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TD phénomenes de transport
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Perrin E. SAUDRAIS

Diffusion thermique — Partie 2

wenvnen ARQS et résistance thermique - solution eeeememe

[*]
1. Négliger la courbure des parois revient a les consi-

dérer comme planes. On se ramene donc a un phéno-
mene unidimensionnel en coordonnées cartésiennes.

1 — Chauffage d’unigloo

Se reporter au cours pour établir 'expression de la ré-
sistance thermique :

R _e
th=9s|

2. Lapuissance dégagée par I'inuit est
_ 0,5x10°
3600
3. Le flux thermique sortant est donné par
Tint — T, AS
(D:u: — (Tint — Text) -
Rth e

La température de l'igloo reste constante si ® = P, soit
pour une épaisseur

=1,4x10>°W=0,14 KW.

AS
e= ? (Tint — Text) -

On calcule e=43cm .

4. On se place en coordonnées sphériques, en consi-
dérant T(r) et T = jin (1) €r.

En régime stationnaire, le flux est indépendant de r,
soit!

dT
®(r) = O = jin(r)2mr? = —xld—anZ.
r

On adonc o d
0 r
dT' =———.
27 12
On en déduit en intégrant de Rin¢ @ Rext :
(I)O ( 1 1 ) Rint - Rext
T(Rex)) — T(Rint) = —— | =y imt T Hext
(Rext) (Rint) 27A \Rext  Rint 0 27 A Rint Rext

La résistance donnée par T (Rint) — T(Rext) = Rin®o
s’écrit alors
_ Rext — Rint

h—— .
7 2 A Rine Rext

Dans le cas oll Rext = Rint + € avec e << Rjp¢, on a
e e

R~ —y— = —
T 2R AT AS

ous= ZJIRiznt est la surface de 'igloo. On retrouve I'ex-
pression d’'un mur plan, ce qui revient a négliger la
courbure de la paroi.

2 — Diffusion thermique dans une barre [**]

1. Cas de sources idéales

l.a) Onadonc C;—oco et Cy—oo .En effet, la
variation de température d'une source dont I'énergie
varie de AU est AT = % ; une source idéale est carac-
térisée par AT =0.

1.b) Enrégime permanent, un bilan d’énergie sur une
tranche [x, x + dx] s’écrit

0=[j(x)—jx+dx)]Sdr

dj

d’T
-
dx

=0= .
dx2

2
Onadonc — et
dx?

ﬂﬂ=ﬂ+%ﬂ—ﬂ%

2. Cas de sources non idéales

2.a) Le régime quasi-stationnaire suppose que les
températures des sources varient suffisamment len-
tement pour que I'on puisse considérer que le ré-
gime stationnaire de diffusion thermique est réalisé a
chaque instant dans la barre; on peut alors écrire

ﬂmn=n+%uan—ﬂmL

On a bien un profil affine, caractéristique du régime
stationnaire. .. mais dont la pente varie lentement au
cours du temps.

2.b) Effectuons un bilan d’énergie pour la source 1
pendant d¢. Sa température varie de dT; avec

CidTy = -®(0)dt=—-j(0)Sd¢.

Le courant thermique est donné par

j ( )_—AO—T_&[T (8) = T>(1)]
e 22

On adonc

a1, AS
CIE = T [T1(8) — T2 ()] .

1. Ligloo étant hémisphérique, on prend la moitié de la surface d'une sphére.
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Le bilan d’énergie pour la source 2 s’écrit de méme
CodT, = +¢(L) dr.

Comme le flux est uniforme dans la barre, on a

22 225 10 - 00

2q; -7 ! 2(0)].
On peut poser deux temps caractéristiques
_aL
- AS

_ol

T1 et 1o= 1S

Les températures des sources vérifient le systeme

dT1 ) )
T1 ] =-Ti(t To(t
T2 i 1 2

» Vérifions la pertinence :
— si Ti(t) = T»(t), les températures restent
constantes comme attendu;
— si T1(t) > T» (1), T1(¢) diminue et T»>(¢) augmente
comme attendu.

Ona
dr; () +12T2(1)

dt
d’oli compte tenu des conditions initiales

0

T111(8) + 12 T5(1) =T1T10+T2T20,

en notant T} et T7 les températures initiales des deux
sources.

On a donc

T1T10+T2T20 T1

Tr(t) = - —T1(1)
T2

T2

qui donne avec la premiere équation

dT; T1+7T 1T+ 1,15
- 1__ N 2T1(t)+ 1 2
dr T2 T2
soit o .
dT + Ty (1) _ T1T1 +‘L'2T2
dr T T1To
en posant
_ TiT2
B T1+7T2 ’

La solution générale s’écrit

o 0
Ty (0 = Ae_t/T+T1 Tl +T2T2
T1+7T2

La condition initiale donne
T1 Tlo +7T2 Tzo

T =A+
T1+71T2

2. On ne reporte pas le coefficient 1/2 en ordre de grandeur.
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d’olt .
A= —2(T°-T).
T1+71T2
On adonc
T2 _ T1T°+T2TO
Ty(t) = (Te-T9e Ty —L_“— 2,
T1+7T2 T1+7T2

La solution pour T(¢) s'obtient directement par per-
mutation des indices 1 et 2.

On montrerait que T»(t) vérifie la méme équation dif-
férentielle que T)(¢), dont la solution générale est de la
forme 7o 7o
_ T117+72
T,()=Be /T+—L =2
T1+7T2
La condition T»(¢) = T2° permet de déterminer B, et on
trouve

T1 T1Tf+T2T2O

To(1) =

(T5 - T e 1" +

T1+7T2 T1+7T2

Compte tenu des expressions de 7; et Tz, on a

C CiTC+ Co T2
Tl(t):—z(Tlo—Tf)e_”T+#
C1+Cy C+C
et
C CiTC+Co TS
Tg(t)z—l(Tg—Tf)e_”T+M ,
C1+C2 C1+C2
avec
GG
B Ci+Cy '

» Les deux sources tendent vers la méme tempéra-
ture finale . .

Tp= ClTl +C2T2

Ci+C
qui ne dépend de des capacités thermiques des
sources et des températures initiales.

» Cette évolution se fait avec un temps caractéris-
tique 7; elle est d’autant plus rapide que A est grand
(barre bonne conductrice thermique), que S est
grand ou que L est petit, c’est-a-dire en fait que la
résistance thermique de la barre est faible.

» Le temps caractéristique de la diffusion thermique
dans la barre est

* pC -
T =—0L
A

ol c est la capacité thermique massique de la barre.
Lhypothese du régime quasi-stationnaire est valide
si T* « 1. Plagons-nous dans le cas ot1 C; = C;; on
aalors C= % et 'hypothese s’écrit 2

pc CL

Uiy g oy
27 7S
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soit

C> pcSL.
La capacité thermique des sources doit étre trés
grande devant celle de la barre (le volume de cette

derniere étant SL, le terme pcSL représente sa ca-
pacité calorifique).

[**]

3 — Le parpaing a un petit creux

1. Sereporter au cours.
Lhypothese nécessaire est que le régime soit station-
naire.

On établit
L

Ry, = 5

Le résistance thermique s’exprime en K- W1,
2. On utilise les lois d’association en série et en paral-
lele.
On décompose le parpaing :
(1) plaque de section S = ac, d’épaisseur e
en série avec
(2) association en parallele de deux plaques de section
ae, d’épaisseur b — 2e et d'une « plaque d’air » de sec-
tion a(c —2e)
en série avec
(3) plaque de section S = ac, d’épaisseur e.
La résistance thermique des éléments (1) et (3) est

e
Apac’

Rin1 = Rin3 =

En regroupant les éléments de (2), on se rameéne a une
plaque de béton de section 2ae, d’épaisseur b —2e, de
résistance thermique

R - b-2e
th2 ™= 5 ae

en parallele avec une plaque d’air de résistance ther-
mique
n _  b-2e

th2™ 3 a(c-2e)’
La résistance totale de cet élément est telle que

1 N 1 _2/1bae Aaa(c—2e)
~ pr "o

Rih,2 Rth,2 Rth,z b-2e b-2e
B 2Apae+ Aya(c—2e)
B b-2e

d’ ol
b—2e

Rih2

T 2Ape+ Aqalc—2e)
La résistance totale est Riy = Rin1 + Rin 2 + Rin,3 S0it

2z N b-2e
~ Aaac  Aga(c—2e)+2Apae

R

On calcule | Ry, = 12,5 K-wl,
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3. Lépaisseur b’ d'un parpaing plein de méme résis-
tance thermique est donnée par

b/
"~ Apac

R

d’ou b' = ApacRy,.

On calcule | b’ =92 cm :I'air intérieur au parpaing est
essentiel pour I'isolation thermique!

4 — |solation d'une canalisation [*¥]
1. Définition générale | T; — To = Ry @12 |-

= dT _, . .
2. Ona ]th:_AE e, et d(r) =2mrLjy, soit

dTr
O(r)=—-2mALr— |.
dr

L'équation de la chaleur en régime stationnaire s’écrit

dr \ dr

sion du flux, on en déduit T =0: il est indépendant
r

de r, soit ®(r) = O.

D’apres 'expression de ® établie a la question précé-

dente, on a
T, ® b d
/ dT = - &
T 2gAL [, r

1

.d (dT ,
AT =0, soit — | r— | = 0. Compte tenu de |'expres-

soit

N-Ty=—2 1(”)
T, = n|—=|.
=72 2nAL a
()
Zﬂ/ana ’

3. La résistance thermique étant définie par ® =
Reonv(Ts — Te); on obtient

Onadonc | Ry, =

1
Reonv = ﬁ .

4. Les résistances thermiques étant associées en série,
ona

Rin

__1 n(b)+ 1
" 2nhal  2mAL \a) 2mhybL

5. On ajoute la résistance thermique de lisolant.
Comme le transfert convectif se fait a la surface de I'iso-
lant, on obtient

, 1 1 b
Ry = + In|—
2nhial 2mwAL a

+ 1 ln(r)+ 1
27 AisoL b’ 2mhyrL
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On calcule

dry 1 ( 1 1 )_ 1 (1 rc)
dr  2aL\ Miser  hor?)  2mLAior r

avec | ¢ = Aiso
C hz
dR dR/
th th
Comme <0pourr<rcet >0pourr>rela

résistance thermique est minimale pour r = r.. C’est
possiblesi | 7. >Ry |.

6. Ona
1 r 1 1
2nL(R, —Rgp) = —1In|— |+ —-—= ,
nL(Ry, — Rin) T n(b) Ior  Tab f)
d’ ol
Fpon _ 1 _Te

On a bien str f(r = b) = 0 : on retrouve la situation
sans isolant. Comme f'(r) < 0 pour r < re, f(r) <0
(la fonction décroit a partir de 0) : la résistance ther-
mique de ’ensemble est plus faible que sans l'isolant.
L'ajout de I'isolant se traduit, tant que son épaisseur est
«faible », par une augmentation du flux thermique! On
voit le paradoxe, qui s’explique par une augmentation
du flux convectif du fait de 'augmentation de la surface
d’échange.

5 — Isolation d’une conduite [**¥]

Au transfert conducto-convectif est associé la résis-

tance thermique

Re = 1
th—hs-

Le méme flux traverse :
— l'interface air/conduite;
la conduite;

I'isolant;

I'interface isolant/air.

Les 4 résistances thermiques correspondantes sont
donc associées en série.
Pour l'interface air/conduite :

1

Ry g = ——.
=3 27R, L

Pour la traversée de la conduite :

1 Ri+e
R ln( 1

oAl R

Pour la traversée de l'isolant :

1 Ri+e+x
Rin3

= n
2n ;L R +e
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Pour l'interface isolant/air :
_ 1
" hp2n(R+E+ X)L°

Rinh,4
La résistance thermique totale est
Rth = Rth,1 + Rth,2 + Rih3 + Rih 4 -

On peut simplifier I'étude en notant

1
R = 27I_Lf(X)

avec
1 Ri+e 1 Ri+e+x
f)=—+—In —In{—"2
hiR1  Ac Ry Ai R +e
1

+—_—
hz (R +e+x)
Pour étudier ses variations avec x, on calcule

1 1
T AR te+x) MRy +e+x)?
_ hoy(Ri+e+x)— A4
B Aihz(R1+€+x)2 '

10

Lextremum est pour xp, tel que f’(xy, =0, soit

On remarque que f’'(x) < 0 pour x < xp, et f'(x) >0
pour x > xp, : il s’agit donc d'un maximum.

1¢r cas : x, < 0. Dans ce cas, comme on a physique-
ment x > 0, on a toujours f’(x) > 0, Ry, est une fonc-
tion croissante de x. Plus il y a d’isolant, meilleure est
Iisolation.

2¢cas: xp, > 0.

Tableau de variation :

X 0 Xm +00
') - 0 +
10 +00
Xm

Quand on commence par ajouter de l'isolant, la ré-
sistance thermique globale diminue : c’est le «pa-
radoxe de l'isolant ». Certes, la résistance thermique
de l'isolant augmente, mais la résistance thermique
conducto-convective a l'interface isolant/air diminue
du fait de 'augmentation de la surface extérieure de
I'isolant. Au début, c’est cette diminution qui I'em-
porte.

Au-dela de xp, 'ajout d’isolant augmente la résis-
tance thermique. Compte-tenu des variations de f(x),
il existe une épaisseur x; telle que f(x;) = f(0). Pour
x > x1, I'isolant est meilleure avec isolant que sans iso-
lant, et'ajout d’isolant améliore I'isolation.

4/8
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6 — Expérience de regel [**¥]

1. Le diagramme (B, T) relie la pression et la tempéra-
ture dans la glace. On peut donc déterminer la diffé-
rence de température entre le dessous et le dessus du
fil en estimant la différence de pression entre les deux
faces du fil.

La force due aux deux masses s’exercant sur le fil est
mg. Elle s’applique sur la surface ab; la surpression
correspondante est donc

ap="¢.
ab
On calcule
5x9,8 5
= —————==4,90x10"Pa=4,90 bar.
0,2x0,5%x10

D’apreés le tableau donnant P(T), on obtient une loi af-
fine, avec une pente

dp
— =-114,16 bar-K!.
dT

On peut donc écrire

- T_Pi—PS_ 4,90
boosT dp T —-114,16°
dr

soit
Ti—Te=-43%x10"%K .

La température est plus faible en dessous du fil qu'au
dessus.

2. Explication préliminaire : la température étant plus
faible sous le fil, il existe un flux thermique dans le fil,
dirigé du haut vers le bas. La glace située sous le fil re-
coit donc une énergie thermique de la part du fil, ce qui
permet la fonte de la glace située sous le fil.

Le vecteur densité de courant thermique dans le fil est
donné par la loi de Fourier

Le flux thermique traversant le fil vers le bas est donc
b
®=joab=-LNT-Ty).
c

Soit dz la couche de glace sous le fil, qui fond pendant
la durée d¢. Le premier principe s’écrit

dH =ddt.
Le volume d7 = abdz changeant d’état a une masse
dm = y,dt = pabdz,
d’ol1 une variation d’enthalpie

dH = Aps Hdm = pabAgysHdz.
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On adonc
ab
uabAssHdz = _TMTi - Ty)dt.

La vitesse du fil, qui descend au fur et a mesure que la
glace fond, vaut donc

= dz _ MTi-Ty)
dt peApgH
On calcule
80x4,3%x 1072

V=
103 x5x 1073 x 330 x 10°

soit | v=2,1um-s7! .

Le phénomene est trés lent.

7 — Trois barres en contact [**%]
En régime stationnaire, nous pouvons décrire chaque
barre par sa résistance thermique, et donner un équi-
valent électrique du dispositif, en notant M le point de
prise de température a I’abscisse x de la barre 0.

Les barres I et II étant traversées par un méme flux,
elles sont en série.

Ru c Bum
L T | S|
A AT B
] S L T
Rav M Rpy

On cherche la condition pour annuler la différence de
température AT = T¢ — Ty.

On peut appliquer deux fois la relation du « pont divi-
seur de différence de températures » :

Ry
Tc—Tg = Ta—T,
c—1Tp RI+RII(A B)
et R
BM
T,—Tg=——"—""—(T4—-Tg).
x— 1B RAM+RBM(A B)

En soustrayant ces deux équations, on obtient

Ry Rpm
- (Th—Tg)
Ri+Ry  Ram+Rpm
_ RiRapm — RuRpm
(Ry+ Ri)(Ram + Rpm)

AT =

(Ta-Tg).

La condition AT = 0 est donc réalisée pour
RiRam = RuRpm - (1)

Les résistances thermiques sont données par

R LO LO X R L()—x
1= 7 = —-—"—5> M=—>—< M= .
M St A S MoSo AoSo
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La condition (1) s’écrit alors
Ly x Ly (Lo—x)
MSt AoSo AuSu AoSo

soit
X Lo—x

NSt AnSn
Les sections des barres étant identiques, on en déduit

Lo—x
A=

ALl

On calcule Ay =200W-m~'-K°! .

» Vous aurez bien siir reconnu le montage équivalent
au pont de Wheatstone. ..

8 — Détermination d'une conductivité thermique

[**]

L
1. Résultat de cours: Ry, = —.
th =75

T, —Tr(t
On en déduit ® = 1—2()
R
2. Bilan thermique pendant dz :
Ty —Tor(t
CodTy = odr= 2120 4,
Rin

d’ou

L 1 5 o

dt - Rthcz ! 2 '

Systeme du 1¢" ordre, avec | T = Ry, Cs |.

Résolution: | To(t) = Ty + [T2(0) — T1]e /T .
3. Deleloi précédente on déduit

(TZ(O)_TI)
t=1tln|— .
(-1

Le graphe est une droite de pente

T=RnCy = Ry (C + MCeau) -

3250 -500
On mesure sur le graphe 1 = ———.
0,08 -0,02
4C,L

La conductivité est donnée par A = 5
TnD
Avec les valeurs proposées A=243W-m '-K°! :la
tige est en aluminium.

pc

4. Temps caractéristique : T* = TLZ' Le régime est

quasi-stationnaire si T* < 7, soit si
pcl?> L

1 < ECZ’
d’olt pcLS « C, : la capacité thermique de la tige doit
étre bien inférieure a celle du calorimeétre et de |'eau.
OnaC,~2x10%J-K ..
On calcule pcLS = 2 x 1027-K71.
Onadonc Cy = 10c : 'approximation est correcte, mais
a priori sans plus.
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5. Sil’évolution n’est pas quasi-stationnaire, la tempé-
rature T»(t) augmente « trop vite » : le profil de tempé-
rature dans la tige n’a donc pas le temps d’atteindre la
profil affine stationnaire a chaque instant.

Compte tenu du sens de I'évolution de T5(t), ce profil
présente donc une concavité vers la haut. A tout ins-
tant, la tangente au profil T'(x) est donc plus petite que
pour le profil affine.

D’apres laloi de Fourier, le flux thermique réel est donc
plus faible que le flux théorique (quasi-stationnaire) :

A
Drgel < Pipgo- Comme ® = —, on a Ry rgel > Rinthéo-
th

L
De I'expression Ry, = s’ on en déduit Agel < Atheo -

I'hypotheése a donc tendance a surestimer la valeur de
la conductivité de la tige.

9 — Conductivité du givre [**¥]

1. On considere un flux thermique « vertical » sur la fi-
gure.

Dans un premier temps, le cube d’air de coté b est en
série avec le parallélépipede de glace de section b? et
de longueur b.

La résistance thermique du cube d’air est

Celle du parallélépipede de glace est

Rihp =

La résistance thermique de '’ensemble en série est

1 a=b_Agh+Aaa=Db)
Aab " Agl?  AaAgh?

Rin,1,2 = Rih,1 + Rin2 =

Ce parallélépipede « vertical » de section b? et de lon-
gueur a est en parallele avec le restant du motif, de sec-
tion a® - b?, de longueur a, constitué de glace, de résis-
tance thermique

a

Ripg= ————.
th,3 Ag([lz — bz)

La résistance thermique du motif est donc donnée par

1 1 1 Ag(@®—b%)

)La/lgbz
— = + =
Ry  Rwmi12 Rmg3s a

Agh+ Aa(a—b) °

6/8
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2. En notant A la conductivité thermique du givre, la
résistance thermique du motif de longueur a et de sec-

tion a? s'écrit

_a 1
TN T da”

La conductivité A =

est alors donnée par

Rpa
1o Ag(a® - b?) . Aadgh? .
a? Agab + Aqala— D)
3. On peut écrire
et

b2
AZ/’Lg(l——Z)ﬁ‘ﬁ.
a Agzﬁ‘la(l—z)

On posant x = b/a, on a donc

Aadgx?

_ _ 2
A=flx) =240 x)+(/1g_/1a)x+/1a.

4. On représente A(x), ou x varie de 0 (que de la glace)
a x =1 (que de I'air).

2.5

5. Pour x = 0,4, on calcule A = 1,8 W-m~!-K!. Le
givre est thermiquement plutét isolant, s’'opposant aux
transferts thermiques entre la source froide ('intérieur
du congélateur) et le fluide compris dans le serpentin.

[**]
Un alpiniste, surpris par le mauvais temps, dévide de
construire un igloo de survie.

I1 utilise des blocs de neige d’épaisseur e = 10 cm et de
conductivité thermique A =0,2 W m 1K1

I hésite entre trois formes : un igloo cubique de coté
a, un igloo cylindrique dont la hauteur est égale a son
rayon R et un igloo hémisphérique de rayon R},.

10 — Igloo de survie

1. Igloo cubique
Son volume vaut V=a3=1m3, dotia=1m.
La résistance thermique d’'une paroi vaut

e

1 =3
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Pour les 5 parois en paralléles, on a
e
Rth,cube = W .
On calcule Ry cybe = 0,10 K-wL
Igloo cylindrique
Le volume est donné par V =R x R, = 7R3 =1 m?>.
La résistance thermique du « toit» plan est

e 2 (n 2/3

Rioit=——=—|—=| =034K-w!,
th,toit AnR? An V)

En considérant un cylindre de rayon r et de hauteur R, :
) dT
® =27nrR. jih = —ZnARCrE ,

soit
® dr
- 2mAR; T
Le flux est indépendant de r en régime stationnaire
sans source, ce qui permet d’'intégrer :
O} Rc.+e
)

La résistance thermique du « mur » est donc

1 (RC + e)
In
2mAR. R
1 \1/3 T\1/3
=—(—) ln(1+e(—) )0,16K-W‘1.
2nA\V \%4
Le toit et le mur étant en parallele, le résistance ther-
mique de 'igloo est donnée par
1 1 1

= + .
Rth,cyl Rth,toit Rth,mur

Rth,mur =

On calcule Ry ¢y = 0,11 K-W1,
Igloo hémisphérique Le volume est donné par

2 3
V= gﬂRh.

En considérant une demi-sphere de rayon r :

dT
® =277 jy, = —2mAr*—,
Jth dr

soit
® dr
2mA 2
Le flux est indépendant de r en régime stationnaire
sans source, ce qui permet d’'intégrer :

dT = -

Tint_Text:i( ! - ! ): l ° .
2wA Rint Rint +e 2 Rint(Rint + e)
La résistance thermique vaut donc
e EYALL:
R = A R (R v ) ¢ it = (E) '

On calcule Ry, =0,12 K-W™L.
C’est igloo hémisphérique qui présente la résistance
thermique la plus élevée.
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2. En considérant comme systéme l'igloo (avec l'alpi-
niste a I'intérieur), le bilan d’énergie en régime station-
naire s’écrit

0= 66Qre(;u + 5chéé =-®dr+ Pdt
__ Tint— Text
Rihh

dr+Pdt

Tint — Text = Rth,hP .

On en déduit!’écart de température | Tint — Text = 12 °C

11 — Dauphin — oral CCINP MP 2024

En modélisant le dauphin par un cylindre de longueur
L =2m et derayon a, sa masse s'écrit

m= pnazL,
d’ou
m 220
a= = ~ 20 cm.
oL X103 x2

En considérant I'épaisseur de la couche de graisse
comme fine, on peut négliger sa courbure dans le cal-

CPGE PSI 2024-2025

Lycée Jean Perrin

cul de sa résistance thermique :

e
Ry =— avec S=2mal+ 27m2,
th 1S

e

Rp=———.
th 2nda(L+ a)

On calcule Ry, =5,8x 1072 K- W1,
Pour une différence de température AT = 36 — 10 =
26 °C, la puissance thermique perdue par le dauphin

est
AT
d=—=450W.
R

L'énergie perdue sur une journée est donc
Q=D0At=24x3600xP=39x10"]J.
Sur une journée, 100 g de poisson apporte 100 kcal,

donc 1 kg apporte 1 x 103 kcal = 4 x 108 J.
La masse de poisson a consommer est donc

Le dauphin doit manger environ 10 kg de poisson par
jour pour lutter contre le froid.
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