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TD ondes no 1 Équation de d’Alembert

1—  Onde progressive? [*]

Parmi les fonctions suivantes, indiquer celles qui
représentent une onde progressive ; préciser alors
la célérité de l’onde et représenter son allure spa-
tiale à un instant t fixé.

1. y(x, t ) = A sin(ax2 −bt ).

2. y(x, t ) = A cosh(ax +bt ).

3. y(x, t ) = A e−b(ax−t )2
.

4. y(x, t ) = A e−αt sin(αx −bt ).

5. y(x, t ) = A cos(ωt +ϕ)sin(kx +ψ).

6. y(x, t ) = A cos(x +bt )sin(x −at ).

2—  Ligne à constantes réparties [*]

Un câble coaxial, constitué de deux conducteurs
concentriques séparés par un isolant, est caracté-
risé par une inductance par unité de longueur Λ,
appelée inductance linéique, exprimée en H ·m−1,
et par une capacité par unité de longueur Γ, ap-
pelée capacité linéique, exprimée en F · m−1. On
adopte une modélisation à l’aide d’une ligne à
constantes réparties : les caractéristiques élec-
triques d’un élément de longueur dx de la ligne
sont représentées par des dipôles électriques. Le
schéma électrique équivalent est le suivant :
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1. Établir les équations couplées reliant u(x, t ) et
i (x, t ) et les linéariser.

2. Montrer que la tension et l’intensité vérifient
l’équation de d’Alembert, avec une célérité que
l’on exprimera en fonction des caractéristiques de
la ligne.

3—  Ondes dans un bassin profond [**]

On étudie la propagation selon Ox d’ondes de
faible amplitude dans un bassin de largeur L selon
#»e y , infini selon #»e x , dont le fond est contenu dans

le plan z = 0; au repos, la surface libre de l’eau est
horizontale, à la cote z0 = h.
En présence d’une onde, la surface libre en un
point d’abscisse x est de la forme z = h+ξ(x, t ), où
|ξ|≪ h, et on note P0 la pression atmosphérique
uniforme. Le bassin est supposé suffisamment
profond pour que l’écoulement puisse être consi-
déré comme unidimensionnel avec un champ des
vitesses #»v = v(x, t )#»e x . Les grandeurs v(x, t ) et
ξ(x, t ) sont supposées a priori infiniment petites
de même ordre, et on limite tous les calculs à
l’ordre 1.
En outre, l’écoulement est supposé parfait,
incompressible et homogène de masse volu-
mique µ, dans le champ de pesanteur uniforme
#»g =−g #»e z .

1. En faisant un bilan de masse pour le système
ouvert et fixe constitué du volume compris entre
les abscisses x et x +dx, établir la relation

∂ξ

∂t
=−h

∂v

∂x
.

2. Établir l’expression de la pression P (x, t ) en
fonction de ξ(x, t ), z, h, µ, g et P0. En déduire la
relation

∂v

∂t
=−g

∂ξ

∂x
.

3. En déduire l’équation de propagation dont est
solution v(x, t ) et la célérité c des ondes corres-
pondantes.

4—  Onde sur une barre [**]

Une barre de masse volumique ρ, de section S et
de module d’Young E est le siège d’une onde de
déformation longitudinale entraînant le déplace-
ment de la section située à l’abscisse x d’une lon-
gueur u(x, t ). La force de traction entraînant un al-
longement dl de la barre est donnée par

dF = ES
dl

l
.

En étudiant la section de barre située entre x et
x+dx, trouver l’équation différentielle vérifiée par
u(x, t ) et donner la nature des solutions, ainsi que
la vitesse de propagation de l’onde.
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5—  Chaîne d’atomes [***]

On modélise une tige solide par une chaîne infi-
nie d’oscillateurs, selon un axe Ox, constituée de
masses m identiques, reliées deux à deux par un
ressort de raideur k et de longueur au repos a. Les
masses, qui modélisent les atomes d’un cristal, se
déplacent sans frottement le long de l’axe Ox. Au
repos, elles sont distantes de a.
On a donc une description discrète du milieu :

— la masse numéro n a pour abscisse x0
n = na

quand elle est au repos;

— elle a pour abscisse xn(t ) = x0
n + ξn(t ) = na +

ξn(t ) en présence de l’onde.

La grandeur algébrique ξn(t ) repère donc l’écart
de la masse numéro n par rapport à sa posi-
tion d’équilibre. Sur la figure suivante, on a par
exemple ξn−1(t ) < 0, ξn(t ) > 0 et ξn+1(t ) > 0.

(n −2) (n −1) (n) (n +1) (n +2)

x0
n x0

n+1x0
n−1 x0

n+2x0
n−2 x

ξn(t ) ξn+1(t )ξn−1(t ) x

Système à l’équilibre

Système hors équilibre

1. En appliquant le principe fondamental de la
dynamique à la masse (n), établir une relation de

récurrence reliant
d2ξn

dt 2
à ξn−1(t ), ξn(t ) et ξn+1(t ).

Nous allons mener l’étude dans le cadre de
l’approximation des milieux continus, valable
quand la distance entre chaque masse est très pe-
tite devant la longueur d’onde de l’onde considé-
rée : a ≪ λ. À l’échelle de la longueur d’onde λ, la
chaîne est vue comme un milieu continu, comme
le suggère la figure suivante.
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Dans le cadre de cette approximation, nous pou-
vons remplacer la description discrète {ξn(t )}n de

l’état de la chaîne d’oscillateurs par une fonction
continu de l’espace et du temps ξ(n, t ), qui inter-
pole la position des masses. Cette fonction ξ(x, t ),
qui décrit de façon continue l’écart des masses à
leur position d’équilibre, doit satisfaire aux pro-
priétés suivantes :

— elle est de classe C 2 ;

— elle coïncide avec l’écart à l’équilibre de la
masse (n) quand x = na, soit ξ(na, t ) = ξn(t ).

2. La distance a étant considérée comme un « in-
finiment petit », en effectuant un développement
de Taylor 1 à l’ordre 2 de ξn+1(t ) et ξn−1(t ), mon-
trer que la relation de récurrence établir précédent
conduit à l’équation de d’Alembert

∂2ξ

∂t 2
− c2 ∂

2ξ

∂x2

où la célérité c sera exprimée en fonction de k, a
et m.

6—  Boules chargées [***]

On considère une chaîne infinie de boules char-
gées qui ne peuvent se déplacer que sur les fils ho-
rizontaux.
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Donner l’équation d’onde :

— si chaque boule n’interagit qu’avec ses deux
plus proches voisines ;

— si chaque boule interagit avec toutes les autres
(une infinité).

1. On remarquera que ξn+1(t ) = ξ(x0
n +a, t ) = ξ(x0

n , t ).
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