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DS no 3 Sujet type CCINP-E3A

Le sujet comporte quatre parties indépendantes.

Merci de suivre les conseils suivants :

— laisser un espace en début de copie pour la note et les commentaires ;

— laisser une marge à chaque page pour les commentaires et décompte des points ;

— respecter et indiquer la numérotation des questions;

— souligner ou encadrez les résultats.

 Partie I— Isolation thermique de l’habitat (CCINP PSI 2025)

1—  Étude d’une paroi plane

On considère une paroi plane (figure I-1) d’épaisseur e0 et de surface S0. On néglige les effets de bord selon y et z.
La température ne dépend que de x. La température sur la première face, située en x = 0, est T1, celle de la seconde
face, située en x = e0 est T2.
On note c la capacité thermique massique du matériau constitutif de la paroi, ρ sa masse volumique et λ sa
conductivité thermique.
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FIGURE I-1 – Paroi plane

Q1. Rappeler la loi de Fourier. Préciser les notations et les unités des grandeurs physiques qui interviennent.

Q2. On supposer qu’il y a pas de source de chaleur interne. Établir pour l’étude de cette paroi l’équation de la
diffusion thermique en coordonnées cartésiennes.

Q3. Déterminer en régime stationnaire le profil de température T (x) de cette paroi en fonction de e0, T1 et T2.

Q4. Donner, en régime stationnaire, l’expression du flux thermique Φ traversant cette paroi orientée dans le sens
des x > 0 en fonction de e0, T1, T2, λ et S0. En déduire l’expression de la résistance thermique Rth de cette paroi en
fonction de e0, λ et S0.

2—  Étude d’une fenêtre double vitrage

Une fenêtre double vitrage (figure I-2) de surface Sf est constituée de deux parois vitrées de même épaisseur e
séparées d’une couche d’argon statique également d’épaisseur e. En plus des phénomènes de diffusion thermique
dans le verre et dans l’argon, il faut tenir compte d’échanges conducto-convectifs au niveau des interfaces air
extérieure-verre et verre-air extérieur. Ces échanges sont décrits par la loi de Newton P = hSf(Tair −Ts) où P est
la puissance échangée, h est une coefficient d’échange, Tair et Ts sont les températures de l’air et du verre à une
même interface.
Soient Text et Tint respectivement les températures de l’air extérieur et de l’air intérieur de la pièce d’habitation
équipée de cette fenêtre. Le coefficient d’échange conducto-convectif à l’interface air extérieur-verre est noté he,
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FIGURE I-2 – Fenêtre double vitrage de surface Sf

celui à l’interface verre-air intérieur est noté hi. Les conductivités thermiques du verre et de l’argon sont notées
respectivement λv et λAr, avec λAr ≪λv.
Soient TS,ext et TS,int respectivement les températures en surface des verres aux interfaces air extérieur-verre et
verre-air intérieur.
Les parois vitrées occupent les zones 0⩽ x ⩽ e et 2e ⩽ x ⩽ 3e.
L’argon occupe la zone e ⩽ x ⩽ 2e.

Q5. Proposer, en régime stationnaire, un schéma électrique équivalent qui décrit les transfert thermiques associés
à cette fenêtre. Préciser les expressions littérales des résistances thermiques qui interviennent en fonction des
données de l’énoncé. Vous ferez apparaître sur votre schéma les différentes températures Text, Tint, TS,ext et TS,int.

Q6. On repère les différentes interfaces par leurs abscisses x. L’interface air extérieur-verre se situe en x = 0. On
suppose Text < Tint. Précisez sans justification parmi les profils de température proposés sur la figure I-3 celui qui
correspond à cette fenêtre.
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FIGURE I-3 – Profils de température

3—  Étude d’une pièce d’habitation

On considère dans cette sous-partie une pièce d’habitation de température supposée uniforme. L’étude de la pièce
est limitée à un mur comportant une fenêtre et à un plafond de surface Sp = 10 m2. Ils sont tous les trois en contact
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avec le milieu extérieur de température constante Text = 274 K.
Les pertes thermiques par le sol et les cloisons intérieures sont négligées. On note R1 la résistance thermique de la
pièce, c’est-à-dire de l’ensemble {mur, fenêtre, plafond}. R1 tient compte de la totalité des phénomènes convectifs
et diffusifs.
On chauffe la pièce, initialement à la température Text, avec un radiateur de puissance P = 500 W. La température
finale atteinte se stabilise à Tfin = 294 K.

Q7. Donner la valeur numérique de R1, résistance thermique de la pièce d’habitation.

Q8. On note T (t ) la température de la pièce supposée uniforme à un instant t , et C la capacité thermique de la
pièce. Cette capacité englobe celle du mobilier, celle de l’air contenu dans la pièce et celle des portions de murs
intérieurs, aussi appelés doublages, qui se situent avant l’isolant.

Établir dans l’approximation des régimes quasi-stationnaires l’équation différentielle vérifiée par la température
T (t ). En déduire l’expression de la température T (t ) en fonction de Text, Tfin, R1 et C .

Q9. Le plafond a une épaisseur ep = 5 cm et une conductivité thermique λp = 0,1 SI. Donner la valeur numérique
de la résistance thermique du plafond notée Rpl.

Exprimer littéralement la résistance thermique de l’ensemble mur-fenêtre, notée Rmf, en fonction de R1 et de Rpl.

Donner la valeur numérique de Rmf. Les déperditions thermiques sont-elles plus importantes par le plafond ou
par l’ensemble mur-fenêtre?

Q10. On ajoute alors au plafond une couche d’isolant thermique d’épaisseur eisol et de conductivité thermique
λisol.

Exprimer littéralement la nouvelle résistance thermique de l’ensemble plafond-isolant, notée R ′
pl, en fonction de

Rpl, λisol, eisol et Sp.

Soit R2 la nouvelle résistance thermique totale de la pièce. On admettra que R2 = 0,12 K ·W−1.

D’après ce modèle, par quel coefficient a-t-on divisé les pertes d’énergie thermique de la pièce en ajoutant cette
couche d’isolant au plafond?

 Partie II – Isolation thermique d’un toit (banque PT 2025)

Dans le cadre de la transition énergétique et écologique, l’État a fait de la rénovation énergétique des logements
une priorité. Les propriétaires sont ainsi accompagnés, au moyen de subventions, à entreprendre des projets de
rénovation énergétique dans leur logement : isolation thermique (toit, murs, combles. . . ), installation d’une chau-
dière plus performante, de fenêtres à double vitrage, de panneaux solaires. . . Autant de solutions permettant de
réduire les factures d’électricité, en particulier pour les logements les plus énergivores souvent qualifiés de « pas-
soires thermiques ».
Parmi les différentes fuites thermiques d’un logement, les déperditions à travers le toit représentent généralement
une part importante. Beaucoup de maisons modernes présentent une architecture à toit plat, comme le montre la
figure II-1. On s’intéresse à l’isolation thermique du toit.
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FIGURE II-1 – À gauche : maison à toit plat. À droite : schéma de principe, notations utilisées

On considère un toit horizontal plat isolé par une couche isolante plane d’aire S, d’épaisseur d , de conductivité
thermique λ, de masse volumique ρ et de capacité thermique massique c. Le plan d’équation x = 0 correspond à
l’interface toit/isolant ; le plan d’équation x = d correspond au plafond (voir figure II-1).
La conduction thermique est supposée unidimensionnelle : le vecteur densité de courant thermique au sein de la
couche isolante est de la forme #»ȷ = j (x, t )#»ux , #»ux étant le vecteur unitaire orienté selon la verticale descendante,
de l’extérieur vers l’intérieur de la maison, et le champ de température est de la forme T (x, t ).
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Q1. Rappeler la loi de Fourier exprimant le vecteur densité de courant thermique #»ȷ en fonction de la température
T . Justifier la présence du signe «− » apparaissant dans cette lois.

Q2. Donner, dans le cas unidimensionnel étudié, l’équation de la diffusion thermique (ou équation de la chaleur)
liant les dérivées spatiales et temporelle de la température T (x, t ).

Q3. On se place en régime stationnaire. Définir la résistance thermique Rth de la couche isolante, puis rappeler
son expression littérale en fonction de S, d et λ.

Pour estimer quelques ordres de grandeur, on considère un toit plat de surface S = 100 m2. Sans isolation, sa
résistance thermique vaut Rth,toit = 1,0×10−2 K ·W−1.

Q4. Exprimer littéralement la résistance thermique d’isolant permettant de diviser les pertes thermiques à travers
le toit par 10.

Q5. En déduire l’épaisseur d’isolant d correspondante. Faire l’application numérique pour la laine de verre puis
pour l’ouate de cellulose (épaisseurs respectivement notées dℓ et do).

Le résistance thermique n’est pas le seul critère à prendre en compte au moment de choisir son isolation ther-
mique. On étudie le comportement thermique de la couche isolante en été. La toiture est exposée de telle sorte
que l’évolution journalière de température imposée à la surface de l’isolant en x = 0 suit la loi

T (x = 0, t ) = T0 +T1 cos(ωt ) .

On considère une température maximale de 37 °C et une température minimale de 13 °C.

Q6. Calculer les valeurs de T0 et T1 en °C, et de ω en rad ·h−1.

On cherche la solution de l’équation obtenue à la question Q2. Pour ce faire, on travaille dans l’espace des com-
plexes en posant

T (x, t ) = T0 + f (x)eiωt avec i2 =−1.

Ainsi, T (x, t ) correspond à la partie réelle de T (x, t ).

Q7. Déterminer l’équation différentielle satisfaite par la fonction f (x).

Les solution de cette équation différentielle s’écrivent sous la forme

f (x) = A e(1+i)x/δ+B e−(1+i)x/δ

où A et B désignent des constantes complexes, et δ une constante réelle.

Q8. Déterminer l’expression de δ en fonction de λ, ρ, c et de ω, puis préciser sa dimension.

On souhaite conserver dans l’expression de T (x, t ) l’onde thermique se propageant dans le sens des x croissants.

Q9. Établir l’expression de la solution réelle T (x, t ). Montrer ensuite que

T (x = d , t ) = T0 +T1 e−d/δ cos[ω(t −τ)]

et expliciter le « déphasage thermique » τ en fonction, de d , λ, ρ, c et ω.

Les applications numériques (non demandées) donnent, pour les deux configurations étudiées à la question Q5
(une épaisseur dℓ de laine de verre, une épaisseur do d’ouate de cellulose), les valeurs respectives suivantes : τℓ =
5,3 h et τo = 11 h.

La fraîcheur nocturne permet généralement un rafraîchissement naturel des habitations. De ce fait, pour un meilleur
confort, on a intérêt à choisir le déphasage thermique τ de sorte qu’il y ait un transfert thermique maximal pen-
dant la période nocturne; on admet que cette condition revient à avoir des températures T (x = 0, t ) et T (x = d , t )
en opposition de phase.

Q10. Calculer le déphasage thermique offrant le meilleur confort thermique. En déduire laquelle des deux confi-
gurations précédentes est finalement la plus confortable d’un point de vue thermique.

 Données

Caractéristiques de deux isolants thermiques :

λ (W ·m−1 ·K−1) ρ (kg ·m−3) c (J ·K−1 ·kg−1)
laine de verre 0,032 20 1030

ouate de cellulose 0,040 35 2000
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 Partie III — Décantation dans le traitement des eaux (CCINP PSI 2022)

La clarification par décantation est une des étapes réalisées dans le traitement des eaux des stations d’épuration.
Elle consiste à éliminer les particules polluantes en suspension dans l’eau polluée.
L’eau polluée, c’est-à-dire chargée en particules non désirées, circule en continu dans le bassin de décantation
(figure III-1), à faible vitesse horizontale #»u . Les particules ont le temps de se déposer au fond du bassin et l’eau de
sortie est ainsi clarifiée.
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FIGURE III-1 – Bassin de décantation

Le bassin de décantation est de longueur Lb et de profondeur db, sa largeur est indifférente. On note respective-
ment η et ρe la viscosité dynamique et la masse volumique de l’eau polluée ; η et ρe sont supposées constantes.
On définit le repère (O; #»e x , #»e y , #»e z ) lié au bassin. L’axe Oz est vertical descendant. Le niveau d’entrée de l’eau dans
le bassin correspond à la cote z = 0.
On suppose que les particules polluantes sont sphériques, de rayon r , et qu’elles sont soumises à la force de frot-
tement fluide

#»
F =−6πηr #»v , où #»v est la vitesse des particules.

On note ρ0 la masse volumique des particules polluantes, supposée constante. On a ρ0 > ρe.
Rappel : un corps plongé dans un fluide subit des forces de pression dont la résultante est donnée par la poussée
d’Archimède, dirigée de bas en haut, opposée au poids du fluide de remplacement 1.
On considère que l’eau arrive en amont du bassin avec une densité en particules polluantes notée N0.

1  Décantation statique

Dans un premier temps, l’eau ne circule pas horizontalement (#»u = #»
0 ) et les particules polluantes qu’elle contient

chutent verticalement.
Compte tenu des phénomènes de transport des particules polluantes dans le bassin, la densité en particules pol-
luantes n’est pas uniforme sur la hauteur du bassin : elle dépend de la profondeur z. Dans le bassin, on note n(z)
la densité en particules polluantes à l’altitude z et n0 la valeur associée à l’altitude z = 0, soit n0 = n(z = 0).

Q1. À partir de l’équation différentielle du mouvement, issue de la seconde loi de Newton, établir, en fonction de
ρ0, ρe, r , η et de l’accélération g de la pesanteur, la vitesse limite #»v ℓ = vℓ

#»e z atteinte par ces particules. Quel est
le signe de vℓ ? Exprimer en fonction de ρ0, r et de η le temps temps caractéristique τc d’établissement de cette
vitesse limite.

On supposera par la suite que la constante de temps τc est très faible devant le temps de sédimentation (i.e. le
temps de chute dans le bassin) de sorte que le mouvement des particules est considéré comme uniforme à la
vitesse #»v ℓ.

Q2. Cette chute des particules est à l’origine d’un courant convectif vertical des particules. On note #»ȷ = j (z)#»e z le
vecteur densité de courant de particules associé. Préciser l’unité de j (z), puis exprimer le vecteur #»ȷ en fonction
de n(z) et de #»v ℓ.

En plus du courant précédent, on observe l’existence d’un second courant qui résulte d’un phénomène de diffu-
sion. On note D le coefficient de diffusivité des particules dans l’eau et #»ȷ D = jD(z)#»e z le vecteur densité de courant
de particules associé à ce second courant.

Q3. Rappeler la loi de Fick et préciser les unités des grandeurs qui interviennent. Justifier qualitativement l’exis-
tence de ce courant de diffusion. Préciser s’il est ascendant ou descendant.

Q4. En régime permanent, ces deux courants se compensent. En déduire, en fonction de n0, D et vℓ, l’expression
de la densité de particules n(z). Représenter graphiquement n(z) en fonction de z.

1. Fluide qui occuperait le même volume que le corps immergé.
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Q5. Par conservation du nombre de particules sur une tranche verticale du bassin, exprimer n0 en fonction de N0,
D , db et vℓ.

Q6. Définir, en fonction de db, D et vℓ, un temps caractéristique τs de sédimentation, ainsi qu’un temps caracté-
ristique τD de diffusion des particules sur la hauteur du bassin.

Q7. Exprimer n0 en fonction de N0, τs et τD. À quelle condition portant sur τs et τD la décantation statique permet-
elle une clarification de l’eau?

2  Clarification dynamique de l’eau polluée

Dans un second temps, l’eau polluée est mise en mouvement et s’écoule avec une vitesse horizontale cons-tante
#»u . Un aspirateur situé au fond du bassin aspire maintenant les particules polluantes.
Un modèle simple considère que le mouvement des particules polluantes est la combinaison d’un mouvement
horizontal de vitesse #»u dû à l’entraînement de l’eau et d’un mouvement vertical de chute à la vitesse constante #»v ℓ

déterminée précédemment dans l’étude de la décantation statique. L’eau sera clarifiée si les particules polluantes
introduites à l’entrée du bassin ont le temps de tomber au fond avant que l’eau d’entraînement, injectée à l’entrée
du bassin en x = 0, ne soit parvenue à l’autre extrémité de sortie du bassin, située en x = Lb.

Q8. Définir en fonction de Lb et u un temps de traversée τT du bassin.

À quelle condition, portant sur τT et τs, la clarification dynamique est-elle efficace?

 Partie IV—Étude thermodynamique de l’obtention de tétrafluorouranium (banque PT 2025)

Une des étapes de la transformation de l’uranium est l’obtention d’un composé fluoré à partir d’uranite. Cette
réaction peut se traduire par le bilan suivant :

UO2(s)+4HF(g) = UF4(s)+2H2O(g).

À l’état initial, on place dans le réacteur initialement vide à 500 °C HF(g) et UO2(s) (celui-ci étant introduit en excès
par rapport à HF(g)).

Q1. Calculer la valeur de l’enthalpie standard de réaction à 298 K.

Q2. Calculer et commenter le signe de l’entropie standard de la réaction à 298 K.

Q3. La constante d’équilibre vaut environ 5×102 à 500 °C. Expliciter la démarche réalisée pour obtenir ce résultat
à partir des valeurs calculées lors des questions précédentes.

Q4. Discuter du choix de la température utilisée dans le processus industriel en considérant les aspects thermo-
dynamique et cinétique de la réaction.

On appelle α le rapport entre la quantité de matière de HF qui a réagi et la quantité de matière initiale de HF,
notée n0.

Q5. Écrire le tableau d’avancement associé à la réaction et exprimer α en fonction de l’avancement ξ.

Q6. Montrer la relation suivante entre la constante d’équilibre K o, la valeur de α à l’équilibre αéq et la pression
totale PT dans l’enceinte :

K o =
(
αéq(2−αéq)

)2

16(1−αéq)4

(
P o

PT

)2

.

Q7. Déterminer la pression totale PT du réacteur pour que la valeur de αéq soit égale à 0,9 lorsque l’équilibre est
atteint à 500 °C.

Q8. Prévoir l’évolution de α lorsque la pression totale dans le réacteur est augmentée, le température restant
constante.

 Données

Les gaz sont assimilés à des gaz parfaits (constante des gaz parfaits R = 8,31 J ·mol−1 ·K−1).
1 bar = 105 Pa.
Grandeurs thermodynamiques considérées comme indépendantes de la température :

UO2(s) UF4(s) HF(g) H2O(g)

∆fH
o (kJ ·mol−1) −1085 −1921 −273 −242

So (J ·K−1 ·mol−1) 77 152 174 189
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