TD phénomènes de transport

Diffusion thermique — Partie 3 - solution

ംഗം Ondes de température രംരം

1 — Oscillations thermiques

1. Question de cours :

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2} \quad \text{avec} \quad a = \frac{\lambda}{\rho c} \ .$$

2. On remplace l'expression $\underline{T}(x,t)$ proposée dans l'équation aux dérivées partielles précédente :

$$i\omega\underline{\theta} = a\frac{d^2\underline{\theta}(x)}{dx^2}$$

soit

$$\frac{\mathrm{d}^2\underline{\theta}(x)}{\mathrm{d}x^2} = \frac{\mathrm{i}\omega}{a}\underline{\theta}(x) = \frac{\omega}{a}\,\mathrm{e}^{\frac{\mathrm{i}\pi}{2}}\underline{\theta}(x) = \underline{k}^2\underline{\theta}(x)$$

avec

$$\underline{k} = \sqrt{\frac{\omega}{a}} e^{\frac{i\pi}{4}} = \sqrt{\frac{\omega}{2a}} (1+i).$$

La solution générale est de la forme

$$\underline{\theta}(x) = \underline{A} e^{\underline{k}x} + \underline{B} e^{-\underline{k}x}.$$

On peut introduire une longueur caractéristique

$$\delta = \sqrt{\frac{2a}{\omega}} \ ,$$

ďoù

$$\underline{\theta}(x) = \underline{A} e^{\frac{(1+i)x}{\delta}} + \underline{B} e^{-\frac{(1+i)x}{\delta}} .$$

On en déduit

$$\underline{T}(x,t) = \underline{A} e^{\frac{x}{\delta}} e^{\frac{ix}{\delta}} e^{i\omega t} + \underline{B} e^{-\frac{x}{\delta}} e^{-\frac{ix}{\delta}} e^{i\omega t} + Cx + D.$$

La température ne pouvant diverger quand $x \rightarrow +\infty$, on a nécessairement A=0 et C=0, d'où

$$\underline{T}(x,t) = \underline{B} e^{-\frac{x}{\delta}} e^{\mathrm{i}(\omega t - \frac{x}{\delta})} + D.$$

En x = 0, on impose

$$\underline{T}(0,t) = T_a + \theta_0 e^{i\omega t} = \underline{B} e^{i\omega t} + D,$$

d'où $B = \theta_0$ et $D = T_a$. Finalement

$$\underline{T}(x,t) = \theta_0 e^{-\frac{x}{\delta}} e^{i(\omega t - \frac{x}{\delta})} + T_a.$$

En prenant la partie réelle, on obtient

$$T(x,t) = T_{a} + \theta_{0} e^{-\frac{x}{\delta}} \cos\left(\omega t - \frac{x}{\delta}\right).$$

On observe une onde de température :

- son amplitude décroît exponentiellement sur une distance caractéristique δ d'autant plus courte que la pulsation est élevée;
- les variations à une distance x de la surface présentent un déphasage x/δ avec la variation à la surface, qui augmente avec x.
- **3.** On a $\omega=2\pi/T$ où T=24 h = 86400 s pour la période jour-nuit. L'épaisseur caractéristique est donnée par

$$\delta = \sqrt{\frac{aT}{\pi}} = 14 \text{ cm}.$$

Cette épaisseur est de l'ordre de grandeur de l'épaisseur d'un mur. Les fluctuations journalières de température sont atténuées mais pas négligeables de l'ordre côté d'un mur de faible épaisseur.

4. On cherche l'épaisseur *L* telle que

$$e^{-\frac{L}{\delta}} = \frac{1}{10}$$

soit $L = \delta \ln(10)$. On calcule L = 32 cm.

2 — Diffusion thermique dans un câble

1. Cours:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{\lambda}{\mu c} \frac{\partial^2 T}{\partial x^2} \ .$$

2. On se place ici en régime stationnaire. On a donc $\frac{d^2T}{dx^2} = 0$: le profil de température est affine, et le flux ne dépend pas de x.

On a donc

$$\Phi = -\lambda \frac{\mathrm{d}T}{\mathrm{d}x}S$$

avec

$$\frac{dT}{dx} = \frac{T(L) - T(0)}{L - 0} = \frac{T_2 - T_1}{L}$$

ďoù

$$\Phi = \frac{\lambda S}{I} (T_1 - T_2).$$

➤ On retrouve la résistance thermique du câble. et On aurait pu utiliser ce résultat directement.

On a

$$\Phi = \frac{2400}{60} = 40 \text{ W}.$$

On calcule

$$\lambda = \frac{\Phi L}{S(T_1 - T_2)} = \frac{40}{100 \times 10^{-4} \times (300 - 280)}$$

soit
$$\lambda = 200 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$$
.

Le câble est un assez bon conducteur thermique (cette valeur est assez proche de la conductivité thermique de l'aluminium).

3. On donne

$$T(x,t) = T_0 + Ae^{-mx}\cos(\omega t - \alpha x + \varphi).$$

3.a) Le terme $\cos(\omega t - \alpha x + \varphi)$ correspond à une onde progressive harmonique, qui se propage dans le câble dans le sens des *x* croissants.

Le terme e^{-mx} correspond à une atténuation sur une distance caractéristique 1/m.

On observe donc une onde de température atténuée dans le câble.

Pour x = 0, on a

$$T(0, t) = T_0 + A\cos(\omega t + \varphi) = T_0 + A\cos(\omega t)$$

d'où
$$\varphi = 0$$
.

Pour déterminer m et α , il faut écrire que T(x, t)vérifie l'équation de la chaleur. Il est plus simple de se placer en notation complexe:

$$\underline{T}(x,t) = T_0 + A e^{i\omega t - (m+i\alpha)x}.$$

On a

$$\frac{\partial \underline{T}}{\partial t} = i\omega \underline{T}(x, t)$$

$$\frac{\partial^2 \underline{T}}{\partial x^2} = (m + \mathrm{i}\alpha)^2 \underline{T}(x, t).$$

L'équation de la chaleur conduit, après simplification par T(x, t), à

$$\mu ci\omega = \lambda (m + i\alpha)^2$$
.

On a donc

$$m + i\alpha = \sqrt{\frac{\mu c\omega}{\lambda}} e^{i\pi/4} = \sqrt{\frac{\mu c\omega}{2\lambda}} (1 + i).$$

On en déduit

$$m = \alpha = \sqrt{\frac{\mu c \omega}{2\lambda}}$$

3.b) L'amplitude à la profondeur x est Ae^{-mx} . En x = 0, on lit directement A = 19.5 °C.

Complétons le tableau de façon à avoir une relation affine:

<i>x</i> (m)	0	1	2	3
Ae^{-mx}	19,5	11,5	6,8	4
$Y = \ln A - mx$	2,970	2,442	1,917	1,386

Une régression linéaire sur les points (x, Y)conduit à une pente $-m = -0.528 \text{ m}^{-1}$. On a donc

$$m = 0.528 \text{ m}^{-1}$$
.

 \triangleright C'est aussi la valeur de α .

3.c) La profondeur d'inversion x_i est telle que $\alpha x_i = \pi$.

On calcule $x_i = 5.95 \text{ m}$.