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Le sujet comporte quatre parties indépendantes.

Merci de suivre les conseils suivants :

— laisser un espace en début de copie pour la note et les commentaires ;

— laisser une marge à chaque page pour les commentaires et décompte des points ;

— respecter et indiquer la numérotation des questions;

— souligner ou encadrez les résultats.

 Partie I— De la physique dans le tunnel du Fréjus (Mines-Ponts PC 2016)

À l’exception de i tel que i2 =−1, les nombres complexes sont soulignés. La notation z désigne le complexe conju-
gué de z. Les vecteurs seront traditionnellement surmontés d’une flèche, par exemple #»ȷ pour un flux surfacique,
sauf s’ils sont unitaires, et seront alors surmontés d’un chapeau, par exemple êz tel que ∥êz∥ = 1. Pour les applica-
tions numériques, on utilisera 3 chiffres significatifs.

Le tunnel routier de Fréjus relie la vallée de l’Arc, en France, au val de Suse, en Italie. Long d’environ 13 km, le
tunnel passe sous le col du Fréjus dans les Alpes contiennes. La pointe Fréjus culmine à une altitude de 2934 m.

FIGURE I-1 – Tunnel de Fréjus

La roche environnante dans le tunnel a une température constante tout au long de l’année d’environ 30 °C. Dans
un premier temps, nous étudierons les évolutions saisonnières de la température dans le sol. Puis nous tenterons
d’expliquer cette température élevée par un modèle géophysique.

1—  Évolutions saisonnières de la température dans le sol
surface xO

z

FIGURE I-2 – Sol

On se place au sommet de la pointe Fréjus à une altitude de 2934 m. On assi-
mile la roche à un milieu semi-infini de conductivité thermique κ, de masse
volumique ρs et de capacité thermique massique cs. Sa surface est plane et ho-
rizontale et est soumise à la variation de température extérieure

T (z = 0, t ) = θ0 +T0 cos(ωt )

avec θ0 = 0 °C (voir figure I-2).

Q1. Calculer la moyenne temporelle de la température extérieure en z = 0. Calculer la température maximale et
minimale. Proposer une valeur numérique pour T0 pour les évolutions annuelles de température.

Q2. La quantité d’énergie traversant une surface élémentaire dS pendant dt , est noté δQ. Rappeler la définition
du vecteur #»ȷQ , densité de flux thermique. Quelle est sa dimension?

Q3. Rappeler la loi de Fourier, ainsi que ses conditions d’application. En déduire les dimensions de la conductivité
thermique κ.

Q4. On étudie une tranche mésoscopique de sol comprise entre z et z + dz, de surface S. Quelle est l’énergie
thermique δQ reçue par cette tranche entre t et t +dt ?

Q5. Pourquoi étudie-t-on une tranche « mésoscopique » ?
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Q6. Établir l’expression de sa variation d’énergie interne dU en fonction de
∂ jQ

∂z
et S, puis en fonction de ρs, cs, S

et
∂T

∂t
.

Q7. En déduire l’équation de la chaleur à une dimension

∂T (z, t )

∂t
= D

∂2T (z, t )

∂z2

dans laquelle on précisera l’expression et la dimension du coefficient D de diffusion thermique.

On cherche des solutions de la forme
T (z, t ) = θ0 +T0 ei(ωt−kz)

vérifiant la condition aux limites T (z = 0, t ) = θ0 +T0 cos(ωt ).

Q8. Interpréter cette forme de solution. En écrivant que T (z, t ) vérifie l’équation de la chaleur, donner la relation
entre k2 et ω. En déduire 1 l’expression de k que l’on mettre sous la forme k = k ′+ ik ′′, avec k ′ > 0.

Déterminer l’expression correspondante de la solution réelle T (z, t ) = Re
[
T (z, t )

]
.

Quelle est l’interprétation physique de k ′′ ? Montrer que l’on peut définir une longueur caractéristique δ que l’on
exprimera en fonction de k ′′ d’une part, puis de ω et D d’autre part, dont on donnera l’interprétation physique.

Q9. Calculer la profondeur ze à partir de laquelle les oscillations annuelles de température ne s’écartent pas de θ0

de plus de 1%. Que peut-on dire de la température dans le tunnel routier de Fréjus? Pour les roches granitiques
constituant le Fréjus on donne ρs = 2,65×103 kg ·m−3, cs = 8,50×103 J ·K−1 ·kg−1 et κ= 3,00 SI.

Q10. Que peut-on dire des variations quotidiennes de la température à la profondeur ze ? En terme de filtrage
fréquentiel, comment se comporte le sol ?

2—  Température d’origine géophysique

z

#»ȷ m

Ic/m

z +dz
z

O xsurface

croûte
terrestre

manteau
terrestre

FIGURE I-3 – Modèle géostrophique

La température moyenne de 30 °C relevée dans le tunnel de Fré-
jus peut être expliquée par un modèle géothermique simple de la
croûte terrestre. On considère qu’au niveau des Alpes, l’épaisseur
de la croûte terrestre continentale est Lc = 45,0 km. Les roches gra-
nitiques qui constituent une partie des Alpes contiennent des élé-
ments radioactifs comme l’uranium, le thorium et le potassium. La
chaleur produite par ces éléments radioactifs est directement pro-
portionnelle à leur concentration.
Dans les modèles couramment utilisés cette concentration décroît
exponentiellement avec la profondeur, de sorte que la puissance vo-
lumique dégagée peut s’écrire P(z) = P0 e−z/H , avec H = 10,0 km.
On prendra P0 = 2,50 µW · m−3. La croûte terrestre repose sur le
manteau terrestre, à la fois plus dense et plus chaud que la croûte. On admet enfin qu’au niveau de l’interface Ic/m

entre la croûte et le manteau, ce dernier génère un flux surfacique constant #»ȷm =− jmêz , avec jm = 35,0 mW ·m−2.

Q11. En effectuant, en régime stationnaire, le bilan thermique dans une tranche de croûte terrestre de surface S,
comprise entre z et z +dz, établir une relation entre jQ (z, t ) et P(z).

Q12. En déduire la température T (z) en fonction de H , Lc, P0, jm, κ et θ0 = 0 °C la température moyenne de
surface en z = 0.

Q13. Exprimer le flux thermique total #»ȷS = jSêz au niveau de la surface en z = 0.

Q14. Comparer les deux termes proportionnels à z et simplifier l’expression de T (z). Calculer la température au
centre du tunnel de Fréjus (z = 1,70 km) puis jS .

3—  Prise en compte du relief

On suppose maintenant que la température à la surface plane z = 0 possède une dépendance spatiale en x que
l’on modélise par la relation

T (x, z = 0) = Ts +T1 cos

(
2πx

λ

)
.

Pour étudier l’effet du relief sur la température dans le tunnel de Fréjus, on prendra λ= 10,0 km.

1. On rappelle que i = ei π2 . . .
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Q15. On suppose pour cette question qu’il n’y a pas de source d’énergie thermique dans la roche. Donner sans dé-
monstration l’équation satisfaite par T (x, z) en régime stationnaire. En utilisant la méthode de séparation des va-
riables, déterminer la solution T (x, z) qui respecte la condition aux limites T (x, z = 0) et qui demeure finie lorsque
z →+∞. Justifier la prise en compte des effets de la variation spatiale de la température.

Indication : la méthode de séparation des variables consiste à chercher une solution du problème sous la forme
T (x, z) = f (x)g (z)+Ts.

Q16. Toujours pour une surface plane d’équation z = 0, en utilisant la linéarité de l’équation satisfaite par la
température, déterminer T (x, z) en considérant les sources internes d’énergie thermique.

 Partie II – Analyse de Fourier et diffusion thermique (Mines-Ponts PSI 2022)

Cette partie présente l’expérience originelle de Joseph Fourier de l’étude des phénomènes de diffusion thermique
le long d’un anneau de fer torique. C’est notamment cette expérience qui lui a permis d’introduire pour la première
fois la décomposition d’une fonction périodique en séries dites « de Fourier ».
Dans toute cette partie, exprimer signifie donner l’expression littérale et calculer signifie donner la valeur numé-
rique avec, au plus, deux chiffres significatifs.
Les vecteurs unitaires seront notés avec un chapeau ê ; ainsi, dans l’espace cartésien (O, êx , êy , êz ) un vecteur quel-
conque #»a s’écrira #»a = ax êx +ay êy +az êz .
On note j le nombre complexe tel que j2 =−1.

 Données numériques

— capacité thermique du fer : c = 4,0×102 J ·kg−1 ·K−1 ;

— masse volumique du fer : µf = 7,9×103 kg ·m−3 ;

— conductivité thermique du fer : λ= 80 W ·m−1 ·K−1 ;

— coefficient conducto-convectif à l’interface far-air : h = 10 W ·m−2 ·K−1.

On considère un matériau homogène assimilable à une répartition unidimensionnelle de matière selon un axe
(Ox). On rappelle l’équation de la diffusion thermique unidimensionnelle sans perte et sans terme source, don-
nant la température T (x, t ) à l’abscisse x et au temps t dans le matériau :

∂T

∂t
= D

∂2T

∂x2 .

Q1. Déterminer l’expression de la constante D en fonction de la masse volumique µ, du coefficient de conducti-
vité thermique λ et de la capacité thermique massique c du matériau considéré. On pourra raisonner par analyse
dimensionnelle.

En déduire l’expression du temps caractéristique de diffusion τ sur une longueur L. Faire l’application numérique
pour une diffusion dans le fer sur une longueur L = 50 cm.

Joseph Fourier a étudié la diffusion thermique le long d’un anneau de fer torique, de rayon moyen R = 16 cm et de
section carrée de côté a ≪ R. L’anneau est chauffé en un point pris comme origine des angles θ = 0 dans une base
cylindrique puis on suit l’évolution de la température à différents instants et pour différentes valeurs de l’angle θ.
On notera T (θ, t ) la température de l’anneau, supposée uniforme sur une section droite. On choisira θ ∈]−π;π[ et
on admettra que, par symétrie, T (−θ, t ) = T (θ, t ).
Le flux thermique conducto-convectif δΦ sortant à travers une surface dS de l’anneau de fer vers l’air environnant
(de température Te constante) est modélisé par la loi de Newton

δΦ= h
(
T (θ, t )−Te

)
dS ,

dans laquelle le coefficient d’échange thermique h est supposé constant.
On rappelle l’expression du gradient en coordonnées cylindriques :

#      »

gradT = ∂T

∂r
êr + 1

r

∂T

∂θ
êθ+

∂T

∂z
êz .

Q2. Rappeler la loi de Fourier pour la diffusion thermique. En déduire l’expression du vecteur densité de courant
thermique #»ȷ th puis dessiner l’allure des lignes de champ 2 est le long de l’anneau, en précisant leur orientation.

2. On rappelle qu’une ligne de champ de #»ȷ th est une courbe telle que #»ȷ th lui est tangent en chacun de ses points.
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FIGURE II-1 – Géométrie du problème étudié par Fourier : le tore à section carrée.

Pour établir l’équation décrivant l’évolution de la fonction T (θ, t ) dans l’année, on considère le volume élémen-
taire dV compris entre deux sections de surface a2 de l’anneau, repérées par les angles θ et θ+dθ.

Q3. Déterminer les expression approchées de dV ainsi défini et de la surface élémentaire dSlat de son contact
avec l’air. On rappelle que a ≪ R. En déduire que T (θ, t ) vérifie l’équation

λ

R2

∂2T

∂θ2 − 4h

a
(T −Te) =µc

∂T

∂t
.

Q4. Donner, en régime stationnaire, et en fonction de Te, R, θ et δ=
√

aλ

4h
, la forme de la solution T (θ). On intro-

duira deux constantes A et B sans chercher à les déterminer pour l’instant. Préciser, en le justifiant, la dimension
de la grandeur δ.

Q5. On donne sur la figure II-2 l’allure de la représentation graphique associée aux solutions T (θ) et jth(θ) (pour
r fixé). On note T1 = T (θ = 0) la valeur, imposée pat le chauffage, en θ = 0.

Commenter ces deux graphes puis les exploiter judicieusement pour déterminer, sur l’intervalle [0,+π], les constantes
A et B introduites précédemment, en fonction de T1, Te, R et δ.

En déduire la solution T (θ) sur l’intervalle [0,+π].

FIGURE II-2 – Graphe des solutions : différence de température à gauche, flux thermique surfacique à droite.

Q6. Sur les relevés expérimentaux de Joseph Fourier du 31 juillet 1806, on lit que deux heures après le début du
chauffage, les valeurs de températures des différentes sections de l’anneau sont stationnaires. Montrer que cet
ordre de grandeur était prévisible à condition de supposer le phénomène de diffusion prépondérant en régime
transitoire.

C’est en étudiant la diffusion thermique dans le dispositif expérimental décrit précédemment que Joseph Fourier
découvrit les séries trigonométriques, dites « séries de Fourier ». L’anneau est chauffé comme précédemment en
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θ = 0 puis enfoui presque complètement dans du sable, excellent isolant thermique. On suppose qu’il n’y a au-
cune fuite thermique par la surface latérale de l’anneau une fois que celui-ci est enfoui dans le sable et que la
température reste de la forme T (θ, t ). On s’intéresse toujours au domaine θ ∈]−π;π[, avec T (−θ, t ) = T (θ, t ) par
symétrie.

Q7. Donner l’équation vérifiée par T (θ, t ). On cherche les solutions à variable séparée de la forme Tn(θ, t ) =
fn(θ)gn(t ). L’interprétation de l’indice n apparaîtra dans la donnée de la condition initiale nécessaire à la réso-
lution complète de l’équation.

Déterminer les expressions générales de fn(θ) et gn(t ) puis montrer que Tn(θ, t ) s’écrit sous la forme

Tn(θ, t ) = Bn cos

(
Rθ

dn

)
e−t/τn .

On donnera la relation entre τn et dn et on précisera leurs dimensions respectives.

Q8. À l’instant t = 0, la température initiale d’une section repérée par l’angle θ est une fonction T0(θ), symétrique,
de période 2π et dont le développement en série de Fourier est de la forme

T0(θ) = Tm + ∑
n=1

∞Tn(θ, t ) .

Expliciter Bn , dn et τn en fonction de bn , n, R, µ, c et λ.

Q9. Joseph Fourier remarque, en mesurant la température en fonction du temps en différents points de l’anneau,
que T (θ, t )−Tm devient rapidement proportionnel à cos(θ).

Commenter cette constatation.

 Partie III — Étude d’un équilibre de sédimentation (Mines-Ponts MP 2021)

 Jean Perrin et l’hypothèse atomique

Les études théoriques sur le mouvement brownien, proposées par Albert Einstein en 1905 et complétées par celles
de Paul Langevin en 1908, ont été spectaculairement confirmées par une série d’une dizaine d’expériences réali-
sées en 1907 et 1909 par Jean Perrin dont nous fêtons le 150e anniversaire de naissance. Ces études sont les piliers
de l’acceptation de l’existence des atomes par la communauté scientifique. Elles ont clos la « controverse atomiste »
ouverte par les Grecs six siècles avant notre ère !
Après avoir pris connaissance des résultats de Jean Perrin, en 1908, l’un des derniers farouches anti-atomistes,
Wilhelm Ostwald, déclare « Je suis désormais convaincu que nous sommes entrés en possession de preuves expéri-
mentales du caractère discret ou granulaire de la nature, que l’hypothèse atomique avait cherché en vain depuis des
millénaires ».
Les expériences de Perrin et le modèle de Langevin reposent entièrement sur les modèles microscopiques de Lud-
wig Boltzmann, fondateur dans la seconde moitié du XIXe siècle de la physique statistique. Les travaux expéri-
mentaux de Perrin lui permirent notamment de mesurer la constante de Boltzmann kB. En 1906, donc peu de
temps avant la publication de ces travaux, Boltzmann se suicida, las des critiques et des attaques des disciples
d’Ostwald. . .
En 1926, Perrin obtint le prix Nobel pour ses expériences.

Sur la photo ci-contre, prise lors du congrès Solvay de
1911, on retrouve les trois acteurs de cette histoire, en-
tourés de prestigieux collègues. Pour réaliser ses ex-
périences, Jean Perrin utilise des grains de gomme-
gutte. Écoutons-le décrire son procédé d’obtention de
ses grains : « La gomme-gutte, qu’on utilise pour. l’aqua-
relle, provient de la dessiccation du latex. Un morceau
de cette substance, frotté avec la main sous un mince fi-
let d’eau distillée se dissout peu à peu en donnant une
belle émulsion opaque d’un jaune vif, où le microscope

révèle un fourmillement de grains jaunes de diverses tailles parfaitement sphériques. On peut calibrer ces grains
jaunes et les séparer du liquide où ils baignent par une centrifugation énergique ».
Dans ce problème, ces grains seront supposés identiques, de forme sphérique, de rayon Rb = 0,2 µm, de volume
Vb = 3,4×10−20 m3 et de masse volumique µb = 1,2×103 kg ·m−3. On note mb = 4,1×10−17 kg la masse d’un grain.
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Dans ses expériences, Jean Perrin fabrique une émulsion en introduisant ces grains dans de l’eau légèrement su-
crée. Ce liquide possède une masse volumique assimilable à celle de l’eau pure µe = 1,0×103 kg ·m−3. Le peu de
sucre dissous dans l’eau lui confère tout de même un caractère visqueux. De ce fait, l’eau exerce sur les grains en
mouvement lent deux forces :

— la résultante des forces de pression, peu modifiée par rapport à une situation d’équilibre, est donnée par la loi
d’Archimède : cette force

#»
Π =−µeVb

#»g est exactement opposée au poids du liquide déplacé par chaque grain;

— la résultante des forces de frottement visqueux se traduit par une force
#»

f = −α#»v où α > 0 et #»v désigne
la vitesse des grains. La formule de Stokes précise que, pour un grain sphérique, α = 6πηRb dans laquelle
η= 1,2×10−3 Pa · s représente le coefficient de viscosité dynamique de l’eau légèrement sucrée. Avec ces va-
leurs numériques, on trouve ici α= 4,5×10−9 kg · s−1.

En dehors de ces données, aucune connaissance relative à la viscosité n’est nécessaire à cette étude.
Dans ce qui suit on utilisera la fonction A(z) = exp(−z/H). Les vecteurs sont surmontés d’une flèche

#»

f , sauf s’ils
sont unitaires et sont alors repérés par un chapeau (∥êx∥ = 1). La valeur moyenne temporelle d’une fonction φ(t )
sera notée 〈φ〉. Toute réponse, même qualitative, doit être justifiée. Les affirmations, même justes, mais non jus-
tifiées, ne seront pas prises en compte.

 Étude d’un équilibre de sédimentation

Dans une première expérience, Jean Perrin lâche, sans vitesse initiale, à la surface d’un récipient, un grand nombre
(N = 13000) de grains dans de l’eau légèrement sucrée. Le récipient a une section S et une hauteur h1 suffisante
pour être considérée comme infinie.

Q1. Faire le bilan des forces exercées sur un des grains lors de sa chute dans l’eau sucrée.

Q2. On note #»v (t ) = −v(t )êz la vitesse de chute du grain, êz étant l’axe vertical ascendant, et v(t ) > 0. Établir
l’équation différentielle vérifiée par v(t ) puis donner sa solution.

Montrer qu’une fois le régime permanent établi, les grains possèdent une vitesse limite vℓ = m∗g /α.

Exprimer le paramètre m∗ en fonction de Vb et des masses volumiques µb et µe. Justifier qu’on nomme cette
quantité « masse apparente ».

Exprimer la durée caractéristique τ du régime transitoire en fonction de mb et α. Évaluer un ordre de grandeur de
vℓ et de τ.

Même au bout d’une longue durée, les grains ne se tassent pas au fond du récipient. On observe un phénomène
de sédimentation : les grains se répartissent sur l’ensemble de la hauteur et la densité de grains, notée c(z) et
exprimée en m−3, n’est pas uniforme.
Afin d’interpréter ce phénomène, on introduit deux vecteurs, appelés « densité de flux de particules » et qui s’ex-
priment dans les mêmes unités mais par des lois distinctes :

— un premier vecteur densité de flux, #»ȷc, est associé au mouvement de chute des grains. Il est à l’origine d’un
phénomène de convection et défini par la relation #»ȷc =−c(z)vℓêz ;

— un deuxième vecteur densité de flux est associé au gradient de densité, ici sur l’axe z. L’inhomogénéité crée

un courant de particules dont l’expression est donnée part la loi de Fick qui s’écrit ici #»ȷn(z) = −dc

dz
Dêz . Le

coefficient D se nomme coefficient de diffusion. Il dépend de la nature du milieu et des particules étudiées.
Aucune connaissance de la loi de Fick n’est nécessaire à l’étude du problème.

Q3. Donner les unités (ou dimensions) communes aux vecteurs #»ȷc et #»ȷn , ainsi que l’unité de D . À l’état d’équilibre
macroscopique, caractérisé par une température uniforme T0 et une répartition de concentration c(z) indépen-
dante du temps, quelle est la relation entre #»ȷc et #»ȷn ? En déduire une équation différentielle du premier ordre
vérifiée par c(z).

En posant c(z = 0) = c0, exprimer c(z) en fonction de A(z) ; on déterminera la distance caractéristique Hb appa-
raissant dans A(z) en fonction de Rb, D , η, m∗ et g .

Q4. Compte tenu des forces conservatives s’exerçant sur un grain, quelle est l’expression de l’énergie potentielle
E∗

p (z) correspondant au poids de la masse apparente m∗ du grain à l’altitude z ? En déduire l’expression de D en

fonction de kB, T0, η et Rb permettant d’écrire A(z) = exp

[
−

E∗
p (z)

kBT0

]
.

Q5. Sachant que le nombre N de grains est conservé sur la hauteur h1 du récipient, suffisamment grande pour être
supposée infinie, exprimer la concentration c0 en fonction de N , de la section S et de la distance caractéristique Hb.
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FIGURE III-1 – Sédimentation de grain

Une fois la température de l’émulsion stabilisée à une valeur uniforme
T0 = 20 °C, Jean Perrin a compté le nombre moyen n(z) de grains dans
des petites tranches régulièrement réparties en hauteur et d’épaisseur
e constante. Il publie les résultats que nous avons synthétisés sur la fi-
gure III-1 (Annales de chimie et de physique, Mouvement brownien et
réalité moléculaire, 8e série, sept. 1909).

Q6. En exprimant c(z) en fonction de n(z), déduire de ces données une
estimation de la hauteur caractéristique Hb associée ici au phénomène.
La hauteur du récipient utilisé par Jean Perrin, h1 = 100 µm, était-elle
suffisante au regard des hypothèses faites ici?

Q7. Estimer la valeur de kB qu’a pu déduire Jean Perrin de cette expé-
rience. Identifier des causes d’erreurs expérimentales.

 Partie IV—Traitement de l’uranium (Mines-Ponts PSI 2024)

L’uranium est un élément chimique découvert en 1789 à partir de roches provenant d’un gisement en République
Tchèque. Nommé en l’honneur de la planète Uranus, il fut isolé pour la première fois en 1852 par le chimiste
Eugène Melchior Péligot. L’uranium naturel est composé de trois principaux isotopes : 238U, 235U et 234U. Avec
l’essor du nucléaire dans la production d’électricité, l’industrie de l’extraction de l’uranium et du traitement du
minerai d’uranium a connu un développement exceptionnel. Cette activité, qui était pratiquement inexistante
jusqu’au début des années 1940 (l’uranium n’était alors qu’un sous-produit des industries du vanadium et du
radium), est devenue une grande industrie hydrométallurgique : aucune branche du traitement des minerais n’a
connu un développement aussi rapide jusqu’à nos jours.
L’industrie de l’uranium comporte différentes étapes, permettant d’obtenir du combustible nucléaire, utilisé dans
les centrales, à partir du minerai d’uranium.

FIGURE IV-1 – Production du combustible nucléaire d’uranium

 Réduction du trioxyde d’uranium en dioxyde d’uranium

Le dioxyde d’uranium est le plus souvent obtenu par réduction du trioxyde d’uranium via l’action d’un gaz réduc-
teur comme le dihydrogène ou l’ammoniac, ou via l’action d’un solide réducteur comme le carbone.
Réduction du trioxyde d’uranium par l’ammoniac
Le trioxyde d’uranium est réduit en dioxyde d’uranium par l’ammoniac selon la réaction

3UO3(s)+2NH3(g) = 3UO2(s)+2N2(g)+3H2O(g).

Q1. Calculer l’enthalpie standard de réaction ∆rH o
1 à 298 K pour cette réaction de réduction. À l’aide d’un raison-

nement permettant d’établir le sens de variation de la constante d’équilibre thermodynamique K o
1 de la réaction

avec la température, indiquer si la formation de UO2 est favorisée à haute ou à basse température.

Q2. Calculer l’entropie standard de réaction ∆rSo
1 à 298 K. Commenter son signe.

Q3. En supposant que ∆rH o
1 et ∆rSo

1 sont indépendants de la température, déterminer l’enthalpie libre standard
de réaction ∆rGo

1(T ).

Q4. Calculer la constante d’équilibre K o
1 à 900 K. Conclure.

Réduction du trioxyde d’uranium par le carbone solide
Dans le cas de la réduction du trioxyde d’uranium par le carbone solide, la réaction se produit grâce à la mise
en contact des poudres des solides des deux phases. Le déroulement de la réaction va alors dépendre fortement
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de la qualité du mélange. Afin de mieux comprendre et contrôler les phénomènes mis en jeu au cours de la car-
boréduction, des études ont été réalisées sur l’effet d’un broyage du mélange des deux poudres par une analyse
thermogravimétrique (figure IV-2), technique qui consiste en la mesure de la variation de masse d’un échantillon
en fonction de la température (pour une température variant de la température ambiante à 900 °C dans notre cas).

FIGURE IV-2 – Courbes de perte de masse (pointillés) et vitesse de perte de masse (trait plein) pour le mélange non
broyé (gauche) et broyé (droite).

D’après les calculs de perte de masse théorique et compte tenu de la stœchiométrie UO3/C du mélange, les pics
de perte de masse situés à 440 °C et 590 °C sont attribués aux deux transformations suivantes (les pertes de masses
étant données pour le mélange broyé) :

3UO3(s)+ 1

2
C(s) = U3O8(s)+ 1

2
CO2(g) ∆m = 2,3 %

et
U3O8(s)+C(s) = 3UO2(s)+CO2(g) ∆m = 4,7 %

Q5. À l’aide de la figure IV-2, expliquer si le broyage du mélange solide favorise la formation du dioxyde d’uranium
et proposer une interprétation possible.

Obtention du tétrafluorure d’uranium
Le dioxyde d’uranium est transformé en tétrafluorure d’uranium au cours d’une hydrofluoration par voie sèche
selon la réaction

UO2(s)+4HF(g) = UF4(s)+2H2O(g).

Cet équilibre a été étudié sous une pression de 1 bar en faisant passer du fluorure d’hydrogène gazeux sur du

dioxyde d’uranium solide. Le rapport des pressions partielles à l’équilibre x = PHF

PH2O
est égal à 10−2 dans le gaz

sortant à 200 °C.

Q6. En déduire la constante d’équilibre thermodynamique K o
2 de la réaction à cette température.

 Données thermodynamique(considérées indépendantes de la température)

espèce N2(g) NH3(g) HF(g) H2O(g) UO2(s) UO3(s) UF4(s)

∆rH o (kJ ·mol−1) 0 −47 −270 −240 −1100 −1200 −1900

So
m (J ·K−1 ·mol−1) 190 190 170 190 80 100 150
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