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TD phénomènes de transport Diffusion de particules

1—  Réaction photochimique

Une réaction photochimique produit p radicaux libres
par unité de volume et par unité de temps dans un ré-
cipient réactionnel cylindrique délimité par des parois
d’abscisses x =−a et x = a.
On note S la section du récipient, de longueur 2a, n(x)
la densité particulaire de radicaux libres et D leur coef-
ficient de diffusion dans le milieu réactionnel. On sup-
pose qu’il y a absorption totale sur les bases du réci-
pient cylindrique, ce qui impose n(−a) = n(a) = 0.
On se place en régime permanent.

1. Déterminer l’équation différentielle vérifiée par la
densité particulaire n(x).

2. En déduire l’expression de n(x).

3. Déterminer le flux de radicaux traversant une sec-
tion d’aire S à l’abscisse x du récipient. Commenter.

2—  Réacteur nucléaire

On étudie un réacteur nucléaire à une dimension : la
densité volumique de neutrons est n(x, t ). Dans le mi-

lieu,
n(x, t )

τ
neutrons sont absorbés par unité de temps

et de volume; pour chaque neutron absorbé, K neu-
trons sont produits (K > 1). La loi de Fick est supposée
vérifiée, le coefficient de diffusion étant noté D .
Le réacteur est situé entre les plans d’abscisses x =−a
et x =+a. On impose n(±a) = 0.

1. Établir l’équation aux dérivées partielles, notée (1),
vérifiée par n(x, t ).

2. On se place en régime permanent. Déterminer n(x)
en fonction de n0, x et a, où n(0) = n0.

Montrer que le régime stationnaire n’est possible que
pour une valeur Ls de la longueur du réacteur à déter-
miner.

3. On se place en régime quelconque. On cherche une
solution de l’équation (1) sous la forme

n(x, t ) = f (x)e−t/T .

Déterminer f (x) et T , et discuter de la stabilité du ré-
acteur suivant les valeurs de sa longueur L = 2a.

3—  Source sphérique de neutrons

Une source sphérique, de centre O et de rayon r0 émet
de façon continue N0 neutrons par unité de surface et
par seconde. La densité particulaire de neutrons n ne
dépend que du rayon r ∈ [r0,+∞[ et du temps t .

1. On suppose le milieu non absorbant.

1.a) Déterminer l’expression du flux de diffusion à tra-
vers une sphère de rayon r en fonction de la densité
particulaire n. On note D le coefficient de diffusion des
neutrons.

1.b) Que peut-on dire de ce flux en régime station-
naire? Donner alors son expression en fonction de N0

et r0, puis déterminer la loi n(r ).

2. En fait, la source de neutrons est placée dans une
enceinte sphérique de rayon r1 > r0, et le milieu com-
pris entre r1 et r0 absorbe les neutrons à raison de K
captures radiatives par seconde et par unité de volume.

2.a) Faire un bilan en considérant la tranche d’espace
comprise entre r et r +dr dans le cas général n(r, t ).

2.b) Dans le cas du régime stationnaire, quelle est la
valeur de r1 qui annule le flux de diffusion?

4—  Résoudre l’équation de la diffusion

On considère un processus de diffusion unidimension-
nel suivant la direction Ox. Pour certaines conditions
initiales, il est possible de chercher une solution de
l’équation de diffusion sous la forme

n(x, t ) = n0 + f (x)g (t ) ,

où n0 est une constante, et f et g des fonctions respec-
tivement de x et de t .

1. Déterminer les fonctions f et g . On ne cherchera
pas à déterminer les constantes qui apparaîtront dans
le calcul.

2. La condition initiale, à t = 0, est n(x,0) = n1 +
n2 sin px, où n1, n2 et p sont des constantes.

Montrer que la solution trouvée ci-dessus convient et
déterminer complètement cette solution.

5—  Diffusion dans un tuyau poreux

On étudie l’état stationnaire de diffusion gazeuse dans
un tuyau cylindrique d’axe Ox, de rayon a, de longueur
L très grande. Les concentrations des molécules sont
maintenues constantes aux deux extrémités : n(x =
0) = n0 et n(x = L) = n1. On note D le coefficient de
diffusion des molécules.
Le tube est légèrement poreux : les molécules
s’échappent vers l’extérieur à travers la paroi latérale
du tube; d’épaisseur e ¿ a. Cette diffusion est caracté-
risée par un coefficient D ′ ¿ D . Avec ces hypothèses,
nous pouvons supposer que la densité moléculaire est
linéaire dans la paroi latérale du tube. Elle est en outre
supposée nulle à l’extérieur.
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Établir l’équation différentielle vérifiée par n(x) et la ré-
soudre. On introduira une longueur caractéristique d .
Discuter le cas L ¿ d .

6—  Sédimentation

On étudie un équilibre de sédimentation mettent en
jeu la diffusion, mais aussi un champ extérieur, ici celui
de pesanteur. Des particules sphériques de rayon R, de
masse volumique ρ, sont en suspension dans un fluide
de masse volumique ρ0. Leur densité volumique n ne
dépend que de la hauteur z par rapport au fond du ré-
cipient.
Au cours de leur chute les particules sphériques sont
soumises à une force visqueuse −6πηR #»v , où η est la
viscosité du liquide et #»v la vitesse des particules.
Les particules sont aussi soumises au poids et à la
poussée d’Archimède.
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1. Au cours de leur chute dans le liquide, les particules
atteignent rapidement une vitesse limite. La détermi-
ner.

2. À ce mouvement de chute on associe un vecteur
densité de courant d’entraînement. En déduire son ex-
pression.

3. Montrer alors qu’il apparaît un vecteur densité de
courant diffusif dont on rappellera l’expression géné-
rale. On note D le coefficient de diffusion des sphères
dans le liquide.

4. Déduire des deux questions précédentes l’expres-
sion de la densité volumique n(z) en régime perma-
nent.

5. Question pour les étudiants issus de PCSI unique-
ment.

Cette expression peut aussi s’interpréter à l’aide du fac-
teur de Boltzmann. En déduire une relation entre le co-
efficient de diffusion D , la constante de Boltzmann kB,
la température T , le rayon R et la viscosité η.

7—  Taille critique d’une bactérie

Une bactérie est modélisée par une sphère fixe, de
rayon R, et sa masse volumique µ est assimilée à celle
de l’eau. Le régime est considéré comme stationnaire
et on note n(r ) la densité de dioxygène dissous à la dis-
tance r du centre de la bactérie. La diffusion du dioxy-
gène dans l’eau obéit à la loi de Fick avec un coefficient

de diffusion D . À grande distance de la bactérie, la den-
sité de dioxygène dissous est notée n0 et est supposée
constante.
On admet que la consommation en oxygéné de la bac-
térie est proportionnelle à sa masse et on introduit A le
taux horaire de consommation de dioxygène par unité
de masse, mesuré en mol ·kg−1 · s−1.

1. Étude préliminaire

1.a) Exprimer
#»
J (r ), le vecteur densité de flux de parti-

cules diffusées, en fonction de D en n(r ).

1.b) Exprimer le nombre Φ(r ) de molécules de dioxy-
gène entrant par unité de temps dans une sphère de
rayon r > R en fonction de J (r ). Le flux de particules Φ
dépend-il de r pour le cas étudié ?

1.c) Déterminer l’expression de ns , densité particu-
laire en dioxygène dissous sur la surface extérieure de
la bactérie. On exprimera le résultat en fonction de Φ,
D , R et n0.

2. Taille critique de la bactérie

2.a) Exprimer Φ en fonction de R, Na , µ et A.

2.b) En déduire l’expression de ns . Quelle inégalité
doit être vérifiée afin que la bactérie ne suffoque pas?
En déduire l’expression du rayon critique d’une bacté-
rie aérobie.

8—  Diffusion à travers un tuyau

Deux récipients de même volume V contiennent deux
gaz purs notés A et B sous la même pression et à la
même température. Ils sont reliés par un tube recti-
ligne de longueur L et de section S. Les gaz diffusent à
travers le tube et l’on suppose qu’ils ont la même co-
efficient de diffusion D . On admet que le régime est
quasi-stationnaire dans le tube et que les concentra-
tions en A et B sont à tout instant uniformes dans dans
les récipients.
On note C1A(t ) et C1B (t ) les concentrations de A et B
dans le récipient 1, avec C1A(0) =C0 et C1B (0) = 0.
On note de même C2A(t ) et C2B (t ) les concentrations
de A et B dans le récipient 2, avec C2A(0) = 0 et
C2B (0) =C0.

1. Trouver le lien entre le flux de gaz (A ou B) dans le
tuyau et la différence de concentration entre les deux
réservoirs.

2. En déduire l’évolution des différentes concentra-
tions avec t , et exprimer la constante de temps τ du
phénomène.

3. Calculer τ avec V = 14 L, S = 1 cm2, L = 10 cm et
D = 1,7×10−5 m2 · s−1.

9—  Élargissement d’une tache d’encre

On considère un modèle unidimensionnel de la diffu-
sion d’une tache d’encre sur un papier filtre : le colo-
rant est placé initialement en x = 0.
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La conditions initiale est n(x,0) = 0 si x 6= 0.
Les conditions aux limites sont

n(∞, t ) = n(−∞, t ) = 0, ∀t .

La solution de l’équation de la diffusion s’écrit alors
pour t > 0 :

n(x, t ) = Ap
Dt

exp

(
− x2

4Dt

)
,

où A est une constante qui dépend du nombre initial
de molécules de colorant déposées sur le papier.

1. Vérifier n(x, t ) satisfait à l’équation de la diffusion.

2. La solution proposée vérifie-t-elle les conditions
initiale et aux limites?

3. On peut définir la largeur L(t ) de la tâche à l’ins-
tant t par

n

(
L(t )

2
, t

)
= n(0, t )

10
.

Exprimer L(t ) en fonction des données et discuter du
résultat obtenu.

4. Représenter n(x, t ) en fonction de x pour diverses
valeurs de t .

10—  Extraction d’un gaz naturel

On modélise un gisement de gaz naturel par une roche
poreuse de volume total V comprenant un volume qV
de méthane gazeux, la constante q étant la porosité
de la roche. Cette roche poreuse a la forme d’un cy-
lindre de section circulaire S et de longueur L, limité
sur ses bords et sur sa section x = L par une roche im-
perméable.

0

roche poreuse
roche imperméable

L
x

La section x = 0 modélise le puits d’extraction du mé-
thane et on admettra que la pression y est maintenue
constante, égale à p0 = 1 bar. On fait les hypothèses
suivantes :

— l’influence de la pesanteur est négligeable ;

— le problème est unidimensionnel selon Ox et le
champ de pression du méthane est noté p(x, t ) ;

— la température et uniforme à T = 300 K;

— le méthane est assimilé à un gaz parfait de masse
molaire M = 16 g ·mol−1.

On suppose que l’écoulement de méthane obéit à la loi
de Darcy : le vecteur densité de courant massique as-
socié vérifie

#»ȷ =−k

ν

#      »

grad p ,

où ν est la viscosité cinématique du méthane et k la
perméabilité de la roche poreuse.

1. Montrer que p(x, t ) vérifie l’équation

∂p

∂t
= D

∂2p

∂x2

où l’on exprimera D en fonction de k, ν, R (constante
des gaz parfaits), T , M et q . Quel est ce type d’équa-
tion?

2. On cherche une solution de la forme

p(x, t ) = p0 +p1 sin(αx)e−
t
τ ,

où α et τ sont des constantes positives. Exprimer α en
fonction de D et τ.

3. Montrer que α ne peut prendre que des valeurs par-
ticulières que l’on exprimera. Dans la suite, on adopte
la plus petite valeur de α.

4. Exprimer la masse m(t ) de méthane contenue dans
le gisement à la date t en fonction des données.

5. Sachant que p1 = 100p0, L = 5,0 km, D =
3,0×10−2 m2 · s−1 et q = 0,15, calculer en années la
date t∗ à laquelle 95 % du méthane contenu dans le gi-
sement a été récupérée. Commenter.

Tracer l’allure de m(t ) et de p(x, t ) en fonction de x
pour t = 1, 10, 30 et 40 ans.

11—  Évaporation de l’éther

Un tube cylindrique de hauteur totale L est rempli sur
une hauteur h d’éther liquide. À la surface de l’éther,
la pression partielle d’éther est égale à la pression de
vapeur saturante de l’éther à la température ambiante
T0 = 293 K. À la sortie du tube, la pression partielle de
l’éther est négligeable.
On donne les grandeur suivantes :

— masse molaire de l’éther M = 74,1 g ·mol−1 ;

— masse volumique de l’éther µ= 626 kg ·m−3 ;

— coefficient de diffusion de l’éther dans l’air D =
1,5×10−5 m2 · s−1 ;

— pression de vapeur saturante de l’éther à 293 K :
Ps = 0,583 bar.

1. On suppose que la durée caractéristique de varia-
tion de la hauteur h(t ) est beaucoup plus lente que la
durée caractéristique de diffusion de l’éther dans l’air,
de telle sorte que l’on puisse considérer que la diffusion
de l’éther dans l’air se fait en régime quasi-permanent.
En déduire la densité moléculaire n(z, t ) de la vapeur
d’éther dans l’air en fonction de L, h(t ), z et de don-
nées. L’axe Oz sera pris dirigé vers le bas avec son ori-
gine en haut du tube.

2. Exprimer le nombre de molécules d’éther qui s’éva-
porent entre t et t +dt .
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3. Déterminer l’équation différentielle vérifiée par la
hauteur d’éther h(t ). En déduire le temps nécessaire
à l’évaporation de l’éther contenu sur une hauteur de
15 cm dans un tube de 20 cm.

4. Vérifier l’hypothèse de régime quasi permanent ef-
fectuée à la première question.

12—  Diffusion d’atomes dans les solides

On considère un phénomène de diffusion unidimen-
sionnel, suivant la direction Ox, dans un milieu occu-
pant tout le demi-espace x > 0. On appelle D le coeffi-
cient de diffusivité et n(x, t ) la concentration de parti-
cules en x à l’instant t . On note #»ȷ le vecteur densité de
courant particulaire.
À l’instant initial, la concentration en atomes est nulle
partout sauf dans une faible épaisseur située en x = 0,
où l’on implante une quantité Q d’atomes par unité de
surface du matériau. Au cours de la diffusion, la quan-
tité Q de particules présentes dans le matériau reste
constante.

1. Établir l’équation aux dérivées partielles vérifiée par
n(x, t ).

2. On montre alors que la concentration de particules
dans la matériau au cours de la diffusion est de la forme

n(x, t ) = B(t )e−
x2

A(t ) ,

où A(t ) et B(t ) sont des fonctions du temps.

On donne l’intégraleˆ ∞

0
e−u2

du =
p
π

2
.

Déterminer les fonctions A(t ) et B(t ) en fonction de Q,
D et t ;

3. Déterminer la profondeur de diffusion h pour la-
quelle n(h, t ) = n(0,t )

e .

4. Au bout d’une heure, h vaut 5 µ m. Donner l’al-
lure du profil des concentrations à t1 = 1 heure et à
T2 = 3 heure.

13—  Bombe nucléaire

Des neutrons diffusent dans un barreau de plutonium
cylindrique de section S et de longueur L. Du fait de
réactions nucléaires, à chaque collision entre neutron
et noyau de plutonium, il y a production de neutrons.
Le taux de production par unité de temps et de volume
est : σn = K n où n(x, t ) est la densité de neutrons et
K = 104 USI une constante positive. On admet que n
s’annule aux extrémités, en x = 0 et x = L. On donne le
coefficient de diffusion des neutrons : D = 22 m2 · s−1

1. Quelle est l’unité de K ? Établir l’équation différen-
tielle vérifiée par la densité n(x, t ).

2. La résoudre et déterminer n(x) en régime station-
naire. Montrer que seule une valeur de L est possible.

3. On considère maintenant un régime quelconque.
Chercher n(x, t ) sous la forme n(x, t ) = f (x)g (t ). Déter-
miner l’expression générale de n(x, t ) en fonction des
données.

4. Si suite aux réactions en chaîne n diverge, la pro-
duction d’énergie thermique diverge. À partir de quelle
taille le système peut-il exploser s’il n’est pas contrôlé?

14—  Évaporation d’un lac

On étudie la diffusion de la vapeur d’eau au-dessus
d’un lac. La densité volumique n(z) de molécules d’eau
en phase vapeur ne dépend que de l’altitude z par rap-
port au lac. La pression partielle de vapeur d’eau à
la surface du lac est p(0) = 3,3 kPa. Elle vaut p(L) =
0,75p(0) à l’altitude L = 10 m.
La température est uniforme et égale à T = 300 K. LA
vapeur d’eau est assimilée au gaz parfait. Le coeffi-
cient de diffusion de la vapeur d’eau dans l’air est D =
2,2×10−5 m2 · s−1. On se place en régime permanent,
alors que le déséquilibre entre z = 0 et z = L est entre-
tenu.

1. Déterminer la densité volumique de molécules
d’eau n(z) à une altitude z comprise entre 0 et L.

2. En déduire la masse d’eau s’évaporant du lac par
unité de temps et par unité de surface.

15—  Diffusion de bactéries

On étudie une population de bactéries de densité
n(x, t ) et de diffusivité D = 10−10 SI.

1. Quelle est l’unité de D ? Calculer le temps de diffu-
sion sur une longueur de 10 cm. Commenter.

2. On suppose que tous les τ = 1200 s, une bactérie
donne naissance à une autre. Établir l’équation vérifiée
par n(x, t ).

3. Déterminer la solution n(t ) indépendante de x et
telle que n(0) = n0. Commenter.

4. On suppose maintenant que tous les τ = 1200 s,
une bactérie meurt proportionnellement au nombre
moyen de bactéries présentes présentes à une distance
a d’elle. Montrer que

∂n

∂t
= D

∂2n

∂x2 +d1n −d2n2 ,

où l’on définira les constantes d1 et d2.

5. Quelles sont les solutions n1 et n2 indépendantes du
temps et de l’espace (n1 < n2) ? Que représentent-elles
physiquement?

6. On suppose wque n(x, t ) = f (x − ct ) avec
lim

u→−∞ f (u) = n2 et lim
u→+∞ f (u) = n1. Interpréter.

7. Trouver l’expression de c en fonction de

α=
ˆ +∞

−∞
f ′(u)2 du .

Interpréter.
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