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Sujet d’entrainement « difficile » Diffusion thermique

1 — Croissance hivernale de I'épaisseur de glace de la banquise

Les applications numériques comporteront au plus 2 chiffres significatifs.

Lexistence de couverts de glace de grande épaisseur au-dessus des océans polaires est bien sir une caractéristique
remarquable des régions polaires. On étudie ici un modele simple de croissance de I'épaisseur de la glace en hiver.
Pour étudier la croissance de la couche de glace en hiver, on modélise 'océan sous la banquise en formation de
facon suivante (fig 1) : en profondeur, la température de I’eau est maintenue constante a 77 =4 °C par les courants
océaniques. Sur une hauteur constante e sous la banquise, 'eau se refroidit progressivement jusqu’a atteindre
To = 0°C al'altitude z = 0 de formation de la glace (on néglige tout effet de salinité de 'eau). La couche de glace a
une épaisseur croissante zg(f) qu'il s’agit de déterminer; au-dessus de celle-ci, I'air est a la température constante
T, = —40°C. On notera A, et Ag les conductivités thermiques et c. et cg est capacités thermiques massiques de
I'eau liquide et de la glace, pg et [ la masse volumique et I'enthalpie massique de fusion de la glace; toutes ces
grandeurs sont des constantes.

]
E Air froid a Ty, = —40°C

Glace

- Formation de glace a Ty = 0" C

Eau refroidie par la glace

Eau « chaude » a 7y =4"C

FIGURE 1 - L'océan sous la banquise en formation

Lépaisseur de glace zg(r) augmente régulierement du fait de la cristallisation de I’eau refroidie a Tp = 0°C a la
base de la couche de glace. Toutes les études pourront étre faites pour un systéme défini par un cylindre vertical
de surface S unité (cf. fig. 1) au sein duquel les transferts thermiques unidimensionnels sont régis par la loi de
Fourier.

1. Parune étude des échanges thermiques de I'épaisseur 6 z prise a I'intérieur de la glace, établir une équation aux
dérivées partielles vérifiée par la température Tg(z, £) au sein de la glace.

2. Déterminer une expression donnant I'ordre de grandeur de la durée At de la diffusion thermique au sein de la
glace sur une hauteur Az. Quelle durée doit-on attendre afin de pouvoir considérer que, pour des évolutions assez
lentes, la température Tg ne dépend pratiquement plus du temps? Préciser ce que I'’on entende par « assez lentes ».

On se place dans ce cas dans toute la suite : dans I'eau comme dans la glace, les répartitions de température seront
supposés quasi-statiques’ .
3. Définir et exprimer les résistances thermiques Rg et Re, pour une aire donnée S, des couches de glace et d’eau

refroidie sous la glace.

Les transferts thermiques a travers la surface supérieure de la banquise sont décrits par la loi de Newton des trans-
ferts pariétaux (radiatifs et convecto-conductifs) : la puissance échangée par unité d’aire de cette surface vérifie
|Pul = h|Ts — T»l, ou T est la température au sommet de la couche de glace; le coefficient i > 0 de la loi de Newton
est supposé connu et constant.

4. Exprimer la résistance thermique R; pour une aire S, de I'interface entre 'air et la glace.

1. Indication : on considere la répartition des températures similaire a celle en régime stationnaire.



5. Montrer que le régime quasi-permanent de croissance de la couche de glace? peut étre décrit par le schéma
équivalent de la figure 2 et préciser 'expression du « courant » ® du « générateur de courant » en fonction notam-

dz
ment de I, pg et de la vitesse de croissance vg = —2 dela couche de glace.
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FIGURE 2 - Circuit électrique équivalent a la croissance de la couche de glace

6. En électricité, connaissez-vous un dispositif D permettant d’assurer une différence de potentiel nulle sans ap-
pel de courant? Si oui, comment faut-il le brancher? En thermodynamique, pour quelle raison la différence de
température aux bornes de D est-elle maintenue nulle?

7. Etablir 'équation différentielle vérifiée par zg (). On suppose que pour toutes les valeurs de ¢ considérées, on a

En déduire la loi d’évolution de 'épaisseur de la couche de glace sous la forme
Tg |Cgzg(t) +25(0) | = L3t

oul'on exprimera les grandeurs 7¢ et /¢ en fonction des parametres du modele. L'instant ¢ = 0 correspond au début
de la formation de la banquise.

8. Tracer et commenter I'allure de la courbe donnant zg(#) en fonction de . On montrera notamment I'existence
de deux régimes successifs.

2. Indication : on fera un bilan d’énergie pendant une durée d¢ pendant laquelle la couche de glace croit de dzg.
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Solution

1. Considérons une tranche comprise entre z et z+ 9z
alintérieur de la glace. Le bilan d’énergie s’écrit

dU =6Q
soit
oT 0
pgch6z—dt:q,’)(z,t)dt—(,b(z+6z,t)dt:——(pézdt
ot 0z
soit )
oT . 99 djg . g
—S=——=-S—=AS .
Pee5,°7 "3z 3z 322
On en déduit
or  0°T
Peear =922

2. En notant At la durée caractéristique de la diffusion
thermique et Az I'échelle de longueur caractéristique,
I’équation précédente conduit a

Pgly A
At (AZ)2

soit
PgC
Ar~Z2E(nz)? .
Ag
La durée d’établissement de la température stationnaire
dans la couche de glace d’épaisseur Az ~ zg() est don-
née par

Pglg »

At~ Zg(t).

g
Il faut donc que la couche de glace croisse avec une du-
rée caractéristique grande devant Pes g 5 zz(t)

3. Etant donnée une couche dont les températures des
extrémités sont T et Ty, si ® est le flux thermique dans
le sens (1) — (2), la résistance thermique est définie, en
régime stationnaire, par analogie avec la loi d’Ohm :

Ty — T» = Ry ®.

En régime quasi-stationnaire, I’équation de la chaleur
s’écrit )

d°Ty

dz2
dans la couche de glace. Le profil de température est
donc affine, et

aty 1o
dz zg

Le flux thermique est donné par

dT, Ty-1»
= Ag—28=1 S.
8dz dz & Zg
On en déduit
R, =%
g -V - |-
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De méme dans 'eau, on a

dr, T - T
—ﬂ e 0 IS
dz e
d’ou
R. = e
7 AeS

4. Le flux thermique sortant de la couche de glace (vers
I’air) est donné par

T(zg)— T
® = h[T(zg) - To]S = %

d’ou 'expression de la résistance thermique

R = s

5. Pendant une durée df, I'épaisseur de la couche de
glace augmente de dzg. Cela correspond a la solidifi-
cation d'une masse 6m = pgSdz, de glace, qui libére
I'énergie

0Qg=0mls=ljpgSdzg.
Cette énergie est évacuée dans la glace et dans I'eau.
Dans la glace, le flux thermique (compté positivement
vers le haut) traverse 1’association en série de la résis-
tance de la glace et de celle du transfert pariétal, soit la
résistance Rg + Ri. On a donc

 Th-Tp
& Rg+Ri’

Dans!’eau, le flux thermique (compté positivement vers
le bas) traverse I'’eau de résistance Re, soit
Tov-Th

Re

Qe =

La conservation de la puissance s’écrit

0Qg
P <I>g+d>e

soit
dzg

To-T, To—-T
lipgS d .

t PRy+Ri  Re

Cette relation est analogue a la loi des nceuds

D = D + Dy

Considérons le schéma suivant :

De T @
o N P B Sy B
T)=4C TIO D! Ty — —40'C
F 777777777 T, =0C
L
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Le potentiel du nceud étant maintenu a Ty, on a bien
To—-T1 Ty-T
R N el

o= .
Re  Rg+Re
Le « courant » est donné par
B = lipy s 8

6. Le dispositif D permettant d’assurer une différence
de potentiel nulle sans appel de courant est le mon-
tage suiveur a ALI, fonctionnant en régime linéaire. Il
se branche ainsi :

To

T +

> o0

)
iTo

En thermodynamique, imposer une différence de po-
tentiel nulle aux bornes de D revient a imposer une tem-
pérature nulle entre R, et Rg, a I'interface entre I'eau et
la glace : c’est la solidification de ’eau qui se produit de
facon isotherme a 0 °C qui impose cette condition.

7. On a établi précédemment

ng To—-T, To—T
lipgS— = )
dt  Rg+R R
avec ®
= ; =— et R=-—
87 ST Y AeS ' hS
On précise que
e Zg 1
—> — 4 —
Ade  Ag h
soit
1 « 1
e 0 1
AeS A5t s
. To—-T>
Avec les valeurs données, on a | Ty — 11| = 0 donc
Tv-Tv To—T»
<
Re Rg+Ri

et’équation différentielle peut se simplifier en
ng(t) _ To—T»

dr w0 17
1S T hs

lfpgS

En séparant les variables, on peut écrire

! (Zg+1 dze = (Ty— Ty)dt
fOg Ag g = (lo— 12
soit
( Ag)o‘l L (Ty— T»)dt
+— =— (T - .
Zg h Zg lfpg 0 2
Comme zg(t = 0) = 0, on en déduit
Z2(1) A
g g g
+ 2 z,(1) = —(Ty— To)t
5 h zg(1) lfpg( 0—T2)
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soit

21 21 2M0\2 W2 (Tp - T>)
2 g g g o— 12

D+ ——=z,() = —=(To-To)t=|—| ———=1t

g (1) o zg(1) lfpg( 0= 1) ( 0 ) 2l Agpyg
On obtient donc

= | T ze(r == t.

R2(To-1y) | B0 ( h )

La loi d’évolution est donc bien de la forme
7 | Cza(0) + 22(0)| = 3¢
avec

204
lg = et t28Ps

h e Ty |

8. On peut expliciter la loi zg () en résolvant I'équation
du second degré

Tgzg (1) + Tglyzg(t) — 3t =0
dont la racine positive est

[ 242 2
—Tglg+ Tg€g+4€grgt

27g

Zg(t) =

que I'on peut mettre sous la forme

zg(1) 1[ t ]
= | 1+4—-1].
lg 2 Tg

zgllg

0 5 10 15 20 t/Tg
On peut cependant remarquer que 1'équation d’évolu-
tion )

zg() 2D ¢

2
lg % Tg
se simplifie dans deux domaines.

» Si zg < {g, on peut négliger le terme d’ordre 2 dans
le membre de droite, d’ ot
t
Zo(t) = 0g— .
g(?) BTy

On observe une croissance linéaire avec le temps de
I'épaisseur de la couche de glace.
» Sizg > (g, le terme d’ordre 2 est prédominant, d’ou

t
zé(t) zéé—
Tg

[t

La croissance est plus lente, comme /.

soit
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