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Sujet d’entraînement « difficile » Diffusion thermique

1—  Croissance hivernale de l’épaisseur de glace de la banquise

Les applications numériques comporteront au plus 2 chiffres significatifs.
L’existence de couverts de glace de grande épaisseur au-dessus des océans polaires est bien sûr une caractéristique
remarquable des régions polaires. On étudie ici un modèle simple de croissance de l’épaisseur de la glace en hiver.
Pour étudier la croissance de la couche de glace en hiver, on modélise l’océan sous la banquise en formation de
façon suivante (fig 1) : en profondeur, la température de l’eau est maintenue constante à T1 = 4 °C par les courants
océaniques. Sur une hauteur constante e sous la banquise, l’eau se refroidit progressivement jusqu’à atteindre
T0 = 0 °C à l’altitude z = 0 de formation de la glace (on néglige tout effet de salinité de l’eau). La couche de glace a
une épaisseur croissante zg(t ) qu’il s’agit de déterminer ; au-dessus de celle-ci , l’air est à la température constante
T2 = −40 °C. On notera λe et λg les conductivités thermiques et ce et cg est capacités thermiques massiques de
l’eau liquide et de la glace, ρg et lf la masse volumique et l’enthalpie massique de fusion de la glace; toutes ces
grandeurs sont des constantes.

FIGURE 1 – L’océan sous la banquise en formation

L’épaisseur de glace zg(t ) augmente régulièrement du fait de la cristallisation de l’eau refroidie à T0 = 0 °C à la
base de la couche de glace. Toutes les études pourront être faites pour un système défini par un cylindre vertical
de surface S unité (cf. fig. 1) au sein duquel les transferts thermiques unidimensionnels sont régis par la loi de
Fourier.

1. Par une étude des échanges thermiques de l’épaisseur δz prise à l’intérieur de la glace, établir une équation aux
dérivées partielles vérifiée par la température Tg(z, t ) au sein de la glace.

2. Déterminer une expression donnant l’ordre de grandeur de la durée ∆t de la diffusion thermique au sein de la
glace sur une hauteur ∆z. Quelle durée doit-on attendre afin de pouvoir considérer que, pour des évolutions assez
lentes, la température Tg ne dépend pratiquement plus du temps? Préciser ce que l’on entende par « assez lentes ».

On se place dans ce cas dans toute la suite : dans l’eau comme dans la glace, les répartitions de température seront
supposés quasi-statiques 1.

3. Définir et exprimer les résistances thermiques Rg et Re, pour une aire donnée S, des couches de glace et d’eau
refroidie sous la glace.

Les transferts thermiques à travers la surface supérieure de la banquise sont décrits par la loi de Newton des trans-
ferts pariétaux (radiatifs et convecto-conductifs) : la puissance échangée par unité d’aire de cette surface vérifie
|Pu| = h |Ts −T2|, où Ts est la température au sommet de la couche de glace; le coefficient h > 0 de la loi de Newton
est supposé connu et constant.

4. Exprimer la résistance thermique Ri pour une aire S, de l’interface entre l’air et la glace.

1. Indication : on considère la répartition des températures similaire à celle en régime stationnaire.
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5. Montrer que le régime quasi-permanent de croissance de la couche de glace 2 peut être décrit par le schéma
équivalent de la figure 2 et préciser l’expression du « courant » Φ du « générateur de courant » en fonction notam-

ment de lf, ρg et de la vitesse de croissance vg =
dzg

dt
de la couche de glace.

FIGURE 2 – Circuit électrique équivalent à la croissance de la couche de glace

6. En électricité, connaissez-vous un dispositif D permettant d’assurer une différence de potentiel nulle sans ap-
pel de courant? Si oui, comment faut-il le brancher? En thermodynamique, pour quelle raison la différence de
température aux bornes de D est-elle maintenue nulle ?

7. Établir l’équation différentielle vérifiée par zg(t ). On suppose que pour toutes les valeurs de t considérées, on a

e

λe
À zg

λg
+ 1

h
.

En déduire la loi d’évolution de l’épaisseur de la couche de glace sous la forme

τg

[
ℓgzg(t )+ z2

g(t )
]
= ℓ2

gt

où l’on exprimera les grandeurs τg et ℓg en fonction des paramètres du modèle. L’instant t = 0 correspond au début
de la formation de la banquise.

8. Tracer et commenter l’allure de la courbe donnant zg(t ) en fonction de t . On montrera notamment l’existence
de deux régimes successifs.

2. Indication : on fera un bilan d’énergie pendant une durée dt pendant laquelle la couche de glace croît de dzg.
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 Solution

1. Considérons une tranche comprise entre z et z +δz
à l’intérieur de la glace. Le bilan d’énergie s’écrit

dU = δQ

soit

ρgcgSδz
∂T

∂t
dt =ϕ(z, t )dt −ϕ(z +δz, t )dt =−∂ϕ

∂z
δz dt

soit

ρgcg
∂T

∂t
S =−∂ϕ

∂z
=−S

∂ jQ

∂z
=λS

∂2 jQ

∂z2 .

On en déduit

ρgcg
∂T

∂t
=λ

∂2T

∂z2 .

2. En notant ∆t la durée caractéristique de la diffusion
thermique et ∆z l’échelle de longueur caractéristique,
l’équation précédente conduit à

ρgcg

∆t
∼ λ

(∆z)2

soit

∆t ∼ ρgcg

λg
(∆z)2 .

La durée d’établissement de la température stationnaire
dans la couche de glace d’épaisseur ∆z ∼ zg(t ) est don-
née par

∆t ∼ ρgcg

λg
z2

g(t ) .

Il faut donc que la couche de glace croisse avec une du-
rée caractéristique grande devant

ρgcg

λg
z2

g(t ).

3. Étant donnée une couche dont les températures des
extrémités sont T1 et T2, si Φ est le flux thermique dans
le sens (1) → (2), la résistance thermique est définie, en
régime stationnaire, par analogie avec la loi d’Ohm :

T1 −T2 = RthΦ .

En régime quasi-stationnaire, l’équation de la chaleur
s’écrit

d2Tg

dz2 = 0

dans la couche de glace. Le profil de température est
donc affine, et

dTg

dz
= T2 −T0

zg
.

Le flux thermique est donné par

Φ=−λg
dTg

dz
S =λg

T0 −T2

zg
S .

On en déduit

Rg =
zg

λgS
.

De même dans l’eau, on a

Φ=−λe
dTe

dz
S =−T0 −T1

e
S

d’où

Re = e

λeS
.

4. Le flux thermique sortant de la couche de glace (vers
l’air) est donné par

Φ= h[T (zg)−T2]S = T (zg)−T2

Ri

d’où l’expression de la résistance thermique

Ri = 1

hS
.

5. Pendant une durée dt , l’épaisseur de la couche de
glace augmente de dzg. Cela correspond à la solidifi-
cation d’une masse δm = ρgS dzg de glace, qui libère
l’énergie

δQg = δmlf = lfρgS dzg .

Cette énergie est évacuée dans la glace et dans l’eau.

Dans la glace, le flux thermique (compté positivement
vers le haut) traverse l’association en série de la résis-
tance de la glace et de celle du transfert pariétal, soit la
résistance Rg +Ri. On a donc

Φg = T0 −T2

Rg +Ri
.

Dans l’eau, le flux thermique (compté positivement vers
le bas) traverse l’eau de résistance Re, soit

Φe = T0 −T1

Re
.

La conservation de la puissance s’écrit

δQg

dt
=Φg +Φe

soit

lfρgS
dzg

dt
= T0 −T2

Rg +Ri
+ T0 −T1

Re
.

Cette relation est analogue à la loi des nœuds

Φ=Φe +Φg .

Considérons le schéma suivant :

Φe ΦgT0
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Le potentiel du nœud étant maintenu à T0, on a bien

Φ= T0 −T1

Re
+ T0 −T2

Rg +Re
.

Le « courant » est donné par

Φ= lfρgS
dzg

dt
.

6. Le dispositif D permettant d’assurer une différence
de potentiel nulle sans appel de courant est le mon-
tage suiveur à ALI, fonctionnant en régime linéaire. Il
se branche ainsi :

ÿ
��
�
� � ∞�

�����

�

������������ �
���
�

��
�
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T0

T0

En thermodynamique, imposer une différence de po-
tentiel nulle aux bornes de D revient à imposer une tem-
pérature nulle entre Re et Rg, à l’interface entre l’eau et
la glace : c’est la solidification de l’eau qui se produit de
façon isotherme à 0 °C qui impose cette condition.

7. On a établi précédemment

lfρgS
dzg

dt
= T0 −T2

Rg +Ri
+ T0 −T1

Re
,

avec

Rg =
zg(t )

λgS
; Re = e

λeS
et Ri = 1

hS
.

On précise que
e

λe
À zg

λg
+ 1

h

soit
1
e

λeS

¿ 1
zg(t )
λgS + 1

hS

.

Avec les valeurs données, on a |T0 −T1| = T0 −T2

10
, donc

T0 −T1

Re
¿ T0 −T2

Rg +Ri

et l’équation différentielle peut se simplifier en

lfρgS
dzg(t )

dt
= T0 −T2

zg(t )
λgS + 1

hS

.

En séparant les variables, on peut écrire

lfρg

(
zg

λg
+ 1

h

)
dzg = (T0 −T2)dt

soit (
zg +

λg

h

)
dzg =

λg

lfρg
(T0 −T2)dt .

Comme zg(t = 0) = 0, on en déduit

z2
g(t )

2
+ λg

h
zg(t ) = λg

lfρg
(T0 −T2)t

soit

z2
g(t )+ 2λg

h
zg(t ) = 2λg

lfρg
(T0 −T2)t =

(
2λg

h

)2 h2(T0 −T2)

2lfλgρg
t .

On obtient donc

2lfλgρg

h2(T0 −T2)

[
2λh

h
zg(t )+ z2

g(t )

]
=

(
2λg

h

)2

t .

La loi d’évolution est donc bien de la forme

τg

[
ℓgzg(t )+ z2

g(t )
]
= ℓ2

gt

avec

ℓg =
2λg

h
et τg =

2lfλgρg

h2(T0 −T2)
.

8. On peut expliciter la loi zg(t ) en résolvant l’équation
du second degré

τgz2
g(t )+τgℓgzg(t )−ℓ2

gt = 0

dont la racine positive est

zg(t ) =
−τgℓg +

√
τ2

gℓ
2
g +4ℓ2

gτgt

2τg

que l’on peut mettre sous la forme

zg(t )

ℓg
= 1

2

[√
1+4

t

τg
−1

]
.

t/τg

zg/lg

0 5 10 15 20

On peut cependant remarquer que l’équation d’évolu-
tion

zg(t )

ℓg
+

z2
g(t )

ℓ2
g

= t

τg

se simplifie dans deux domaines.

ä Si zg ¿ ℓg, on peut négliger le terme d’ordre 2 dans
le membre de droite, d’où

zg(t ) ≈ ℓg
t

τg
.

On observe une croissance linéaire avec le temps de
l’épaisseur de la couche de glace.

ä Si zg À ℓg, le terme d’ordre 2 est prédominant, d’où

z2
g(t ) ≈ ℓ2

g
t

τg

soit

zg(t ) ≈ ℓg

√
t

τg
.

La croissance est plus lente, comme
p

t .
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