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TD phénomenes de transport

Jean

Perrin E. SAUDRAIS

Diffusion de particules

1 — Réaction photochimique

1. On effectue un bilan de particules entre deux sec-
tions S d’abscisses x et x + dx, entre les instants ¢ et
t+d¢. En régime stationnaire :

0=0(x)dt—P(x+dx)dt+ pSdxdt
soit d
0]
0=——dxdt+ pSdxdtr.
P X pSdx
. . . dn .
Avec laloi de Fick, ®(x) = jy(x)S = —DSd—, d’ou
X

0=0sE" 4 os
B dx? ps-

La densité particulaire vérifie I'équation différentielle

d’n p
+—==0.
dx*> D

2. Léquation précédente ne doit pas étre vue comme
une équation différentielle : elle consiste juste en la
donnée de la dérivée seconde

d?n_ p

dx2 = D’
En intégrant deux fois, on obtient

n(x) = —£x2+Ax+B.
2D

Les conditions aux limites étant paires !, ona A=0.On
en déduit
L 2+B=0
2D
d’olt
b o> 2
n(x) = 2D (@ —x7)

Le profil de densité est parabolique, avec un maximum

aucentre: n(0)=n = pa2
. - max — 2D .
n(x)
Nmax
Jn(x) <0 Jn(x)>0 X
—a 0 a

1. Onimpose n(-a) = n(a).

3. Le flux est donné par
D(x) = jy(x)S DSdn Spx
X) = X = — _— = .
JN dx p

Les particules diffusent du centre vers les extrémités,
comme l'indique le signe de ®(x) (on a ®(x) > 0 pour
x>0 et d(x) <0 pour x < 0); c'est bien le compor-
tement attendu d’une diffusion des régions de densité
élevée vers les régions de faible densité.

Le flux est maximum (en valeur absolue) aux extrémi-
tés, ol les particules sont absorbées.

2 — Réacteur nucléaire

1. On considére une section S comprise entre les abs-
cisses x et x + dx.

A linstant t, elle contient SN(x, t) = n(x, £)Sdx neu-
trons. Entre t et t + d¢, ce nombre varie de

on(x,t)
ot

Le nombre de neutrons recu par le systéme entre ¢ et
t+dtest

d(ON) = (n(x, t+dt) —n(x, t)) Sdx = dtSdx.

8% Nyeeu = j(x, )Sdt — j(x +dx, HSdt

- 9D s,
0x
on(x,t
soit avec la loi de Fick j(x,#) =-D n{;); ) :
0?n(x, 1)
52Nrequ = DWSdth

Dans le volume Sdx, le nombre de neutrons absorbés

pendant d¢ est
n(x, )

T
Chaque neutron absorbé produisant K neutrons, on

n 0 ¢ dxdr

T
neutron. Le nombre de neutrons créés dans le systeme
pendant d¢ est donc

Sdxdt.

observe l'apparition pendant d¢ de K

n(x,t)

62 Nerss = (K—1) Sdxdr.

Le bilan de particules s’écrit
d(ON) = 52Nreg:u + 52Ncréé .

Apreés simplification par Sdxdt, on obtient

on(x, t) Pn(x,t) K-1
=D +
T

37 FP) n(x,t) .
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2. En régime permanent, I'équation précédente de-
vient

d?n(x) Sl S
dx? Dt -
Dt . .
Posons A = ‘/ﬁ’ grandeur ayant la dimension
d?n(x) n(x)
d 1 .Ona ———+——-=0.
une longueur. Ona —5 2

La solution générale est de la forme
X (X
n(x) = Acos (z) + Bsin (Z) .

On an(0) = A= ng.
Les conditions aux limites s’écrivent

n(a) = Acos(%) + Bsin(%) =0

et

n(-a) = Acos(;) —Bsin(%) =0.

Comme n(0) = A= ng #0, il faut choisir B =0, d’ ot

n(x) = ny cos(%) .

a
On impose n(+a) = 0, soit cos(z) = 0. II faut donc
a 7n .
1°32 + pm avec p € N. Seule la valeur p = 0 convient,
sinon n(x) prendrait des valeurs négatives ce qui n’est

physiquement pas acceptable (c’est un nombre de par-
ticules par unité de volume). On a donc

n(x) = ngcos (%) .

. . A
Le régime permanent n’est possible que pour a = —,

c’est-a-dire pour une longueur Ls = 2a du réacteur
donnée par

Dt

Li=m .
s K-1

3. Enremplacant n(x, t) par la forme proposée, I'équa-
tion aux dérivées partielles devient
K-1

T

1
—?f(x)=Df”(x)+ fx),

soit

f”(x)+(E+—)f(x):0. 1)

1
D TD
Compte tenu de la condition n(+a, t) = 0, la fonction f
doit s’annuleren x = —a et x = +a.

K-1 1
Selon le signe de k = + ——, la solution générale
D TD
de (1) est
— affinesi k=0;

— dela forme aexp (\/—_kx) + fexp (—\/—_kx) sik<0;

2. Il faut savoir écrire ce résultat directement.
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— delaforme Acos(kx) + Bsin(kx) si k> 0.
La solution sinusoidale est la seule qui peut s’annuler
pour deux valeurs de x. On ne peut donc avoir que

et

fx) = Acos(\/%x) + Bsin(\/%x) .
Comme précédemment, la parité de la solution impose
B=0.
Les conditions aux limites imposent cos(Vka) = 0,
d’ou1 avec le méme raisonnement que précédemment,
Vka= g On adonc

T  |K-1 1
2a D

fx) = Acos(%) et D"

Pour que n(x,t) reste fini quand ¢t — oo, il faut que
T>0.
D’apres le résultat précédent,

1 2 K-1
ﬁz(%) 1D’

b4 K-1
Ona T >0 pour — >/ ——, C'est-a-dire pour une
2a D

longueur du réacteur

™D
L=2a<nm\|——=Ls.
K-1

Pour une longueur L < Lg, le réacteur s’éteint :
n(x,t) — 0 pour ¢ — oo.

Pour L = Lg, le réacteur fonctionne en régime per-
manent.

Pour L > L, le réacteur s’emballe : n(x, t) — oo pour
t — oo.

3 — Source sphérique de neutrons

1. Sans absorption.

1l.a) La densité de particules ne dépend que de r et du
temps : n(r, t). Le vecteur 7 est donc radial, et sa com-
posante ne dépend que de r et du temps :

TWM, 0 =jrne,.
En effet, la loi de Fick s’écrit
7= -Dgradn=-p2"%,.
or
Le flux de 7 a travers une sphére de rayon r s'écrit? :

(r, 1) = # T(M,0)-dS =4nr?j(r,1).
MeZX(r)

En remplacant j(r, f) par son expression a partir de la
loi de Fick, on obtient

D(r, 1) = —47rDr26—n .
or
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1.b) Enrégime stationnaire, écrivons le bilan de parti-
cules pour une sphére de centre O et de rayon r > ry :

0= 6Nre(;u + 6 Neres

avec
8 Nregu = —@(r) dt
et
O Nergs = 471N0r§ dt,
d’ou
0=-®(r)dt+4nNoradt.
On adonc

@(r) = 4w Norg

Le flux est indépendant de r.

En utilisant I'expression de @ établie en 1.a) a partir de
la loi de Fick, on obtient3

dn
—4nDr*=— = 47 Ny r2
dr 0

d’ou
dn Nor§ 1
dr~ D r?’
On en déduit
Norg 1
n(r) = -+A
D

ol A est une constante. Physiquement, la densité de
particules diffusantes tend vers 0 quand on s’éloigne a
I'infini de la source : rlim n(r)=A=0.0nadonc

—00

2. Avec absorption.

2.a) La couche sphérique considérée a pour volume
d7 = 47r2dr. La densité n(r, f) étant uniforme (au pre-
mier ordre) sur ce volume, le nombre de particules dif-
fusantes présentes a 'instant ¢ est

SN(t) =n(r, t)dr = 4nr’n(r, t)dr.
Sa variation pendant d¢ vaut
d(ON)=0N(t+dt)—ON(1)
G_n
ot

Le nombre de particules recues pendant dt a été cal-
culé ala question 1.b) :

=4nr?[n(r, t+do) - n(r, 0] dr = 4nr®—dedr.

0D
82 Ngeh = @(r, ) dt —®(r +dr, 1) dt = -5 drdt,
r

soit en utilisant I'expression de ®(r, t) établie en 1.b)

F)
2—”) drdr

0
8% Ngep = 47TDE (r o

Le nombre de neutrons « produits » (algébriquement;
il s’agit ici de capture, ce terme est donc négatif) est

8% Nproa = —Kdrdt = —4nKr*drdz.
Le bilan s’écrit
d(6N) = 6° Ngch + 6% Nprod

soit

0 0 0
4ﬂrza—lz dedr = 47tDa— (rza_”) drd:
r r

—4nKridrdt
soit apres simplification

STl

on 26”)—1(
ot  r2or '

&

2.b) Dans le cas du régime stationnaire, I'équation aux
dérivées partielles précédente ce raméne a une équa-
tion différentielle vérifiée par n(r) :

,dn

Tar

Dd(
r2dr

) -K=0,
soit d d .
4 (pdn) K
dr\' dr/ D
Une premiere intégration conduit a

,dn K 4
rP——=—r3+A4,
dr 3D

ol A est une constante. Le flux est donné par

pdn :_47'[K

®(r)=—-4nDr 3 _4nDA.
(") dr 3

On sait exprimer le flux en r = ry, a la surface de la
source : ®(rg) = 4w Ny rg, soit

4nK 4 2
—Tro —4nDA =4nNypry .
On en déduit
5, 4nK 4
—4nDA = 47TN0T0 + TTO

que I'on remplace dans I'expression de ®(r), et ’on ob-
tient

K
o) =—— (r3—13) +4nNorf .
Le flux n’est plus constant du fait des captures des neu-

trons : il décroit avec r, c’est-a-dire quand on s’éloigne
de la source. Le flux s’annule pour r = r; tel que

4nK
d(ry) = T (rg - r13) +4nN0r§ =0,

3. On note une dérivée droite car en régime stationnaire, n ne dépend que de la seule variable r.
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soit

( ; 3N0r§)”3
rn= r0+ .
K

Méme si ce n'est pas demandé dans 1'énoncé, une
saine habitude est de discuter de 'influence des divers
parametres dans I'expression obtenue, et justifiant par
des considérations physiques simples, si c’est possible,
les effets observés.

Ici, r; dépend de 1y, Ny et K. Il est intéressant de discu-
ter de I'influence de Ny et K.

Le rayon r; est une fonction croissante de Ny : si Ny
augmente, la source émet plus de particules; il est lo-
gique qu’il faille une plus grande épaisseur de milieu
absorbant pour annuler le flux.

Le rayon ry est une fonction décroissante de K : si K
augmente, le milieu absorbe plus efficacement les neu-
trons; il est logique qu'une épaisseur plus petite de ce
milieu suffit pour annuler le flux.

4 — Résoudre I'équation de la diffusion

1. Onremplace n(x, t) = ng + f(x)h(t) dans I'équation
de la diffusion :

fg' (1 =Df"(x)g®
On écrit en séparant les variables :

f'@ _1gw
fx) Dgm’

Le membre de gauche ne dépend pas de ¢; le membre
de droite ne dépend pas de ¢. Ces deux membres étant
égaux, ils ne dépendent donc ni de x ni de ¢, et se ré-
duisent donc a une constante A. On a donc un systéme
de deux équations différentielles :

fl/(x)
=A 2
fx) @
lgm_ 3
D g(1)

La forme générale de ma solution de chacune de ces
équations différentielles dépend du signe de A. Nous
allons éliminer certaines formes par des considéra-
tions physiques.

La solution générale de (3) est de la forme
g(t) = goeP’,
ol go est une constante. La densité n(x, t) ne pouvant
devenir infinie, il faut nécessairement que A < 0, soit
A=—k? Onadonc
_ —k?Dt
gt)=gope .
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Léquation (3) s'écrit alors f"(x) + k? f(x) = 0. La solu-
tion générale est de la forme

f(x)=asinkx+ fcoskx

ol a et f sont deux constantes. On en déduit alors

12
n(x, ) =ng+ go(asinkx+ fcoskx)e k°Dt
Simplifions I'écriture des constantes en posant a; =
goaeta,=gof:

n(x, t) = ng + (a; sin kx + a, cos kx) e_kth 4)

2. Ecrivons la condition initiale a partir de I'expres-
sion (4) (prise a t =0 donc) :

ng + a; sinkx + ap coskx = ny + npsinpx
En identifiant chaque terme, on en déduit

ngp=ny; ai=ny; a»=0; p=k.

La densité a donc pour expression

2
n(x, t) = ny + npsin(px)e P Pt .

La densité initiale fluctue sinusoidalement autour de la
valeur moyenne n,. Sous l'effet de la diffusion, on ob-
serve un « étalement » des fluctuations, qui conduit a
tll»%lo n(x, t) = ng uniforme. Cette uniformisation se fait

L 1 ,
avec un temps caractéristique 7 = D Elle est d’au-

tant plus rapide (7 petit) que D est grand (prévisible : la
diffusion est efficace), et que p est grand, ce qui consti-
tue a des ondulations de concentration initiale resser-
rées. La diffusion doit uniformiser les concentrations
entre deux maxima successifs, c’est-a-dire sur une plus
petite distance : le phénomene est plus rapide.

5 — Diffusion dans un tuyau poreux

Ie

Nous étudions le régime stationnaire; il est donc in-
utile de chercher a exprimer la quantité de particules
contenues dans ce volume : sa variation est nulle pen-
dantd¢: d(0N) = 0. Comme il n'y a pas production de
particules, le bilan s’écrit simplement

0 =06 Nech.

Le terme d’échange fait apparaitre 3 flux:
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1. le flux « entrant » a travers la section S = wa? située
en x, soit ®(x);

2. le flux « sortant » a travers la section S = ma? située
en x +dx, soit ®(x +dx);

3. le flux « sortant » a travers la surface latérale 2radx,
s0it* 6D (x).

On adonc

0=®(x)dr—®(x+dx)dr — 5Py dt

do
——dxdt— 0D, (x)dt.
dx

Attention, il y a deux flux a considérer :

1. le flux « principal », qui décrit la diffusion selon Ox
dans le tuyau. Il est décrit par le vecteur densité de cou-
rant de particules T(x) = j(x) e,. Ce phénomene est
caractérisé par un coefficient de diffusion D;

2. le flux radial décrivant la fuite a travers la paroi po-
reuse; le vecteur densité de courant correspondant est
— . > A . . y

J1at = Jiat €r (coordonnées cylindriques d’axe Ox). Ce
phénomene est caractérisé par un coefficient de diffu-
sion D',

On a donc

2

Dx)=jx)xma” et ODp(x) = jlae x 2madx.

La loi de Fick s’écrit, pour le flux principal

an
dx’

Le flux secondaire est radial; la loi de Fick s’écrit donc
alintérieur de la paroi®

Jjx) =

, D on
lat =~ ——.

/ or

L'énoncé précise que la densité moléculaire est linéaire

danslaparoi (der=aar=a+e), soit

on _n(a+e,x)—n(a,x)

Fe .
La densité étant supposée nulle a 'extérieur, on a n(a+
e,x) = 0. Sur la face intérieure de la paroi, la densité est
égale a la densité dans le tube a la cOte x considérée,
soitn(a,x) = n(x). On a donc

e

on _ nx)
or e
et la loi de Fick s’écrit
Jlat = D’—n(X)
af =

On adonc

n(x)

d
d(x) = —nazD—n et 0P (x) =2naD'——dx
dx e

et le bilan s’écrit

d?n n(x
0= szD—2 dx-— 2sz'L dx.
dx e
soit
d’n 2D’ -
dx?2 aeD el

Par analyse dimensionnelle, I’équation différentielle
peut s’écrire sous la forme

d?n

d’n n(x) B
dx? B

d2

|aeD
2D’
homogeéne a une longueur.
On peut écrire la solution générale de cette équa-
tion différentielle sous la forme d’exponentielles ou
de fonctions trigonométriques hyperboliques. Lune
des conditions aux limites portant en x = 0, et le mi-
lieu n’étant pas infini, la détermination des constantes

d’intégrations sera plus simple avec les fonctions trigo-
nométriques hyperboliques :

en posant

n(x) = acosh(g) + ,Bsinh(g) .

La condition en x = 0 conduit a
n0)=a=nyg.

La condition en x = L s’écrit alors

n(L) = ngcosh p p

£) +ﬁsinh(£) =ny,

_mi-ng cosh(é)
- sinh (%)

On a finalement

- h(L
n(x) = ng cosh(f) + %ﬁi)u)
d

p sinh(f) .

d

4. La surface latérale étant un infiniment petit, on note 6 @, le flux correspondant qui est aussi infiniment petit.

5. Dans la paroi, la densité de particules dépend de r, soit n(x, r).
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] =

aeD ) . .
Lalongueur d = 5D représente la distance caracté-

ristique des variations de n(x) dues aux fuites latérales.
La paroi est d’autant plus poreuse que le coefficient de
diffusion D’ est grand; la distance caractéristique d est
alors plus petite : la diminution de n(x) due aux fuites
s’observe plus rapidement.
Sid > L, onadans le tube
COSh(%) =1 et sinh(g) = %
L'expression de la densité s’écrit alors
x
nx)=ng+(n;— n())z.

On retrouve alors le profil linéaire caractéristique du
régime stationnaire unidimensionnel en I'absence de
fuites latérales.

Ce résultat était prévisible : le cas d > L, que 'on peut
considérer® comme d — oo, soit D' — 0, correspond a
une absence de fuite.

Remarque : le cas d < L correspond a un tuyau tres
poreux. Comme on peut le voir qualitativement sur
le graphe, la concentration en particules diffusantes
est quasiment nulle a I'intérieur du tuyau du fait des
fuites; elle ne prend de valeur notable qu’au voisinage
des extrémités ol on lui impose une valeur non nulle.

6 — Sédimentation

1. Lavitesse des particules s'écrit 7 = —vé,; elles sont
donc soumises a la force de frottement visqueux

F =—-6anR¥ =6mnRve,,

Ainsi qu’a leur poids

- 4 4
P=—§7'[R pge;

et ala poussée d’Archimede
IIp = gnR pog €.

Lorsque les particules ont atteint leur vitesse limite
U, = —v,€,, le principe de la dynamique appliqué a
une particule s’écrit alors, en projection selon € :

4
0= gnRs(po —p)+6mnRVy,

N 2R2( 102
Vp=—=—(p— ez |
l 917 P—pPo0)§ €z

Dans ce probleme, les particules chutent car p > pg
(elles sont plus denses que I'’eau); il s’agit d'un phéno-
mene de sédimentation.

2. Si n(z) est la densité particulaire a la cote z, le vec-
teur densité de courant correspondant a ce mouve-
T . 7 e — .

ment de sédimentation ‘ est j. = n(z) vy, soit

- 2 n(z)R?
Je=—7

9

(o _PO)g_éz .

3. La chute des particules conduit a une densité qui

d
augmente vers le fond du récipient (d_n > 0). Ce gra-

dient de densité donne naissance a un courant de dif-
fusion, vers le haut, donc le vecteur densité de courant
est donné par la loi de Fick

dn _,
—e, .

—

=-D
Jd dz
4. Le flux de particules résultant du mouvement de
chute et de la diffusion ascendante est décrit par le vec-
teur densité de flux

—

J=J(2)€,=Te+ T4

Enrégime permanent, /(z) estindépendant de z. Il suf-
fit en effet de faire un bilan sur une tranche de section
S, comprise entre z et z+ dz : le nombre de particules
qu’elle contient ne varie pas au cours du temps, et

ONrecu = J(2)Sdt—J(z+dz)Sdt = —%Sdzdt: 0,.
z

d
On adonc d_] =0, soit J(z) = J = cte.
z

Les conditions aux limites imposent J(0) = 0 dans le
fond du récipient. On a donc pour toute valeur de z

2 n(z)R?

J(2)=0=—- (o —po) —D@

6. Une grandeur ne peut étre considérée comme « trés grande » qu’en la comparant a une grandeur caractéristique du systeme.
7. Ce n'est pas un vecteur densité de courant de diffusion, mais un vecteur densité de courant associé au mouvement de sédimenta-

tion.

CPGE PSI 2025-2026

Lycée Jean Perrin

6/13



TD phénomeénes de transport

Diffusion de particules

La densité vérifie I'équation différentielle

dn 2R*(p-
dn  2Rp-pog
dz InD
On peut faire apparaitre une longueur caractéristique ®
InD
h= 277—
2R*(p—po)g

La solution s’écrit alors
n(z) = ngexp|——| .
0 €Xp h

5. Les particules sont soumises a leur « poids appa-
rent », résultante de leur poids et de la poussée d’Ar-
chimede

— - o 4 3 > —

P,= P+HA=—§7TR (p—po)ge;=Pye,.
Cette force dérive d'une énergie potentielle déterminée
par9 6W = P,dz=—dEp, d'ou

4 3
Ep,= gnR (p—po)g=z.

Al'équilibre, la distribution des particules suit la loi de
Boltzmann !°

Ep
n(z) = npexp (—m) .

En identifiant avec 'expression de la question précé-
dente, on a
oD 3kgT
2R%(p—po)g 4R (p—po)g

k
D=—2|
67T RN

7 — Taille critique d’une bactérie

1. Etude préliminaire
1.a) Laloi de Fick s’écrit 7 = —Dgrad n, soit en proje-
tant selon e, :

oo an

Jjr) = Tl
1.b) Soit X la sphere de rayon r; le flux ¢fs 7 - ds est
un flux sortant (convention pour une surface fermée).
Il représente donc le nombre de particules sortant par
unité de temps dans la sphére. Le nombre de particules
entrant par unité de temps s’écrit donc

D(r) = —# 7(r)-ds,
>

soit| ®(r) = —4nr2j(r) .

On est en régime permanent; on peut écrire que le
nombre de molécules comprises entre deux sphéres de
rayons r, et rp ne varie pas pendant dz, soit

®(r1) —D(r2) =0 V(r1,r2).

Le flux ® ne dépend donc pas du rayon r de la sphere
considérée.

1l.c) D’apresla question précédente, on a

,dn
O =4nDr°-—,
dr
soit o d
r
dn=———.
4nD r?
Pour r — oo, on a n — np; on a donc, en notant
n(R) = ng:
Mo [0} oo dr
/ dTl: _2)
ne 41D [g r
d’ ol
(0}
ns = Ny — .
ST 4nDR

2. Taille critique de la bactérie

2.a) Le nombre de molécules d’oxygéne consommées
par unité de temps et par unité de masse de bactérie
est NaA (car A est compté en moles). La masse de la
bactérie étant % unR3, on adonc

4
D= gnpRgNAA .

2.b) Enremplagant ® par son expression, ng s’ écrit

Discussion sur 'influence des parameétres :

— si u ou R augmente, la masse de la bactérie aug-
mente; il en est de méme pour la consommation de
dioxygene. La densité en O, au niveau de la surface
de la bactérie est donc plus faible;

de méme si A augmente, la consommation totale
de O, de la bactérie augmente, d’ot une valeur plus
faible de ng;

si D augmente, le transport par diffusion de O, jus-
qu’a la surface de la bactérie est plus efficace; on
obtient donc une valeur plus élevée de n.

Pour que la bactérie ne suffoque pas, il faut ng > 0, d’'otr

R<R. avec R 3Dno
Vi =/ — .
c c ,UNAA

8. Les deux termes de I'équation différentielle ont méme dimension.
—
9. On peut aussi considérer que les particules ont une masse apparente m' = 7R3 (p — o), dott Pa=m'g =-m'ge, et E, =m'gz.
p q p pp 3 p—p g 4 p 8

10. Vue en PCSI en thermodynamique. ..
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8 — Diffusion a travers un tuyau

1. En régime stationnaire, le profil de concentration
(ou de densité volumique de particules, ce qui est la
meéme chose ici) est affine dans le tube.

Le flux du gaz A dans le tube est donné par
dC

4s.

D4=jn(A)S=-D
A= Jjn(A) P

Le profil étant affine, on peut identifier la dérivée et le
taux d’accroissement, soit

dCa _Ga-Cia
dx L

en considérant le récipient (1) en x = 0 et le récipient
(2)enx=L.On adonc

DS
Dy = T(CIA = Ca4a)

On établit de méme pour le gaz B :
DS
®p = T(ClB —C2p) .

2. Lecompartiment (1) contient Ny 4(2) = Cy4(£) V par-
ticules du gaz A. Le bilan de particules de gaz A dans le
compartiment (1) pendant d¢ s’écrit

dNjas= 5NAyregudt =—Q,dt

soit
dCyx

dt

Le nombre total de particules de gaz A dans les deux
compartiments est

__ﬁ[c (1) — Caa()] 5)
= -y lCa 24(0)].

Na=Nia(t) + Naa(t) = [Cra() + C2a(D] V.

La quantité totale est conservée et vaut Ny = CyV. On
adonc

Cra(0) + Coa() = Co. (6)

dC dC
On en déduit 14 T=2A _ 0,d’ou
dr dr
dC,4 DS

= E[CIA(I) —Caa(0)]. (7

dt

En soustrayant I’équation (7) de I'équation (5), on a

d(Cia—Coa)  2DS
dt VL

[Cra(®) — Coa(D)].

Le temps caractéristique de 1’évolution régie par cette
équation différentielle est

VL
2DS
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En posant f4(t) = Cy4(t) — C24(%), on a donc

d t
g + @ =0,
d’ot1
fa®) = fa0e™ "
soit

C1a(t) = Con(t) = Coe U7,

En additionnant cette équation a I’équation (6) on ob-
tient
2C14(0) =Cp+ Coe_t/T

d’olt

T
Cyalt) = 70 [1+e777] .

L'équation (6) permet d’en déduire
C
Coa(t) = ?‘) [1-e77] .

On fait les mémes calculs pour le gaz B, seules les
conditions initiales changent. On a donc

C18(1) = Cap (1) = [C15(0) — Cop(0)] e /T = —Cpe™ /"

et
C1a(1) + Cop(1) = Gy
On en déduit
C
Cia(H) = = [1-e "]
2
et

Cop(t) = % [1+e—tlr] .

3. On calcule

14x1073x0,1
T =
2x1,7x107°x 1074

soit7=4,1x10°s (out =114 h).

» Discussion non demandée : validité de '’hypothese
du régime quasi-stationnaire.

Lorsque les particules de gaz A diffusion du com-
partiment (1) au compartiment (2), les conditions
aux limites aux extrémités du tube varient avec un
temps caractéristique 7.

Dans I'hypothese du régime quasi-stationnaire, on
suppose que le profil de concentration reste affine
a chaque instant dans le tube. Lorsque les valeurs
aux extrémités sont modifiées, le profil dans le tube
évolue vers un profil affine avec un temps 74 ca-

ractéristique de la diffusion dans un milieu de lon-
LZ
gueur L; on a vu en cours que Tgif = o On peut

considérer que a chaque instant la concentration a
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eu le temps d’évoluer vers un profil affine si 7 g est
trés petit devant 7, soit

> VL
D 2DS
ou SL <« V/2. Cela revient a dire qu’il faut que le

volume du tube soit trés petit devant le volume des
compartiments.

On aici SL =0,01L, donc SL « V/2 : I'hypothése
du régime quasi-stationnaire est justifiée.

9 — Elargissement d’une tache d’encre

1. Ils’agit de calculer les dérivées partielles pour voir si
la fonction proposée vérifie 'équation de la diffusion.

On calcule d’'une part

on(x,t) A ( xz)[ 1 N x2 ]
ot vD P\"aDr) | 2632 " aps5i2
soit
an(x,t)_n(xt)[ L, z ]
or 2t 4ADg? |’
D’autre part
on(x,t) _( 2x )n(x 9
ox | 4Dt ’
et
%n(x, 1) 4> 2n(x, t)
= nx, ) —
0x? 16D? 2 4Dt
= X n(x,t)
- |4D%?2 2Dt T
On a donc
Ddzn(x,t) x2 1 1) on(x,t)
= - n(x,t) = .
0x? 4D2f2 2Dt ot

La solution proposée vérifie bien I'équation de la diffu-
sion.

2. La condition initiale est n(x,0) = 0. En s’'intéressant

ala dépendant temporelle de I'expression, on constate
qu’étudier liné n(x, t) revient a étudier, si x #0
—

1 1
lim —e &
u=>0 \/u
soit en posant y = 1/v/u
lim lz =0.
y—oo ey

On a bien n(x,0) =0.
Les conditions aux limites n(+oo, f) = 0 reviennent a
considérer

22
lim exp (——) =0
x—*0o 4Dt

La solution proposée vérifie les conditions aux limites.
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A

3. On a n(0,t) = ——. La définition de la largeur de la
vDt &

goutte s’écrit

o)
——exp|— =
Dt 16Dt 100v Dt

2
) = 100, d'ou I[? = 16In100Dt =
16Dt
321ln10D¢. On adonc

L(t)=4v2In10v Dt.

soit exp (

On retrouve bien la variation L(#) < v Dt vue en cours
par analyse dimensionnelle.

4. Représentons n(x, t) en fonction de x pour diverses
valeurs de ¢ :

10 5 0 H 10

On observe un étalement de ’encre au cours du temps.

10 — Extraction d’'un gaz naturel

1. On nous donne le vecteur densité de courant mas-
sique; nous allons donc effectuer un bilan de masse
(grandeur extensive).

Le systéme considéré est le gaz contenu dans la tranche
comprise entre les abscisses x et x + dx. Le volume
de roche est Sdx, et le volume de gaz contenu dans
cette tranche est gSdx. L'équation d’état du gaz parfait
s’écrit alors

p(x,0)qgSdx=dn(x, )RT

ol dn(x,t) est la quantité de gaz (en moles) contenue
dans cette tranche, soit

_ plx,0qSdx

Snix, t
nix, ) RT

La masse de gaz contenue dans la tranche est donnée
par d m(x, t) = n(x, t) M, soit

MqS
om(x,t) = p(x,t)——dx.
m(x, 1) = p(x, 1) T
Pendant dt, la masse de gaz dans la tranche varie de
ddém)=0om(x, t+dt) —m(x, 1)

MqS$S
RT

dx

=(p(x, t+dn) - p(x, 1)
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soit Ma .
d@m) = 295D 54,4y
RT ot
La masse de gaz recue par la tranche pendant d¢ s’écrit
0j(x,t
82 Mrequ = j(x, DSdt—j(x+dx, Sdr = - ]((;; ) sdxdt
soit en utilisant la loi de Darcy
kd’*p(x, 1)
52mregu = ;WSdth
Le bilan de masse s’écrit
d@em) =6° Myegu »

soit

Mqop(x,1) _ kod*p(x,1)

RT ot v 0x2
Ona

dp(x, 1)  kRT 0°p(x, 1)

ot  Mgqv 0x*
La pression vérifie bien I"équation
) ’p(x,
p(x, 1) =D6 p(x, 1) D= kRT .
ot 0x? Mgv

On retrouve ’équation de la diffusion.

2. Onremplace p(x, t) par I'expression proposée dans
I’équation de la diffusion.

On a d'une part

op(x,1)

= —Zp;sin(ax)e T
ot Tpl

et d’autre part

azp(x, 1)

tlt
0x?

= —a2p1 sin(ax)e”
| 2 N
On en déduit — = a°D, d’ou
T

1
v Dt '

On retrouve la distance caractéristique du phénomene
de diffusion.

a=

3. Lasolution proposée vérifie la condition
p0,1) =po.

La roche imperméable située en x = L impose un flux
nul a cette abscisse, soit

J(L 1) =0.
En utilisant la loi de Darcy, cette condition s’écrit

tlt

P (1 1y=0 (alye
—(L, 0= acos(al)e "7,
0x P1
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soit cos(aL) = 0. Il faut donc

/4
aL:§+nn; neN.

/4
La plus petite valeur est | a = i On a alors

—t/T

L (TX
p(x,0)= po+ pisin 57 e

4. La masse contenue dans la tranche comprise entre
xetx+dxest

M
om(x,t) = R—L;Sp(x, t)dx
MgqgS (nx

=— + pysin|— e_m]dx
RT Po+ p1 ZL)

La masse totale est
L
MqS . (XY 4
1= —_— + — d
m(t) /0 BT [po p181n(2L)e ] X

=2 [z % [eos(55)] o)

soit

m(t) =

MASL (21
RT (p0+ e .

5. La masse initialement contenue dans le gisement
est

m(o)_MqSL( L2 )
= TRT Po HP1~

tit

On adonc )
m(t) Potzpie

m©)  po+Zp

On cherche I'instant ¢* tel que

(t*) =0,05 (0)—m
IRE) =R = o0

soit comme p; = 100py :
200 200
1+—e " :0,05(1+ —) :
b2 b1

1 00,95

Onendéduite "= — - — 7 d’ou
20 200
1 41?
t=3471 avec T=——=——.
a’D Dn?

On calcule 7 ~ 1,1 x 10% s soit | T ~ 36 ans .
14 m(t)/m(0)
0.6 1

o4

T T T T T 1
o 10 20 30 40 50 &0
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100

p (bar)

1an
&0 4
60 4

40 10 ans

204
30 ans

0 T T T T
0 1 2 3 4

140 ans

11 — Evaporation de l'éther
Analyse préliminaire :

Nous avons dans un tube de I'air au-dessus d’éther li-
quide. A la surface du liquide, on a de la vapeur d’éther
a la pression de vapeur saturante; en haut du tube, il
n'y a pas de vapeur d’éther dans I’air. On a donc un gra-
dient de concentration de vapeur d’éther, décroissant
vers le haut. Il apparait alors un phénomene de diffu-
sion de I'éther vers le haut dans l'air, alimenté en bas
par 'évaporation de I'éther. Nous observons donc un
phénomeéne dynamique (variable dans le temps) ol la
quantité d’éther liquide diminue au cours du temps.
L'évaporation étant «lente », nous pourrons utiliser les
résultats établis en régime stationnaire.

0 _
air
L-h 7
éther
L 4
zVY

1. En régime permanent, la concentration d’éther
(particules diffusantes) varie de fagcon affine avec la
hauteur ' : n(z) = Az +B.

Comme on néglige la quantité d’éther en haut du tube :
n(0)=0=B.

Ala surface du liquide (ala cote z = h(f) avec 'orienta-
tion imposée pour I'axe Oz), I'éther est a la pression Py
et ala température Ty. La quantité de molécule dans le
volume V est n(z)V, soit en moles %V. L'équation

A
d’état du gaz parfait s’écrit

n(L— h(t))
A

PV = VRT,.

On adonc
PsNa
L-h(1) = =AL-h(t
n( (1) RT, ( (1)
dou A= —PSNA et
RTy(L—- h(1)
n(z) _ PSNA Z
" RTy L-h(t) ~

2. 1l existe un vecteur densité de courant de diffusion
donné par la loi de Fick:

soit
D PSNA —

“L—h(t) RT, °*

Pour chercher la quantité de particule traversant la sur-
face de I'éther vers le haut (évaporation), nous orien-
tons cette surface vers le haut : S = —S¢€,. Le nombre
de molécules d’éther qui s’évaporent entre ¢ et +d¢ est
alors donné par

7=

dn=7-Sdt
soit
"~ L—h(t) RT,

3. Les dn molécules d’éther qui s’évaporent occu-
paient dans I'état liquide le volume dV. Nous avons ?TZL

moles, qui ont une masse
dn
dm=—M=pudV.
Ny T H

Le volume de I'éther qui s’évapore pendant d¢ est donc

_Mdn

dv = .
pNa

La hauteur de liquide diminuant, on a dz < 0; le vo-
lume d’éther qui s’évapore est donc donné par

dV =-Sdh.

On a donc

Mdn DM P,

dh=- =- de
UNAS ~ L—h(t) uRT,

On en déduit I’équation différentielle

dh DMP; 1
dt  pRTy h(t)-L =

On peut écrire

DMP,
KRTy

[h(t)— L] dh = dt.

11. Résultat vu en cours, caractéristique du régime stationnaire en régime unidimensionnel en cartésiennes.
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En notant hg la hauteur initiale d’éther, on a

h(t)
[
ho

KRTo
d’ou
[(h’—L)2 "0 pmp,
2 p  BRTy
soit 2 DMP
(h(t) - L)*— (ho— L)* = -
KRTo
On en déduit
(mn—Lf:Um—Lf+2DMP%
KRTo
2DMP, t
=(hy—L)*|1 —St]:h—Lzl =
(ho—L) +pRTo(h0—L)2 (ho—L) +T

en posant
T_MR%Um—DZ
~ 2DMP;

grandeur caractéristique homogeéne a un temps.

h(t):L+(h0—L)\/1+£.

L'éther est entierement évaporé a l'instant # tel que
h(t) =0, soit

’

On adonc

L2
k=1 ]

L—h?

Application numérique: on a

626 x 8,31 x 293 x 0,052
T =
2x1,5%x107°x 74,1 x 1073 x 0,583 x 10°
=2,94x10%s.

On trouve alors # =~ 4,41 x 10° s, ce qui fait un peu plus
de 5 jours (122 heures et 30 minutes).

4. Ladurée caractéristique de la diffusion sur une dis-
2

tance L =20 cm est T 4iff = D =~ 44 minutes.

On a 7gi < t; : 'évolution (variation de la hauteur
d’éther) est tres lente par rapport au phénomene de
diffusion, et I'hypothése de régime quasi-permanent
est justifiée.

15 — Diffusion de bactéries

2

1. Le coefficient D s’exprime en m? -s™! (cf. cours).

on on
En raisonnant sur I'’équation de la diffusion i = Dd_
X

en ordre de grandeur, on a
L2
D= —.
T
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Le temps caractéristique pour que la diffusion se réa-
lise sur une distance L = 10 cm est donc
> 1072
"D 10710

soit T =1x 108 s = 3 ans.

La diffusion de bactérie est tres lente a I’échelle ma-
croscopique, et ne peut étre la cause de leur étalement
dans I'espace. Ce dernier sera causé par un déplace-
ment du milieu (convection) ou par un déplacement
propre des bactéries (c’est vivant!).

2. D’apres I'énoncé, le nombre de bactérie est doublé
tous les T = 1200 s. Une bactérie donnant naissance a
une bactérie, le nombre de bactéries « créées » pendant
dt dans un volume dr est proportionnel au nombre de
bactéries présentes dans ce volume, soit une variation
du nombre de bactéries (on ne prend en compte que
les naissances)

dN =dndr =rndrdt.
Le terme de naissances est donc décrit par
dn=rndt

d’ou n(t) = n()e.

Par définition de 7, on a n(t) = 2n(0), donc e’ =2 et
In2

r=—.
T

Le nombre de naissances par unité de temps et de vo-
In2
lume est donc —n.
T

Effectuons un bilan de « particules » (de bactéries!) sur
un tranche de section S comprise entre x et x + dx :

d(6N) = 52Nre<;u + 52Ncréé
avec

d(ON) = [n(x,t+dt))n(x, 1)]Sdx = g—’;dtde,

0
62Nregu =¢x, )dt—p(x+dx, 1)dt = —a—(’b
X
0%j
= D@Sdth

dxSdtr

et
In2
52Ncréé = n—I’ldedl'.
T

Apres simplification, le bilan conduit a

on Ddzn . In2 1)

—=D— +—nl(x,1t)|.

ot ox? 1
On suppose que tous les T = 1200 s, une bactérie donne
naissance a une autre. Etablir I'équation vérifiée par
n(x, t).
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3. Si n(?) est indépendant de x, I'équation précédente

se ramene a
dn

= — , L
dt T ni, 1)

La solution est donc
n(t) = n0)et! = (elnz)

soit
n(r) =217 .

On obtient bien une population qui double toutes les T
secondes.

4. Si une bactérie mourrait toutes les 7 secondes, un
raisonnement similaire au précédent (en changeant de
signe pour passer de la naissance au déces) donnerait
un nombre de déces par unité de temps et de volume
égal a

In2

—n.

T

Cependant, on préciser que tous les 7 secondes, le
nombre de bactéries mourant est proportionnel au
nombre moyen de bactéries présente a une distance a,
c’'est-a-dire en considérant en premiére approximation
la densité uniforme sur une distance a, a na.
On a donc un nombre de décés par unité de temps et
de volume de la forme

ol y est un coefficient de proportionnalité, non précisé
ici. Le bilan s’écrit alors pour la tranche considérée pré-
cédemment

on %n

In2
drSdx= DI sdxdr+ —2 n(x, )Sdxds
ot 0x2 T

In2
—ynTnZdedt

soit
on 62n+ln2 In2 ,
—D—+—n-y—n
0= 0x2 1 Y T

de la forma
on 0°n
— =D—— +din—dyn®.
or oy AT @n

5. Si (x) est indépendant du temps, I’équation précé-
dente devient
d1 n-— dg l’lz =0.

Les solutions sont

dy

n =0 = .
1 4,

avec | np
La solution n, correspond a’absence de bactéries (qui
est bien un état stationnaire!), la seconde a une popu-
lation stable (les naissances compensent exactement
les morts).
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6. La zone u — —oo correspond a x — —oo : «loin a
gauche » (en x < 0), on a une population stable et uni-
forme n, de bactéries.

Lazone u — +oo correspond a x — +oo: «loin a droite »
(en x > 0), on n’a aucune bactérie (on a montré n; = 0).
La population de bactéries va donc évoluer dans le sens
des x croissants (elles vont coloniser la zone vide de
bactéries), ce que 'on modélise par une onde progres-
sive dans le sens des x croissants, qui avance avec la
célérité x.

7. En dérivant la fonction composée n(x,t) = f(u) =
fx—ct),ona

on , 2
E——cf(u) et %x—f(u).

L'équation aux dérivées partielles vérifiée par n(x,t)
s’écrit alors

—cf'(w) = Df" () +dy f () — do (f () .
Multiplions par f'(u) :
—cf'(w?=Df"(w) f'(w) +dy f(w) f(w) — do f(w)? f' (w).

Intégronsde u=-ocoau=+oo:
+oo +00
—C/ f’(u)zdu=D/ ' wdu
—oo oo

+00 +00
+d1/ f(u)f’(u)du—dg/ fw?f (wdu.

Avec la notation proposée, on peut écrire

/ 2 qtoo 2 qtoo 3 q+00
—qc=p|L W rdy fw) d [
oo 2 o 3 |
fw? ™ d da
=D|— _m+?(n‘i‘—n§)—?(nsf—ng).

Comme f(u) tend a étre uniforme pour u — —oo et
u — +o00, on peut considérer que sa dérivée est nulle :

f'(=00) = f'(+00)

d d
—ac= é(n%—ng)—f(nf—ng).

Avec n =0 et ny = d,/dy, on peut écrire

d; df do df df df df
T RT3 B T 22 382 ede
2 2 2 2 2
d’ol
d3
c=——
Gadg

La vitesse d’invasion des bactéries est d’autant plus
grande que d; est grand, c’est-a-dire que le terme de
naissance est important, et que d, est faible, c’est-a-
dire que le terme de mort est faible, ce qui est logique.
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