2)+ λaλgx2

(λg −λa)x +λa
.

4. On représente λ(x), où x varie de 0 (que de la glace)
à x = 1 (que de l’air).

5. Pour x = 0,4, on calcule λ = 1,8 W ·m−1 ·K−1. Le
givre est thermiquement plutôt isolant, s’opposant aux
transferts thermiques entre la source froide (l’intérieur
du congélateur) et le fluide compris dans le serpentin.

10—  Igloo de survie [**]

Un alpiniste, surpris par le mauvais temps, dévide de
construire un igloo de survie.
Il utilise des blocs de neige d’épaisseur e = 10 cm et de
conductivité thermique λ= 0,2 W ·m−1 ·K−1.
Il hésite entre trois formes : un igloo cubique de côté
a, un igloo cylindrique dont la hauteur est égale à son
rayon Rc et un igloo hémisphérique de rayon Rh.

1. Igloo cubique

Son volume vaut V = a3 = 1 m3, d’où a = 1 m.

La résistance thermique d’une paroi vaut

Rth,1 =
e

λa2 .

Pour les 5 parois en parallèles, on a

Rth,cube =
e

5λa2 .

On calcule Rth,cube = 0,10 K ·W−1.

Igloo cylindrique

Le volume est donné par V =πR2
c ×Rc =πR3

c = 1 m3.

La résistance thermique du « toit » plan est

Rth,toit =
e

λπR2
c
= 2

λπ

( π
V

)2/3
= 0,34 K ·W−1 .

En considérant un cylindre de rayon r et de hauteur Rc :

Φ= 2πr Rc jth =−2πλRcr
dT

dr
,

soit

dT =− Φ

2πλRc

dr

r

Le flux est indépendant de r en régime stationnaire
sans source, ce qui permet d’intégrer :

Tint −Text = Φ

2πλRc
ln

(
Rc +e

Rc

)
.

La résistance thermique du « mur » est donc

Rth,mur =
1

2πλRc
ln

(
Rc +e

Rc

)
= 1

2πλ

( π
V

)1/3
ln

(
1+e

( π
V

)1/3
)

0,16 K ·W−1 .

Le toit et le mur étant en parallèle, le résistance ther-
mique de l’igloo est donnée par

1

Rth,cyl
= 1

Rth,toit
+ 1

Rth,mur
.

On calcule Rth,cyl = 0,11 K ·W−1.

Igloo hémisphérique Le volume est donné par

V = 2

3
πR3

h .

En considérant une demi-sphère de rayon r :

Φ= 2πr 2 jth =−2πλr 2 dT

dr
,

soit

dT =− Φ

2πλ

dr

r 2 .

Le flux est indépendant de r en régime stationnaire
sans source, ce qui permet d’intégrer :

Tint −Text = Φ

2πλ

(
1

Rint
− 1

Rint +e

)
= Φ

2πλ

e

Rint(Rint +e)
.

La résistance thermique vaut donc

Rth,h = e

2πλRint(Rint +e)
avec Rint =

(
3V

2π

)1/3

.

On calcule Rth,h = 0,12 K ·W−1.

C’est igloo hémisphérique qui présente la résistance
thermique la plus élevée.
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2. En considérant comme système l’igloo (avec l’alpi-
niste à l’intérieur), le bilan d’énergie en régime station-
naire s’écrit

0 = δδQreçu +δQcréé =−Φdt +P dt

=−Tint −Text

Rth,h
dt +P dt

d’où
Tint −Text = Rth,hP .

On en déduit l’écart de température Tint −Text = 12 °C
.

11—  Dauphin—oral CCINP MP 2024

En modélisant le dauphin par un cylindre de longueur
L = 2 m et de rayon a, sa masse s’écrit

m = ρπa2L ,

d’où

a =
√

m

πρL
=

√
220

π×103 ×2
≈ 20 cm.

En considérant l’épaisseur de la couche de graisse
comme fine, on peut négliger sa courbure dans le cal-

cul de sa résistance thermique :

Rth = e

λS
avec S = 2πaL+2πa2 ,

d’où

Rth = e

2πλa(L+a)
.

On calcule Rth = 5,8×10−2 K ·W−1.
Pour une différence de température ∆T = 36 − 10 =
26 °C, la puissance thermique perdue par le dauphin
est

Φ= ∆T

Rth
= 450 W.

L’énergie perdue sur une journée est donc

Q =Φ∆t = 24×3600×Φ= 3,9×107 J .

Sur une journée, 100 g de poisson apporte 100 kcal,
donc 1 kg apporte 1×103 kcal = 4×106 J.
La masse de poisson à consommer est donc

m = 3,9×107

4×106 = 9,6 kg.

Le dauphin doit manger environ 10 kg de poisson par
jour pour lutter contre le froid.

2

CPGE PSI 2024-2025 Lycée Jean Perrin 8/8

Eddie Saudrais


