
CPGE PSI 2025-2026 L y c é e J e a n P e r r i n E. SAUDRAIS

Physique des ondes I — Phénomènes de propagation non dispersifs

 Ondes

Une onde est un champ non stationnaire et non uniforme s(M , t ), scalaire ou vectoriel, défini dans un
domaine D de l’espace, dont les dépendances spatiales et temporelles sont couplées par une équation aux
dérivées partielles, appelée equation d’onde.

ä Le champ doit varier dans le temps et dans l’espace pour caractériser une onde. Un champ statique ou un
champ uniforme n’est pas une onde. Pour restreindre cette définition qui reste trop générale, une onde doit
être caractérisée par deux champs décrivant deux grandeurs couplées, entre lesquelles il y a échange d’éner-
gie.

ä Les variations temporelles et spatiales ne doivent pas être décorrélées pour caractériser une onde; leur inter-
dépendance est décrite par l’équation d’onde.

Onde unidimensionnelle : on peut choisir un axe Ox tel que s(M , t ) = s(x, t ).

Onde longitudinale : la perturbation se produit dans la même direction que la direction de propagation
de l’onde.

Onde transversale : la perturbation se produit perpendiculairement à la direction de propagation de
l’onde.

 Équation de d’Alembert

L’équation de d’Alembert unidimensionnelle est l’équation aux dérivées partielles de la forme

∂2s

∂t 2 − c2 ∂
2s

∂x2 = 0.

La constante c, homogène à une vitesse, est appelée célérité de l’onde.

ä La généralisation de l’équation de d’Alembert à trois dimensions s’écrit
∂2s

∂t 2 − c2∆s = 0 .

ä Dans le cas d’un phénomène de propagation non dispersif, la célérité c ne dépend que des caractéristiques
du milieu.

 Ondes transversales sur une corde vibrante

On considère une corde infiniment souple, de masse linéique µ, soumise à une tension T . On se place dans
l’approximation des petits mouvements transverses
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La tension de la corde au point M d’abscisse x est le scalaire positif T (x) tel que la partie de la corde située « à
droite » de M exerce sur la partie de la corde située « à gauche » la force

#»
T d = T (x, t ) #»u M , où #»u M est le vecteur

unitaire tangent à la corde en M dirigé vers « la droite ».

ä La partie gauche de la corde exerce au point M la force
#»
F g =−#»

F d sur la partie droite.

L’élongation latérale y(x, t ) d’une corde inextensible, de masse linéique µ uniforme, soumise à une tension T
vérifie, dans le cas des mouvements de faible amplitude, l’équation de d’Alembert

∂2 y

∂t 2 − c2 ∂
2 y

∂x2 = 0 avec c =
√

T

µ
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ä L’élongation y(x, t ) étant perpendiculaire à la direction Ox de propagation, on parle d’onde transversale.

De façon générale, l’expression de la célérité fait apparaître le rapport de deux termes caractérisant respective-
ment la raideur et l’inertie du milieu de propagation :

c2 = raideur

inertie
.

 Familles de solutions de l’équation de d’Alembert

 Ondes progressives

Une onde progressive est une onde qui se propage sans se déformer ni s’atténuer. L’expression générale
d’une onde progressive selon la direction #»e x (dans le sens des x croissants) est

s(x, t ) = f (x − ct ) .

L’expression générale d’une onde progressive selon la direction −#»e x (dans le sens des x décroissants) est

s(x, t ) = g (x + ct ) .

ä Une onde progressive dans le sens des x croissants ou dans le sens des x décroissants peut aussi s’écrire

respectivement s(x, t ) = F
(
t − x

c

)
ou s(x, t ) =G

(
t + x

c

)
.

ä L’écriture générale d’une onde progressive se propageant dans la direction repérée par le vecteur unitaire #»u
est

s(M , t ) = f ( #»u · #     »
OM − ct )

ä Dans le cas d’une onde progressive dans le sens des x croissants, on peut écrire s(x, t0) = s(x + c(t1 − t0), t1).
Entre les instants t0 et t1, l’onde se sera translatée (propagée) de ∆x = c(t1 − t0).

La solution générale de l’équation de d’Alembert à une dimension peut s’écrire comme la somme de deux
ondes progressives de sens de propagation opposés :

s(x, t ) = f (x − ct )+ g (x + ct ) .

ä La somme de deux ondes progressives n’est a priori pas une onde progressive.

ä Les fonction f et g sont déterminées par les conditions initiales (en t = 0) et aux limites.

 Ondes progressives harmoniques

Une onde progressive est dite harmonique si sa dépendance en temps est sinusoïdale :

s(x, t ) = s0 cos
[
ω

(
t − x

c

)
+ϕ

]
.

ä La dépendance vis-à-vis des coordonnées d’espace est alors aussi sinusoïdale.

Une onde progressive harmonique se propageant selon le vecteur unitaire #»u s’écrit :

s(M , t ) = s0 cos
(
ωt − #»

k · #     »
OM +ϕ

)
= s0 cos

[
2π

(
t

T
− x

λ

)
+ϕ

]
,

où
#»

k = k #»u est le vecteur d’onde de l’onde, et k son module d’onde.
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ä Une onde progressive harmonique est caractérisée par une double périodicité :

G une période temporelle T ;

G une période spatiale λ appelée longueur d’onde.

période fréquence pulsation relation période-pulsation
spatiale λ σ k k = 2π/λ

temporelle T f ω ω= 2π/T

ä La pulsation spatiale k est appelée module d’onde.

ä La fréquence spatiale σ= 1

λ
est appelée nombre d’onde.

ä Les périodes spatiale et temporelle sont reliées par λ= cT .

Les pulsations temporelle ω et spatiale k d’une onde progressive harmonique sont reliées par la relation de
dispersion de l’onde :

k = ω

c
.

ä La relation de dispersion ω = kc est caractéristique de l’équation de d’Alembert pour une onde plane pro-
gressive harmonique.

ä La linéarité de l’équation de d’Alembert permet lutilisation de la notation complexe :

s(x, t ) = s0 ei(ωt−kx+ϕ)

La grandeur réelle est donnée par s(x, t ) = Re{s(x, t )}.

Toute fonction pouvant se décomposer comme somme de fonctions harmoniques (analyse de Fourier), la solu-
tion générale de l’équation de d’Alembert peut s’écrire comme somme d’ondes progressives harmoniques.

Les ondes progressives harmoniques forment une famille génératrice des solutions de l’équation de d’Alem-
bert.

 Ondes stationnaires

Une onde stationnaire est une onde de la forme

s(x, t ) = F (x)G(t ) .

ä Il n’y a plus de propagation, l’onde « vibre sur place ».

Une onde stationnaire solution de l’équation de d’Alembert s’écrit sous la forme d’une onde stationnaire
harmonique

s(x, t ) = s0 cos(kx +ψ0)cos(ωt +ϕ0) avec ω= kc .

ä Les points tels que s(x, t ) = 0 ∀t sont appelés nœuds de vibration. Ils sont situés dans les plans d’abscisses
xn tels que cos(kxn +ψ0) = 0, appelés plans nodaux.

ä Les points tels que l’amplitude s0 cos(kx+ψ0) est maximale sont appelés ventres de vibration. Ils sont situés
dans les plans d’abscisses xn tels que cos(kxn +ψ0) =±1, appelés plans ventraux.

ä Deux nœuds ou deux ventres successifs sont distants de λ/2. Un ventre et un nœud voisins sont distants
de λ/4.

x

s(x, t ) λ

nœud
ventre
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Les ondes stationnaires harmoniques forment une famille génératrice des solutions de l’équation de d’Alem-
bert.

ä Une onde stationnaire harmonique peut s’écrire comme superposition de deux ondes progressives harmo-
niques, de même amplitude et de sens de propagation opposés :

s(x, t ) = s0 cos(ωt +ϕ0)cos(kx +ψ0) = s0

2
cos(ωt −kx +ϕ0 −ψ0)+ s0

2
cos(ωt +kx +ϕ0 +ψ0) .

ä Une onde progressive harmonique peut s’écrire comme superposition de deux ondes stationnaires harmo-
niques en quadrature :

s(x, t ) = s0 cos(ωt −kx) = s0 cosωt cos(kx)+ s0 sinωt sin(kx) .

Toute solution de l’équation de d’Alembert peut être cherchée comme superposition d’ondes progressives
harmoniques ou d’ondes stationnaires harmoniques.

ä Une analyse qualitative du système étudié permettra de choisir l’écriture la plus adaptée :

G une source donne naissance à des ondes progressives qui s’éloignent d’elle. On recherchera donc la
solution sous forme d’onde progressive s’éloignant de la source;

G la réflexion d’une onde progressive, appelée onde incidente, sur un obstacle donne naissance à une
onde progressive de sens opposé, appelée onde réfléchie. On recherchera donc la solution sous la forme
de deux ondes progressives de sens opposés ;

G si on impose un nœud en un point, on cherchera naturellement la solution sous la forme d’une onde
stationnaire. Cette situation se rencontre dans le cas de la réflexion totale (sans atténuation) d’une onde
progressive harmonique : si l’onde réfléchie a même amplitude en valeur absolue que l’onde incidente
(réflexion parfaite), la superposition de l’onde réfléchie et de l’onde incidente conduit à une onde sta-
tionnaire 1.

 Régime libre d’une corde vibrante fixée à ses deux extrémités

On considère une corde de longueur L, de masse linéique µ, soumise à une tension T , fixée à ses deux extrémités
x = 0 et x = L. On note y(x, t ) l’élongation du point d’abscisse x par rapport à sa position au repos.

On appelle modes propres les ondes stationnaires compatibles avec les conditions aux limites y(0, t ) = 0 et
y(L, t ) = 0 :

yn(x, t ) = y0n sin
(nπx

L

)
cos

(
ncπt

L
+ϕn

)
avec n ∈ N∗

Les pulsations correspondantes ωn = ncπ

L
sont appelées pulsations propres.

ä Le mode correspondant à n = 1 est appelé mode fondamental. Sa fréquence est f1 = c

2L
= 1

2L

√
T

µ
.

ä Le mode n > 1 est appelé harmonique de rang n.

ä Les conditions aux limites imposent L = n
λn

2
: le mode n est caractérisé par n fuseaux de vibration, chacun

étant de longueur
λn

2
.

ä Dans le cas d’un phénomène non dispersif, où ωn = knc , la fréquence de l’harmonique de rang n vérifie

fn = n f1 .

ä Dans un mode propre, tous les points de la corde vibrent en phase ou en opposition de phase 2.

1. Ce n’est vrai que pour une onde incidente harmonique; la superposition de deux ondes progressives de forme quelconque se
propageant dans des sens opposés n’est a priori pas stationnaire.

2. Tous les points d’un même fuseau vibrent en phase.
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x mode n = 1

y1(x, t )

x mode n = 2

y2(x, t )

x mode n = 3

y3(x, t )

Le mouvement général d’une corde fixée à ses deux extrémités s’écrit comme superposition de ses modes
propres :

y(x, t ) =
∞∑

n=1
yn(x, t ) =

∞∑
n=1

y0n sin
(nπx

L

)
cos

(
ncπt

L
+ϕn

)
.

ä Les coefficients y0n et ϕn sont déterminés par les conditions initiales, en général y(x,0) et
∂y

∂t
(x,0).

ä La solution générale peut s’écrire sous la forme

y(x, t ) =
∞∑

n=1

[
an cos

(
ncπt

L

)
+bn sin

(
ncπt

L

)]
sin

(nπx

L

)
.

Les coefficients an et bn se déterminent à partir du développement en série de Fourier des fonctions F (x) = y(x,0)

et G(x) = ∂y

∂x
(x,0).

 Régime forcé : résonances sur la corde de Melde

L’expérience de Melde consiste à exciter, à l’aide d’un vibreur, l’extrémité d’une corde de longueur L. L’autre
extrémité de la corde repose sur une poulie, la masse m suspendue permettant de régler la tension T = mg de la
corde.

vibreur

x

y(x, t )

a cos(ωt )

m

On observe un phénomène de résonance, avec formation d’une onde stationnaire, lorsque la fréquence
d’excitation de la corde correspondant à la fréquence d’un des modes propres de la corde vibrante.

fondamental harmonique n = 2 harmonique n = 3

ä L’amplitude à un ventre de vibration est bien plus grande qu’au niveau de l’excitateur qui semble en première
approximation être un nœud de vibration.

ä Le calcul conduit à une élongation de la forme

y(x, t ) = y0

sinkL
cos(ωt )sink(L−x)

qui diverge à la résonance (quand knL = nπ). Dans la pratique, l’amplitude à la résonance est limitée par les
les non-linéarités qui apparaissent aux fortes amplitudes : l’équation de d’Alembert, établie dans l’hypothèse
d’une faible amplitude, n’est plus valable, et l’onde est régie par une autre équation d’onde, non linéaire.
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 Ondes de tension et de courant dans un câble coaxial sans pertes

Un câble coaxial est formé de deux très bons conducteurs, de même lon-
gueur L, l’un entourant l’autre :

— le conducteur central (D), appelé âme, est en général massif (en cuivre) ;

— le conducteur extérieur (B) est un blindage constitué d’une tresse mé-
tallique, parfois enroulée sur une feuille d’aluminium.

Les deux conducteurs sont séparés par un isolant (C), le plus souvent en
téflon ou en polyéthylène. L’ensemble est entouré d’une gaine isolante (A),
en PVC, polyéthylène, téflon ou caoutchouc synthétique.
On modélise le câble comme un milieu continu, caractérisé par une inductance linéique Λ (en H ·m−1) et une
capacité linéique Γ (en C ·m−1) : on parle de modèle à constantes réparties.
Le schéma électrique modélisant une longueur élémentaire dx du câble est :

ÿ�� �
i (x, t )�� ��
Λdx

�� ��� �
i (x +dx, t )�� �ÿ
��

�

�Γdx

��

�

������������ �ÿ ������ �ÿ

�
�
�
v(x, t ) �

�
�
v(x +dx, t )

Les lois de Kirchoff permettent d’établir le système couplé
∂u(x, t )

∂x
=−Λ∂i (x, t )

∂t
∂i (x, t )

∂x
=−Γ∂u(x, t )

∂t
.

La tension et l’intensité vérifient alors l’équation de d’Alembert

∂2u(x, t )

∂t 2 − c2 ∂
2u(x, t )

∂x2 = 0 avec c = 1p
ΓΛ

.

Dans le cas d’onde onde progressive dans le sens des x croissants u(x, t ) = f (x − ct ), on a en tout point et à tout
instant

u(x, t )

i (x, t )
= Zc avec Zc =

√
Λ

Γ
.

La grandeur Zc, caractéristique du câble, est appelée impédance caractéristique.

ä Dans le cas d’onde onde progressive dans le sens des x décroissants u(x, t ) = g (x + ct ), on a
u(x, t )

i (x, t )
=−Zc.

Un générateur envoyant un signal en x = 0, on branche une résistance R à l’extrémité terminale x = L. Une
onde progressive ui(x, t ) ne peut satisfaire les conditions aux limites imposées en x = L : il apparaît une onde
réfléchie ur(x, t ).

On définit le coefficient de réflexion en tension r = ur(L, t )

ui(L, t )
. On établit r = R −Zc

R +Zc
.

ä Dans le cas d’une extrémité terminale ouverte, R →∞ et r = 1.

ä Dans le cas d’une extrémité terminale en court-circuit, R = 0 et r =−1.

ä Il n’existe pas d’onde réfléchie si la ligne est fermée sur son impédance caractéristique R = Zc : on a r = 0.

 Mais qui était-il?

Jean Le Rond d’Alembert (1717-1783).
Il est l’un des mathématiciens et physiciens les plus importants du XVIIIe

siècle. Ses travaux en physique ont porté sur la dynamique, la mécanique des
fluides (qui ont permis à Euler et Lagrange de finaliser la formulation de l’hy-
drodynamique) et l’astronomie. L’étude du problème de la corde vibrante l’a
amené à développer le calcul aux dérivées partielles.
Ses travaux en mathématiques ont aussi porté sur la notion de limite et sur
la convergence des séries (critère de d’Alembert). Philosophe des Lumières,
il a dirigé avec Diderot l’Encyclopédie, véritable synthèse des connaissances
de son temps.
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