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TD phénomènes de transport Diffusion de particules

1—  Réaction photochimique

1. On effectue un bilan de particules entre deux sec-
tions S d’abscisses x et x + dx, entre les instants t et
t +dt . En régime stationnaire :

0 =Φ(x)dt −Φ(x +dx)dt +pS dx dt

soit

0 =−dΦ

dx
dx dt +pS dx dt .

Avec la loi de Fick, Φ(x) = jN (x)S =−DS
dn

dx
, d’où

0 = DS
d2n

dx2 +pS .

La densité particulaire vérifie l’équation différentielle

d2n

dx2 + p

D
= 0 .

2. L’équation précédente ne doit pas être vue comme
une équation différentielle : elle consiste juste en la
donnée de la dérivée seconde

d2n

dx2 =− p

D
.

En intégrant deux fois, on obtient

n(x) =− p

2D
x2 + Ax +B .

Les conditions aux limites étant paires 1, on a A = 0. On
en déduit

− p

2D
a2 +B = 0

d’où

n(x) = p

2D
(a2 −x2) .

Le profil de densité est parabolique, avec un maximum

au centre : n(0) = nmax = pa2

2D
.

0 a−a
x

nmax

n(x)

jN (x) > 0jN (x) < 0

3. Le flux est donné par

Φ(x) = jN (x)S =−DS
dn

dx
= Spx .

Les particules diffusent du centre vers les extrémités,
comme l’indique le signe de Φ(x) (on a Φ(x) > 0 pour
x > 0 et Φ(x) < 0 pour x < 0) ; c’est bien le compor-
tement attendu d’une diffusion des régions de densité
élevée vers les régions de faible densité.

Le flux est maximum (en valeur absolue) aux extrémi-
tés, où les particules sont absorbées.

2—  Réacteur nucléaire

1. On considère une section S comprise entre les abs-
cisses x et x +dx.

À l’instant t , elle contient δN (x, t ) = n(x, t )S dx neu-
trons. Entre t et t +dt , ce nombre varie de

d(δN ) = (n(x, t +dt )−n(x, t ))S dx = ∂n(x, t )

∂t
dtS dx .

Le nombre de neutrons reçu par le système entre t et
t +dt est

δ2Nreçu = j (x, t )S dt − j (x +dx, t )S dt

=−∂ j (x, t )

∂x
dxS dt ,

soit avec la loi de Fick j (x, t ) =−D
∂n(x, t )

∂x
:

δ2Nreçu = D
∂2n(x, t )

∂x2 S dx dt .

Dans le volume S dx, le nombre de neutrons absorbés
pendant dt est

n(x, t )

τ
S dx dt .

Chaque neutron absorbé produisant K neutrons, on

observe l’apparition pendant dt de K
n(x, t )

τ
S dx dt

neutron. Le nombre de neutrons créés dans le système
pendant dt est donc

δ2Ncréé = (K −1)
n(x, t )

τ
S dx dt .

Le bilan de particules s’écrit

d(δN ) = δ2Nreçu +δ2Ncréé .

Après simplification par S dx dt , on obtient

∂n(x, t )

∂t
= D

∂2n(x, t )

∂x2 + K −1

τ
n(x, t ) .

1. On impose n(−a) = n(a).
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2. En régime permanent, l’équation précédente de-
vient

d2n(x)

dx2 + K −1

Dτ
n(x) = 0.

Posons λ =
√

Dτ

K −1
, grandeur ayant la dimension

d’une longueur. On a
d2n(x)

dx2 + n(x)

λ2 = 0.

La solution générale est de la forme

n(x) = A cos
( x

λ

)
+B sin

( x

λ

)
.

On a n(0) = A = n0.

Les conditions aux limites s’écrivent

n(a) = A cos
( a

λ

)
+B sin

( a

λ

)
= 0

et
n(−a) = A cos

( a

λ

)
−B sin

( a

λ

)
= 0.

Comme n(0) = A = n0 6= 0, il faut choisir B = 0, d’où

n(x) = n0 cos
( x

λ

)
.

On impose n(±a) = 0, soit cos
( a

λ

)
= 0. Il faut donc

a

λ
= π

2
+pπ avec p ∈ N. Seule la valeur p = 0 convient,

sinon n(x) prendrait des valeurs négatives ce qui n’est
physiquement pas acceptable (c’est un nombre de par-
ticules par unité de volume). On a donc

n(x) = n0 cos
(πx

2a

)
.

Le régime permanent n’est possible que pour a = πλ

2
,

c’est-à-dire pour une longueur Ls = 2a du réacteur
donnée par

Ls =π

√
Dτ

K −1
.

3. En remplaçant n(x, t ) par la forme proposée, l’équa-
tion aux dérivées partielles devient

− 1

T
f (x) = D f ′′(x)+ K −1

τ
f (x) ,

soit

f ′′(x)+
(

K −1

τD
+ 1

T D

)
f (x) = 0. (1)

Compte tenu de la condition n(±a, t ) = 0, la fonction f
doit s’annuler en x =−a et x =+a.

Selon le signe de k = K −1

τD
+ 1

T D
, la solution générale

de (1) est

— affine si k = 0;

— de la forme αexp
(p−kx

)
+βexp

(
−p−kx

)
si k < 0;

— de la forme A cos(kx)+B sin(kx) si k > 0.

La solution sinusoïdale est la seule qui peut s’annuler
pour deux valeurs de x. On ne peut donc avoir que

k = K −1

τD
+ 1

T D
> 0

et
f (x) = A cos(

p
kx)+B sin(

p
kx) .

Comme précédemment, la parité de la solution impose
B = 0.

Les conditions aux limites imposent cos(
p

ka) = 0,
d’où avec le même raisonnement que précédemment,p

ka = π

2
. On a donc

f (x) = A cos
(πx

2a

)
et

π

2a
=

√
K −1

τD
+ 1

T D
.

Pour que n(x, t ) reste fini quand t → ∞, il faut que
T > 0.

D’après le résultat précédent,

1

T D
=

( π

2a

)2
− K −1

τD
.

On a T > 0 pour
π

2a
>

√
K −1

τD
, c’est-à-dire pour une

longueur du réacteur

L = 2a <π

√
τD

K −1
= Ls .

— Pour une longueur L < Ls, le réacteur s’éteint :
n(x, t ) → 0 pour t →∞.

— Pour L = Ls, le réacteur fonctionne en régime per-
manent.

— Pour L > Ls, le réacteur s’emballe : n(x, t ) →∞ pour
t →∞.

3—  Source sphérique de neutrons

1. Sans absorption.

1.a) La densité de particules ne dépend que de r et du
temps : n(r, t ). Le vecteur #»ȷ est donc radial, et sa com-
posante ne dépend que de r et du temps :

#»ȷ (M , t ) = j (r, t ) #»e r .

En effet, la loi de Fick s’écrit

#»ȷ =−D
#      »

gradn =−D
∂n

∂r
#»e r .

Le flux de #»ȷ à travers une sphère de rayon r s’écrit 2 :

Φ(r, t ) =
Ó

M∈Σ(r )

#»ȷ (M , t ) ·d
#»
S = 4πr 2 j (r, t ) .

En remplaçant j (r, t ) par son expression à partir de la
loi de Fick, on obtient

Φ(r, t ) =−4πDr 2 ∂n

∂r
.

2. Il faut savoir écrire ce résultat directement.
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1.b) En régime stationnaire, écrivons le bilan de parti-
cules pour une sphère de centre O et de rayon r > r0 :

0 = δNreçu +δNcréé

avec
δNreçu =−Φ(r )dt

et
δNcréé = 4πN0r 2

0 dt ,

d’où
0 =−Φ(r )dt +4πN0r 2

0 dt .

On a donc

Φ(r ) = 4πN0r 2
0

Le flux est indépendant de r.

En utilisant l’expression de Φ établie en 1.a) à partir de
la loi de Fick, on obtient 3

−4πDr 2 dn

dr
= 4πN0r 2

0

d’où
dn

dr
=−N0r 2

0

D

1

r 2 .

On en déduit

n(r ) = N0r 2
0

D

1

r
+ A

où A est une constante. Physiquement, la densité de
particules diffusantes tend vers 0 quand on s’éloigne à
l’infini de la source : lim

r→∞n(r ) = A = 0. On a donc

n(r ) = N0r 2
0

D

1

r
.

2. Avec absorption.

2.a) La couche sphérique considérée a pour volume
dτ= 4πr 2 dr . La densité n(r, t ) étant uniforme (au pre-
mier ordre) sur ce volume, le nombre de particules dif-
fusantes présentes à l’instant t est

δN (t ) = n(r, t )dτ= 4πr 2n(r, t )dr .

Sa variation pendant dt vaut

d(δN ) = δN (t +dt )−δN (t )

= 4πr 2[n(r, t +dt )−n(r, t )
]

dr = 4πr 2 ∂n

∂t
dt dr .

Le nombre de particules reçues pendant dt a été cal-
culé à la question 1.b) :

δ2Néch =Φ(r, t )dt −Φ(r +dr, t )dt =−∂Φ

∂r
dr dt ,

soit en utilisant l’expression de Φ(r, t ) établie en 1.b)

δ2Néch = 4πD
∂

∂r

(
r 2 ∂n

∂r

)
dr dt

Le nombre de neutrons « produits » (algébriquement;
il s’agit ici de capture, ce terme est donc négatif) est

δ2Nprod =−K dτdt =−4πK r 2 dr dt .

Le bilan s’écrit

d(δN ) = δ2Néch +δ2Nprod

soit

4πr 2 ∂n

∂t
dt dr = 4πD

∂

∂r

(
r 2 ∂n

∂r

)
dr dt

−4πK r 2 dr dt

soit après simplification

∂n

∂t
= D

r 2

∂

∂r

(
r 2 ∂n

∂r

)
−K .

2.b) Dans le cas du régime stationnaire, l’équation aux
dérivées partielles précédente ce ramène à une équa-
tion différentielle vérifiée par n(r ) :

D

r 2

d

dr

(
r 2 dn

dr

)
−K = 0,

soit
d

dr

(
r 2 dn

dr

)
= K

D
r 2 .

Une première intégration conduit à

r 2 dn

dr
= K

3D
r 3 + A ,

où A est une constante. Le flux est donné par

Φ(r ) =−4πDr 2 dn

dr
=−4πK

3
r 3 −4πD A .

On sait exprimer le flux en r = r0, à la surface de la
source : Φ(r0) = 4πN0r 2

0 , soit

−4πK

3
r 3

0 −4πD A = 4πN0r 2
0 .

On en déduit

−4πD A = 4πN0r 2
0 + 4πK

3
r 3

0

que l’on remplace dans l’expression de Φ(r ), et l’on ob-
tient

Φ(r ) = 4πK

3

(
r 3

0 − r 3)+4πN0r 2
0 .

Le flux n’est plus constant du fait des captures des neu-
trons : il décroît avec r , c’est-à-dire quand on s’éloigne
de la source. Le flux s’annule pour r = r1 tel que

Φ(r1) = 4πK

3

(
r 3

0 − r 3
1

)+4πN0r 2
0 = 0,

3. On note une dérivée droite car en régime stationnaire, n ne dépend que de la seule variable r .
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soit

r1 =
(

r 3
0 + 3N0r 2

0

K

)1/3

.

Même si ce n’est pas demandé dans l’énoncé, une
saine habitude est de discuter de l’influence des divers
paramètres dans l’expression obtenue, et justifiant par
des considérations physiques simples, si c’est possible,
les effets observés.

Ici, r1 dépend de r0, N0 et K . Il est intéressant de discu-
ter de l’influence de N0 et K .

Le rayon r1 est une fonction croissante de N0 : si N0

augmente, la source émet plus de particules ; il est lo-
gique qu’il faille une plus grande épaisseur de milieu
absorbant pour annuler le flux.

Le rayon r1 est une fonction décroissante de K : si K
augmente, le milieu absorbe plus efficacement les neu-
trons; il est logique qu’une épaisseur plus petite de ce
milieu suffit pour annuler le flux.

4—  Résoudre l’équation de la diffusion

1. On remplace n(x, t ) = n0 + f (x)h(t ) dans l’équation
de la diffusion :

f (x)g ′(t ) = D f ′′(x)g (t )

On écrit en séparant les variables :

f ′′(x)

f (x)
= 1

D

g ′(t )

g (t )
.

Le membre de gauche ne dépend pas de t ; le membre
de droite ne dépend pas de t . Ces deux membres étant
égaux, ils ne dépendent donc ni de x ni de t , et se ré-
duisent donc à une constante A. On a donc un système
de deux équations différentielles :

f ′′(x)

f (x)
= A (2)

1

D

g ′(t )

g (t )
= A . (3)

La forme générale de ma solution de chacune de ces
équations différentielles dépend du signe de A. Nous
allons éliminer certaines formes par des considéra-
tions physiques.

La solution générale de (3) est de la forme

g (t ) = g0 eADt ,

où g0 est une constante. La densité n(x, t ) ne pouvant
devenir infinie, il faut nécessairement que A < 0, soit
A =−k2. On a donc

g (t ) = g0 e−k2Dt .

L’équation (3) s’écrit alors f ′′(x)+k2 f (x) = 0. La solu-
tion générale est de la forme

f (x) =αsinkx +βcoskx

où α et β sont deux constantes. On en déduit alors

n(x, t ) = n0 + g0(αsinkx +βcoskx)e−k2Dt

Simplifions l’écriture des constantes en posant a1 =
g0α et a2 = g0β :

n(x, t ) = n0 + (a1 sinkx +a2 coskx)e−k2Dt (4)

2. Écrivons la condition initiale à partir de l’expres-
sion (4) (prise à t = 0 donc) :

n0 +a1 sinkx +a2 coskx = n1 +n2 sin px

En identifiant chaque terme, on en déduit

n0 = n1 ; a1 = n2 ; a2 = 0 ; p = k .

La densité a donc pour expression

n(x, t ) = n1 +n2 sin(px)e−p2Dt .

La densité initiale fluctue sinusoïdalement autour de la
valeur moyenne n1. Sous l’effet de la diffusion, on ob-
serve un « étalement » des fluctuations, qui conduit à
lim

t→∞n(x, t ) = n0 uniforme. Cette uniformisation se fait

avec un temps caractéristique τ = 1

p2D
. Elle est d’au-

tant plus rapide (τ petit) que D est grand (prévisible : la
diffusion est efficace), et que p est grand, ce qui consti-
tue à des ondulations de concentration initiale resser-
rées. La diffusion doit uniformiser les concentrations
entre deux maxima successifs, c’est-à-dire sur une plus
petite distance : le phénomène est plus rapide.

5—  Diffusion dans un tuyau poreux

Nous étudions le régime stationnaire ; il est donc in-
utile de chercher à exprimer la quantité de particules
contenues dans ce volume : sa variation est nulle pen-
dant dt : d(δN ) = 0. Comme il n’y a pas production de
particules, le bilan s’écrit simplement

0 = δNéch.

Le terme d’échange fait apparaître 3 flux :
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1. le flux « entrant » à travers la section S = πa2 située
en x, soit Φ(x) ;

2. le flux « sortant » à travers la section S = πa2 située
en x +dx, soit Φ(x +dx) ;

3. le flux « sortant » à travers la surface latérale 2πa dx,
soit 4 δΦlat(x).

On a donc

0 =Φ(x)dt −Φ(x +dx)dt −δΦlat dt

=−dΦ

dx
dx dt −δΦlat(x)dt .

Attention, il y a deux flux à considérer :

1. le flux « principal », qui décrit la diffusion selon Ox
dans le tuyau. Il est décrit par le vecteur densité de cou-
rant de particules #»ȷ (x) = j (x) #»e s . Ce phénomène est
caractérisé par un coefficient de diffusion D ;

2. le flux radial décrivant la fuite à travers la paroi po-
reuse; le vecteur densité de courant correspondant est
#»ȷ lat = jlat

#»e r (coordonnées cylindriques d’axe Ox). Ce
phénomène est caractérisé par un coefficient de diffu-
sion D ′.
On a donc

Φ(x) = j (x)×πa2 et δΦlat(x) = jlat ×2πa dx .

La loi de Fick s’écrit, pour le flux principal

j (x) =−D
dn

dx
.

Le flux secondaire est radial ; la loi de Fick s’écrit donc
à l’intérieur de la paroi 5

jlat =−D ′ ∂n

∂r
.

L’énoncé précise que la densité moléculaire est linéaire
dans la paroi (de r = a à r = a +e), soit

∂n

∂r
= n(a +e, x)−n(a, x)

e
.

La densité étant supposée nulle à l’extérieur, on a n(a+
e, x) = 0. Sur la face intérieure de la paroi, la densité est
égale à la densité dans le tube à la côte x considérée,
soitn(a, x) = n(x). On a donc

∂n

∂r
=−n(x)

e

et la loi de Fick s’écrit

jlat = D ′ n(x)

e
.

On a donc

Φ(x) =−πa2D
dn

dx
et δΦlat(x) = 2πaD ′ n(x)

e
dx

et le bilan s’écrit

0 =πa2D
d2n

dx2 dx −2πaD ′ n(x)

e
dx .

soit

d2n

dx2 − 2D ′

aeD
n(x) = 0 .

Par analyse dimensionnelle, l’équation différentielle
peut s’écrire sous la forme

d2n

dx2 − n(x)

d 2 = 0

en posant

d =
√

aeD

2D ′

homogène à une longueur.
On peut écrire la solution générale de cette équa-
tion différentielle sous la forme d’exponentielles ou
de fonctions trigonométriques hyperboliques. L’une
des conditions aux limites portant en x = 0, et le mi-
lieu n’étant pas infini, la détermination des constantes
d’intégrations sera plus simple avec les fonctions trigo-
nométriques hyperboliques :

n(x) =αcosh
( x

d

)
+βsinh

( x

d

)
.

La condition en x = 0 conduit à

n(0) =α= n0 .

La condition en x = L s’écrit alors

n(L) = n0 cosh

(
L

d

)
+βsinh

(
L

d

)
= n1 ,

d’où

β= n1 −n0 cosh
( L

d

)
sinh

( L
d

) .

On a finalement

n(x) = n0 cosh
( x

d

)
+ n1 −n0 cosh

( L
d

)
sinh

( L
d

) sinh
( x

d

)
.

4. La surface latérale étant un infiniment petit, on note δΦlat le flux correspondant qui est aussi infiniment petit.
5. Dans la paroi, la densité de particules dépend de r , soit n(x,r ).

CPGE PSI 2025-2026 Lycée Jean Perrin 5/13



TD phénomènes de transport Diffusion de particules

d À L

d ≈ L

d ¿ L

La longueur d =
√

aeD

2D ′ représente la distance caracté-

ristique des variations de n(x) dues aux fuites latérales.
La paroi est d’autant plus poreuse que le coefficient de
diffusion D ′ est grand; la distance caractéristique d est
alors plus petite : la diminution de n(x) due aux fuites
s’observe plus rapidement.
Si d À L, on a dans le tube

cosh
( x

d

)
≈ 1 et sinh

( x

d

)
≈ x

d
.

L’expression de la densité s’écrit alors

n(x) ≈ n0 + (n1 −n0)
x

L
.

On retrouve alors le profil linéaire caractéristique du
régime stationnaire unidimensionnel en l’absence de
fuites latérales.
Ce résultat était prévisible : le cas d À L, que l’on peut
considérer 6 comme d →∞, soit D ′ → 0, correspond à
une absence de fuite.
Remarque : le cas d ¿ L correspond à un tuyau très
poreux. Comme on peut le voir qualitativement sur
le graphe, la concentration en particules diffusantes
est quasiment nulle à l’intérieur du tuyau du fait des
fuites ; elle ne prend de valeur notable qu’au voisinage
des extrémités où on lui impose une valeur non nulle.

6—  Sédimentation

1. La vitesse des particules s’écrit #»v =−v #»e z ; elles sont
donc soumises à la force de frottement visqueux

#»
F =−6πηR #»v = 6πηRv #»e z ,

Ainsi qu’à leur poids

#»
P =−4

3
πR3ρg #»e z

et à la poussée d’Archimède

#»
ΠA = 4

3
πR3ρ0g #»e z .

Lorsque les particules ont atteint leur vitesse limite
#»v ℓ = −vℓ

#»e z , le principe de la dynamique appliqué à
une particule s’écrit alors, en projection selon #»e z :

0 = 4

3
πR3(ρ0 −ρ)+6πηRvℓ ,

d’où

#»v ℓ =−2

9

R2

η
(ρ−ρ0)g #»e z .

Dans ce problème, les particules chutent car ρ > ρ0

(elles sont plus denses que l’eau) ; il s’agit d’un phéno-
mène de sédimentation.

2. Si n(z) est la densité particulaire à la cote z, le vec-
teur densité de courant correspondant à ce mouve-
ment de sédimentation 7 est

#»
j e = n(z) #»v ℓ, soit

#»
j e =−2

9

n(z)R2

η
(ρ−ρ0)g #»e z .

3. La chute des particules conduit à une densité qui

augmente vers le fond du récipient (
dn

dz
> 0). Ce gra-

dient de densité donne naissance à un courant de dif-
fusion, vers le haut, donc le vecteur densité de courant
est donné par la loi de Fick

#»ȷ d =−D
dn

dz
#»e z .

4. Le flux de particules résultant du mouvement de
chute et de la diffusion ascendante est décrit par le vec-
teur densité de flux

#»
J = J (z) #»e z = #»ȷ e + #»ȷ d .

En régime permanent, J (z) est indépendant de z. Il suf-
fit en effet de faire un bilan sur une tranche de section
S, comprise entre z et z +dz : le nombre de particules
qu’elle contient ne varie pas au cours du temps, et

δNreçu = J (z)S dt − J (z +dz)S dt =−dJ

dz
S dz dt = 0, .

On a donc
dJ

dz
= 0, soit J (z) = J = cte.

Les conditions aux limites imposent J (0) = 0 dans le
fond du récipient. On a donc pour toute valeur de z

J (z) = 0 =−2

9

n(z)R2

η
(ρ−ρ0)g −D

dn

dz
.

6. Une grandeur ne peut être considérée comme « très grande » qu’en la comparant à une grandeur caractéristique du système.
7. Ce n’est pas un vecteur densité de courant de diffusion, mais un vecteur densité de courant associé au mouvement de sédimenta-

tion.
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La densité vérifie l’équation différentielle

dn

dz
+ 2R2(ρ−ρ0)g

9ηD
n(z) = 0.

On peut faire apparaître une longueur caractéristique 8

h = 9ηD

2R2(ρ−ρ0)g
.

La solution s’écrit alors

n(z) = n0 exp
(
− z

h

)
.

5. Les particules sont soumises à leur « poids appa-
rent », résultante de leur poids et de la poussée d’Ar-
chimède

#»
P a = #»

P + #»
ΠA =−4

3
πR3(ρ−ρ0)g #»e z = Pa

#»e z .

Cette force dérive d’une énergie potentielle déterminée
par 9 δW = Pa dz =−dEp, d’où

Ep = 4

3
πR3(ρ−ρ0)g z .

À l’équilibre, la distribution des particules suit la loi de
Boltzmann 10

n(z) = n0 exp

(
− Ep

kBT

)
.

En identifiant avec l’expression de la question précé-
dente, on a

9ηD

2R2(ρ−ρ0)g
= 3kBT

4πR3(ρ−ρ0)g

d’où

D = kT

6πRη
.

7—  Taille critique d’une bactérie

1. Étude préliminaire

1.a) La loi de Fick s’écrit #»ȷ = −D
#      »

gradn, soit en proje-
tant selon #»e r :

j (r ) =−D
dn

dr
.

1.b) Soit Σ la sphère de rayon r ; le flux
Ò

Σ
#»ȷ ·d

#»
S est

un flux sortant (convention pour une surface fermée).
Il représente donc le nombre de particules sortant par
unité de temps dans la sphère. Le nombre de particules
entrant par unité de temps s’écrit donc

Φ(r ) =−
Ó

Σ

#»ȷ (r ) ·d
#»
S ,

soit Φ(r ) =−4πr 2 j (r ) .

On est en régime permanent ; on peut écrire que le
nombre de molécules comprises entre deux sphères de
rayons r1 et r2 ne varie pas pendant dt , soit

Φ(r1)−Φ(r2) = 0 ∀(r1,r2) .

Le flux Φ ne dépend donc pas du rayon r de la sphère
considérée.

1.c) D’après la question précédente, on a

Φ= 4πDr 2 dn

dr
,

soit

dn = Φ

4πD

dr

r 2 .

Pour r → ∞, on a n → n0 ; on a donc, en notant
n(R) = ns : ˆ n0

ns

dn = Φ

4πD

ˆ +∞

R

dr

r 2 ,

d’où

ns = n0 − Φ

4πDR
.

2. Taille critique de la bactérie

2.a) Le nombre de molécules d’oxygène consommées
par unité de temps et par unité de masse de bactérie
est NAA (car A est compté en moles). La masse de la
bactérie étant 4

3µπR3, on a donc

Φ= 4

3
πµR3NAA .

2.b) En remplaçant Φ par son expression, ns s’écrit

ns = n0 − µNAA

3D
R2 .

Discussion sur l’influence des paramètres :

— si µ ou R augmente, la masse de la bactérie aug-
mente; il en est de même pour la consommation de
dioxygène. La densité en O2 au niveau de la surface
de la bactérie est donc plus faible ;

— de même si A augmente, la consommation totale
de O2 de la bactérie augmente, d’où une valeur plus
faible de ns ;

— si D augmente, le transport par diffusion de O2 jus-
qu’à la surface de la bactérie est plus efficace; on
obtient donc une valeur plus élevée de ns.

Pour que la bactérie ne suffoque pas, il faut ns > 0, d’où

R < Rc avec Rc =
√

3Dn0

µNAA
.

8. Les deux termes de l’équation différentielle ont même dimension.
9. On peut aussi considérer que les particules ont une masse apparente m′ = 4

3πR3(ρ−ρ0), d’où
#»
P a = m′ #»g =−m′g #»e z et Ep = m′g z.

10. Vue en PCSI en thermodynamique. . .
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8—  Diffusion à travers un tuyau

1. En régime stationnaire, le profil de concentration
(ou de densité volumique de particules, ce qui est la
même chose ici) est affine dans le tube.

Le flux du gaz A dans le tube est donné par

ΦA = jN (A)S =−D
dC A

dx
S .

Le profil étant affine, on peut identifier la dérivée et le
taux d’accroissement, soit

dC A

dx
= C2A −C1A

L

en considérant le récipient (1) en x = 0 et le récipient
(2) en x = L. On a donc

ΦA = DS

L
(C1A −C2A) .

On établit de même pour le gaz B :

ΦB = DS

L
(C1B −C2B ) .

2. Le compartiment (1) contient N1A(t ) =C1A(t )V par-
ticules du gaz A. Le bilan de particules de gaz A dans le
compartiment (1) pendant dt s’écrit

dN1A = δNA,reçu dt =−ΦA dt

soit
dC1A

dt
=−DS

V L
[C1A(t )−C2A(t )] . (5)

Le nombre total de particules de gaz A dans les deux
compartiments est

NA = N1A(t )+N2A(t ) = [C1A(t )+C2A(t )]V .

La quantité totale est conservée et vaut NA = C0V . On
a donc

C1A(t )+C2A(t ) =C0 . (6)

On en déduit
dC1A

dt
+ dC2A

dt
= 0, d’où

dC2A

dt
= DS

V L
[C1A(t )−C2A(t )] . (7)

En soustrayant l’équation (7) de l’équation (5), on a

d(C1A −C2A)

dt
=−2DS

V L
[C1A(t )−C2A(t )] .

Le temps caractéristique de l’évolution régie par cette
équation différentielle est

τ= V L

2DS
.

En posant f A(t ) =C1A(t )−C2A(t ), on a donc

d f A

dt
+ f A(t )

τ
= 0,

d’où
f A(t ) = f A(0)e−t/τ

soit
C1A(t )−C2A(t ) =C0 e−t/τ .

En additionnant cette équation à l’équation (6) on ob-
tient

2C1A(t ) =C0 +C0 e−t/τ

d’où

C1A(t ) = C0

2

[
1+e−t/τ] .

L’équation (6) permet d’en déduire

C2A(t ) = C0

2

[
1−e−t/τ] .

On fait les mêmes calculs pour le gaz B , seules les
conditions initiales changent. On a donc

C1B (t )−C2B (t ) = [C1B (0)−C2B (0)]e−t/τ =−C0 e−t/τ

et
C1B (t )+C2B (t ) =C0

On en déduit

C1B (t ) = C0

2

[
1−e−t/τ]

et

C2B (t ) = C0

2

[
1+e−t/τ] .

3. On calcule

τ= 14×10−3 ×0,1

2×1,7×10−5 ×10−4

soit τ= 4,1×105 s (ou τ= 114 h).

ä Discussion non demandée : validité de l’hypothèse
du régime quasi-stationnaire.

Lorsque les particules de gaz A diffusion du com-
partiment (1) au compartiment (2), les conditions
aux limites aux extrémités du tube varient avec un
temps caractéristique τ.

Dans l’hypothèse du régime quasi-stationnaire, on
suppose que le profil de concentration reste affine
à chaque instant dans le tube. Lorsque les valeurs
aux extrémités sont modifiées, le profil dans le tube
évolue vers un profil affine avec un temps τdiff ca-
ractéristique de la diffusion dans un milieu de lon-

gueur L ; on a vu en cours que τdiff =
L2

D
. On peut

considérer que à chaque instant la concentration a
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eu le temps d’évoluer vers un profil affine si τdiff est
très petit devant τ, soit

L2

D
¿ V L

2DS

ou SL ¿ V /2. Cela revient à dire qu’il faut que le
volume du tube soit très petit devant le volume des
compartiments.

On a ici SL = 0,01 L, donc SL ¿ V /2 : l’hypothèse
du régime quasi-stationnaire est justifiée.

9—  Élargissement d’une tache d’encre

1. Il s’agit de calculer les dérivées partielles pour voir si
la fonction proposée vérifie l’équation de la diffusion.

On calcule d’une part

∂n(x, t )

∂t
= Ap

D
exp

(
− x2

4Dt

)[
− 1

2t 3/2
+ x2

4Dt 5/2

]
soit

∂n(x, t )

∂t
= n(x, t )

[
− 1

2t
+ x2

4Dt 2

]
.

D’autre part

∂n(x, t )

∂x
=

(
− 2x

4Dt

)
n(x, t )

et

∂2n(x, t )

∂x2 = 4x2

16D2t 2 n(x, t )− 2n(x, t )

4Dt

=
[

x2

4D2t 2 − 1

2Dt

]
n(x, t ) .

On a donc

D
∂2n(x, t )

∂x2 =
[

x2

4D2t 2 − 1

2Dt

]
n(x, t ) = ∂n(x, t )

∂t
.

La solution proposée vérifie bien l’équation de la diffu-
sion.

2. La condition initiale est n(x,0) = 0. En s’intéressant
à la dépendant temporelle de l’expression, on constate
qu’étudier lim

t→0
n(x, t ) revient à étudier, si x 6= 0

lim
u−>0

1p
u

e−
1
u

soit en posant y = 1/
p

u

lim
y→∞

y

ey2 = 0.

On a bien n(x,0) = 0.

Les conditions aux limites n(±∞, t ) = 0 reviennent à
considérer

lim
x→±∞exp

(
− x2

4Dt

)
= 0.

La solution proposée vérifie les conditions aux limites.

3. On a n(0, t ) = Ap
Dt

. La définition de la largeur de la

goutte s’écrit

Ap
Dt

exp

(
− L2

16Dt

)
= A

100
p

Dt

soit exp

(
L2

16Dt

)
= 100, d’où L2 = 16ln100Dt =

32ln10Dt . On a donc

L(t ) = 4
p

2ln10
p

Dt .

On retrouve bien la variation L(t ) ∝p
Dt vue en cours

par analyse dimensionnelle.

4. Représentons n(x, t ) en fonction de x pour diverses
valeurs de t :

t1

t2 > t1
t3 > t2

t4 > t3

On observe un étalement de l’encre au cours du temps.

10—  Extraction d’un gaz naturel

1. On nous donne le vecteur densité de courant mas-
sique ; nous allons donc effectuer un bilan de masse
(grandeur extensive).

Le système considéré est le gaz contenu dans la tranche
comprise entre les abscisses x et x + dx. Le volume
de roche est S dx, et le volume de gaz contenu dans
cette tranche est qS dx. L’équation d’état du gaz parfait
s’écrit alors

p(x, t )qS dx = δn(x, t )RT

où δn(x, t ) est la quantité de gaz (en moles) contenue
dans cette tranche, soit

δn(x, t ) = p(x, t )qS dx

RT
.

La masse de gaz contenue dans la tranche est donnée
par δm(x, t ) = n(x, t )M , soit

δm(x, t ) = p(x, t )
M qS

RT
dx .

Pendant dt , la masse de gaz dans la tranche varie de

d(δm) = δm(x, t +dt )−m(x, t )

= (
p(x, t +dt )−p(x, t )

) M qS

RT
dx
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soit

d(δm) = M q

RT

∂p(x, t )

∂t
S dx dt .

La masse de gaz reçue par la tranche pendant dt s’écrit

δ2mreçu = j (x, t )S dt− j (x+dx, t )S dt =−∂ j (x, t )

∂x
S dx dt

soit en utilisant la loi de Darcy

δ2mreçu = k

ν

∂2p(x, t )

∂x2 S dx dt .

Le bilan de masse s’écrit

d(δm) = δ2mreçu ,

soit
M q

RT

∂p(x, t )

∂t
= k

ν

∂2p(x, t )

∂x2 .

On a
∂p(x, t )

∂t
= kRT

M qν

∂2p(x, t )

∂x2 .

La pression vérifie bien l’équation

∂p(x, t )

∂t
= D

∂2p(x, t )

∂x2 avec D = kRT

M qν
.

On retrouve l’équation de la diffusion.

2. On remplace p(x, t ) par l’expression proposée dans
l’équation de la diffusion.

On a d’une part

∂p(x, t )

∂t
=−1

τ
p1 sin(αx)e−t/τ

et d’autre part

∂2p(x, t )

∂x2 =−α2p1 sin(αx)e−t/τ .

On en déduit
1

τ
=α2D , d’où

α= 1p
Dτ

.

On retrouve la distance caractéristique du phénomène
de diffusion.

3. La solution proposée vérifie la condition

p(0, t ) = p0 .

La roche imperméable située en x = L impose un flux
nul à cette abscisse, soit

j (L, t ) = 0.

En utilisant la loi de Darcy, cette condition s’écrit

∂p

∂x
(L, t ) = 0p1αcos(αL)e−t/τ ,

soit cos(αL) = 0. Il faut donc

αL = π

2
+nπ ; n ∈ N .

La plus petite valeur est α= π

2L
. On a alors

p(x, t ) = p0 +p1 sin
(πx

2L

)
e−t/τ .

4. La masse contenue dans la tranche comprise entre
x et x +dx est

δm(x, t ) = M qS

RT
p(x, t )dx

= M qS

RT

[
p0 +p1 sin

(πx

2L

)
e−t/τ

]
dx

La masse totale est

m(t ) =
ˆ L

0

M qS

RT

[
p0 +p1 sin

(πx

2L

)
e−t/τ

]
dx

= M qS

RT

(
p0L−p1

2L

π

[
cos

(πx

2L

)]L

0
e−t/T

)
soit

m(t ) = M qSL

RT

(
p0 + 2p1

π
e−t/τ

)
.

5. La masse initialement contenue dans le gisement
est

m(0) = M qSL

RT

(
p0 + 2

π
p1

)
.

On a donc
m(t )

m(0)
= p0 + 2

πp1 e−t/τ

p0 + 2
πp1

.

On cherche l’instant t∗ tel que

m(t∗) = 0,05m(0) = m(0)

20
,

soit comme p1 = 100p0 :

1+ 200

π
e−t/τ = 0,05

(
1+ 200

π

)
.

On en déduit e−t/τ = 1

20
− 00,95

200
π, d’où

t ≈ 3,4τ avec τ= 1

α2D
= 4L2

Dπ2 .

On calcule τ≈ 1,1×109 s soit τ≈ 36 ans .

m(t )/m(0)

t (ans)
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p (bar)

x (km)

1 an

10 ans

30 ans

40 ans

11—  Évaporation de l’éther

 Analyse préliminaire :

Nous avons dans un tube de l’air au-dessus d’éther li-
quide. À la surface du liquide, on a de la vapeur d’éther
à la pression de vapeur saturante ; en haut du tube, il
n’y a pas de vapeur d’éther dans l’air. On a donc un gra-
dient de concentration de vapeur d’éther, décroissant
vers le haut. Il apparaît alors un phénomène de diffu-
sion de l’éther vers le haut dans l’air, alimenté en bas
par l’évaporation de l’éther. Nous observons donc un
phénomène dynamique (variable dans le temps) où la
quantité d’éther liquide diminue au cours du temps.
L’évaporation étant « lente », nous pourrons utiliser les
résultats établis en régime stationnaire.

éther

air

0

L−h(t )

L
z

1. En régime permanent, la concentration d’éther
(particules diffusantes) varie de façon affine avec la
hauteur 11 : n(z) = Az +B .

Comme on néglige la quantité d’éther en haut du tube :
n(0) = 0 = B .

À la surface du liquide (à la cote z = h(t ) avec l’orienta-
tion imposée pour l’axe Oz), l’éther est à la pression Ps

et à la température T0. La quantité de molécule dans le

volume V est n(z)V , soit en moles
n(z)

NA
V . L’équation

d’état du gaz parfait s’écrit

PsV = n(L−h(t ))

NA
V RT0 .

On a donc

n(L−h(t )) = PsNA

RT0
= A(L−h(t ))

d’où A = PsNA

RT0(L−h(t ))
et

n(z) = PsNA

RT0

z

L−h(t )
.

2. Il existe un vecteur densité de courant de diffusion
donné par la loi de Fick :

#»ȷ =−D
dn

dz
#»e z

soit
#»ȷ =− D

L−h(t )

PsNA

RT0

#»e z .

Pour chercher la quantité de particule traversant la sur-
face de l’éther vers le haut (évaporation), nous orien-
tons cette surface vers le haut :

#»
S = −S #»e z . Le nombre

de molécules d’éther qui s’évaporent entre t et +dt est
alors donné par

dn = #»ȷ · #»
S dt

soit

dn = D

L−h(t )

PsNA

RT0
S dt .

3. Les dn molécules d’éther qui s’évaporent occu-
paient dans l’état liquide le volume dV . Nous avons dn

NA

moles, qui ont une masse

dm = dn

NA
M =µdV .

Le volume de l’éther qui s’évapore pendant dt est donc

dV = M dn

µNA
.

La hauteur de liquide diminuant, on a dh < 0; le vo-
lume d’éther qui s’évapore est donc donné par

dV =−S dh .

On a donc

dh =− M dn

µNAS
=− DM

L−h(t )

Ps

µRT0
dt .

On en déduit l’équation différentielle

dh

dt
= DMPs

µRT0

1

h(t )−L
.

On peut écrire

[h(t )−L] dh = DMPs

µRT0
dt .

11. Résultat vu en cours, caractéristique du régime stationnaire en régime unidimensionnel en cartésiennes.
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En notant h0 la hauteur initiale d’éther, on a

ˆ h(t )

h0

[h′−L]dh′ = DMPs

µRT0

ˆ t

0
dt ,

d’où [
(h′−L)2

2

]h(t )

h0

= DMPs

µRT0
t ,

soit

(h(t )−L)2 − (h0 −L)2 = 2DMPs

µRT0
t .

On en déduit

(h(t )−L)2 = (h0 −L)2 + 2DMPs

µRT0
t

= (h0 −L)2
[

1+ 2DMPs

µRT0(h0 −L)2 t

]
= (h0 −L)2

[
1+ t

τ

]
,

en posant

τ= µRT0(h0 −L)2

2DMPs
,

grandeur caractéristique homogène à un temps.

On a donc

h(t ) = L+ (h0 −L)

√
1+ t

τ
.

L’éther est entièrement évaporé à l’instant tf tel que
h(tf) = 0, soit

tf = τ

[
L2

(L−h0)2 −1

]
.

Application numérique : on a

τ= 626×8,31×293×0,052

2×1,5×10−5 ×74,1×10−3 ×0,583×105

= 2,94×104 s .

On trouve alors tf ≈ 4,41×105 s, ce qui fait un peu plus
de 5 jours (122 heures et 30 minutes).

4. La durée caractéristique de la diffusion sur une dis-

tance L = 20 cm est τdiff =
L2

D
≈ 44 minutes.

On a τdiff ¿ tf : l’évolution (variation de la hauteur
d’éther) est très lente par rapport au phénomène de
diffusion, et l’hypothèse de régime quasi-permanent
est justifiée.

15—  Diffusion de bactéries

1. Le coefficient D s’exprime en m2 · s−1 (cf. cours).

En raisonnant sur l’équation de la diffusion
∂n

∂t
= D

∂n

∂x
en ordre de grandeur, on a

D ≈ L2

T
.

Le temps caractéristique pour que la diffusion se réa-
lise sur une distance L = 10 cm est donc

T ≈ L2

D
= 10−2

10−10

soit T ≈ 1×108 s ≈ 3 ans.

La diffusion de bactérie est très lente à l’échelle ma-
croscopique, et ne peut être la cause de leur étalement
dans l’espace. Ce dernier sera causé par un déplace-
ment du milieu (convection) ou par un déplacement
propre des bactéries (c’est vivant !).

2. D’après l’énoncé, le nombre de bactérie est doublé
tous les τ = 1200 s. Une bactérie donnant naissance à
une bactérie, le nombre de bactéries « créées » pendant
dt dans un volume dτ est proportionnel au nombre de
bactéries présentes dans ce volume, soit une variation
du nombre de bactéries (on ne prend en compte que
les naissances)

dN = dn dτ= r n dτdt .

Le terme de naissances est donc décrit par

dn = r n dt

d’où n(t ) = n(0)er t .

Par définition de τ, on a n(τ) = 2n(0), donc erτ = 2 et

r = ln2

τ
.

Le nombre de naissances par unité de temps et de vo-

lume est donc
ln2

τ
n.

Effectuons un bilan de « particules » (de bactéries !) sur
un tranche de section S comprise entre x et x +dx :

d(δN ) = δ2Nreçu +δ2Ncréé

avec

d(δN ) = [n(x, t +dt ))n(x, t )]S dx = ∂n

∂t
dtS dx ,

δ2Nreçu =ϕ(x, t )dt −ϕ(x +dx, t )dt =−∂ϕ

∂x
dxS dt

= D
∂2 j

∂x2 S dx dt

et

δ2Ncréé = ln2

τ
nS dx dt .

Après simplification, le bilan conduit à

∂n

∂t
= D

∂2n

∂x2 + ln2

τ
n(x, t ) .

On suppose que tous les τ= 1200 s, une bactérie donne
naissance à une autre. Établir l’équation vérifiée par
n(x, t ).
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3. Si n(t ) est indépendant de x, l’équation précédente
se ramène à

dn

dt
= ln2

τ
n(x, t )

La solution est donc

n(t ) = n(0)e
ln2
τ

t =
(
e ln2

)t/τ

soit

n(t ) = 2t/τ .

On obtient bien une population qui double toutes les τ
secondes.

4. Si une bactérie mourrait toutes les τ secondes, un
raisonnement similaire au précédent (en changeant de
signe pour passer de la naissance au décès) donnerait
un nombre de décès par unité de temps et de volume
égal à

ln2

τ
n .

Cependant, on préciser que tous les τ secondes, le
nombre de bactéries mourant est proportionnel au
nombre moyen de bactéries présente à une distance a,
c’est-à-dire en considérant en première approximation
la densité uniforme sur une distance a, à na.

On a donc un nombre de décès par unité de temps et
de volume de la forme

γ
ln2

τ
n ×n = γ

ln2

τ
n2 ,

où γ est un coefficient de proportionnalité, non précisé
ici. Le bilan s’écrit alors pour la tranche considérée pré-
cédemment

∂n

∂t
dtS dx = D

∂2n

∂x2 S dx dt + ln2

τ
n(x, t )S dx dt

−γ
ln2

τ
n2S dx dt

soit
∂n

∂=D
∂2n

∂x2 + ln2

τ
n −γ

ln2

τ
n2

de la forma

∂n

∂t
= D

∂2n

∂x2 +d1n −d2n2 .

5. Si (x) est indépendant du temps, l’équation précé-
dente devient

d1n −d2n2 = 0.

Les solutions sont

n1 = 0 avec n2 = d1

d2
.

La solution n1 correspond à l’absence de bactéries (qui
est bien un état stationnaire !), la seconde à une popu-
lation stable (les naissances compensent exactement
les morts).

6. La zone u → −∞ correspond à x → −∞ : « loin à
gauche » (en x < 0), on a une population stable et uni-
forme n2 de bactéries.

La zone u →+∞ correspond à x →+∞ : « loin à droite »
(en x > 0), on n’a aucune bactérie (on a montré n1 = 0).

La population de bactéries va donc évoluer dans le sens
des x croissants (elles vont coloniser la zone vide de
bactéries), ce que l’on modélise par une onde progres-
sive dans le sens des x croissants, qui avance avec la
célérité x.

7. En dérivant la fonction composée n(x, t ) = f (u) =
f (x − ct ), on a

∂n

∂t
=−c f ′(u) et

∂2

∂n
x = f ′′(u) .

L’équation aux dérivées partielles vérifiée par n(x, t )
s’écrit alors

−c f ′(u) = D f ′′(u)+d1 f (u)−d2
(

f (u)
)2 .

Multiplions par f ′(u) :

−c f ′(u)2 = D f ′′(u) f ′(u)+d1 f (u) f ′(u)−d2 f (u)2 f ′(u) .

Intégrons de u =−∞ à u =+∞ :

− c

ˆ +∞

−∞
f ′(u)2 du = D

ˆ +∞

−∞
f ′′(u) f ′(u)du

+d1

ˆ +∞

−∞
f (u) f ′(u)du −d2

ˆ +∞

−∞
f (u)2 f ′(u)du .

Avec la notation proposée, on peut écrire

−αc = D

[
f ′(u)2

2

]+∞
−∞

+d1

[
f (u)2

2

]+∞
−∞

−d2

[
f (u)3

3

]+∞
−∞

= D

[
f ′(u)2

2

]+∞
−∞

+ d1

2
(n2

1 −n2
2)− d2

3
(n3

1 −n3
2) .

Comme f (u) tend à être uniforme pour u → −∞ et
u →+∞, on peut considérer que sa dérivée est nulle :

f ′(−∞) = f ′(+∞)

d’où

−αc = d1

2
(n2

1 −n2
2)− d2

3
(n3

1 −n3
2) .

Avec n1 = 0 et n2 = d1/d2, on peut écrire

−αc =−d1

2

d 2
1

d 2
2

− d2

3

d 3
1

d 3
2

=− d 3
1

2d 2
2

− d 3
1

3d 2
2

=− d 3
1

6d 2
2

d’où

c = d 3
1

6αd 2
2

.

La vitesse d’invasion des bactéries est d’autant plus
grande que d1 est grand, c’est-à-dire que le terme de
naissance est important, et que d2 est faible, c’est-à-
dire que le terme de mort est faible, ce qui est logique.
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