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Equation de d’Alembert

[*]
Parmi les fonctions suivantes, indiquer celles qui
représentent une onde progressive ; préciser alors

la célérité de I'onde et représenter son allure spa-
tiale a un instant ¢ fixé.

1 — Onde progressive?

1. y(x, 1) = Asin(ax? - bt).

2. y(x,t) = Acosh(ax + bt).

3. y(x, 1) = Ae blax—0?,

4. y(x, 1) = Ae *'sin(ax — bt).

5. y(x,t) = Acos(wt+ ) sin(kx + ).
6. y(x,t) = Acos(x+ bt)sin(x — at).

[*]
Un cable coaxial, constitué de deux conducteurs
concentriques séparés par un isolant, est caracté-
risé par une inductance par unité de longueur A,
appelée inductance linéique, expriméeen H-m™!,
et par une capacité par unité de longueur T’, ap-
pelée capacité linéique, exprimée en F-m™!. On
adopte une modélisation a I'aide d'une ligne a
constantes réparties : les caractéristiques élec-
triques d'un élément de longueur dx de la ligne
sont représentées par des dipoles électriques. Le
schéma électrique équivalent est le suivant :

2 — Ligne a constantes réparties

i(x, 1) Adx i(x+dx, 1
—————e
u(x, t) dx =— u(x+dx, o
X x+dx

1. Etablir les équations couplées reliant u(x, ) et
i(x,t) etles linéariser.

2. Montrer que la tension et I'intensité vérifient
I’équation de d’Alembert, avec une célérité que
I'on exprimera en fonction des caractéristiques de
la ligne.

[**]
On étudie la propagation selon Ox d’ondes de

faible amplitude dans un bassin de largeur L selon
¢y, infini selon €y, dont le fond est contenu dans

3 — Ondes dans un bassin profond

le plan z = 0; au repos, la surface libre de I'eau est
horizontale, a la cote zy = h.

En présence d'une onde, la surface libre en un
point d’abscisse x est de laforme z = h+¢(x, t), ou
|| < h, et on note Py la pression atmosphérique
uniforme. Le bassin est supposé suffisamment
profond pour que I’écoulement puisse étre consi-
déré comme unidimensionnel avec un champ des
vitesses U = v(x, 1) éx. Les grandeurs v(x,t) et
¢(x, t) sont supposées a priori infiniment petites
de méme ordre, et on limite tous les calculs a
I'ordre 1.

En outre, I'écoulement est supposé parfait,
incompressible et homogene de masse volu-
mique p, dans le champ de pesanteur uniforme
g=-g¢,.

1. En faisant un bilan de masse pour le systeme
ouvert et fixe constitué du volume compris entre
les abscisses x et x + dx, établir la relation

o8 _ _,0v
or  0x’

2. Ftablir I'expression de la pression P(x,f) en
fonction de ¢(x, 1), z, h, u, g et Py. En déduire la
relation

d¢
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3. En déduire I'équation de propagation dont est

solution v(x,t) et la célérité ¢ des ondes corres-
pondantes.
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4 — Onde sur une barre [**]
Une barre de masse volumique p, de section S et
de module d’Young E est le siege d'une onde de
déformation longitudinale entrainant le déplace-
ment de la section située a I'abscisse x d'une lon-
gueur u(x, t). La force de traction entrainant un al-
longement d/ de la barre est donnée par

ar= st
l
En étudiant la section de barre située entre x et
x+dx, trouver I'équation différentielle vérifiée par
u(x, t) et donner la nature des solutions, ainsi que
la vitesse de propagation de I'onde.
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5 — Chaine d’atomes [**¥]
On modélise une tige solide par une chaine infi-
nie d’oscillateurs, selon un axe Ox, constituée de
masses m identiques, reliées deux a deux par un
ressort de raideur k et de longueur au repos a. Les
masses, qui modélisent les atomes d'un cristal, se
déplacent sans frottement le long de I'axe Ox. Au
repos, elles sont distantes de a.

On a donc une description discrete du milieu :

— la masse numéro n a pour abscisse x0 = na

quand elle est au repos;

— elle a pour abscisse x,(f) = xg +¢&,(0) = na+
¢, (1) en présence de 'onde.

La grandeur algébrique ¢, (¢) repére donc I'écart
de la masse numéro n par rapport a sa posi-
tion d’équilibre. Sur la figure suivante, on a par
exemple &;,,-1(1) <0, &, () >0et &1 (2) >0.

0 0

0 0
X Xn Xn+1 Xnt2 X

(n—-1) (n)

Systeme a I’équilibre

(n+1) (n+2)

= v
Enlt) Ene1 (D) *

Systeéme hors équilibre

Py
En—l(t)

1. En appliquant le principe fondamental de la

dynamique a la masse (n), établir une relation de
2

d
récurrence reliant Ffzn ac,_1(0), ) etéy (D).

Nous allons mener 'étude dans le cadre de
I'approximation des milieux continus, valable
quand la distance entre chaque masse est tres pe-
tite devant la longueur d’onde de I'onde considé-
rée : a < A. Al'échelle de la longueur d’onde A, la
chaine est vue comme un milieu continu, comme
le suggere la figure suivante.

¢x, 1) 2
En()

Dans le cadre de cette approximation, nous pou-
vons remplacer la description discreéte {¢, ()}, de

a
=
/..0‘\\ .

~

1. Onremarquera que &p,41(2) = E(x% + a, 1) = (X9, 1).
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’état de la chaine d’oscillateurs par une fonction
continu de 'espace et du temps ¢(n, t), qui inter-
pole la position des masses. Cette fonction ¢(x, 1),
qui décrit de fagon continue I'écart des masses a
leur position d’équilibre, doit satisfaire aux pro-
priétés suivantes :

— elle est de classe €2;

— elle coincide avec I'écart a 1'équilibre de la
masse (n) quand x = na, soit {(na, t) = £, (1).

2. Ladistance a étant considérée comme un «in-
finiment petit », en effectuant un développement
de Taylor! a I'ordre 2 de &,,,1(¢) et &,_1(f), mon-
trer que la relation de récurrence établir précédent
conduit a I'’équation de d’Alembert
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ol la célérité c sera exprimée en fonction de k, a
et m.

6 — Boules chargées [***]
On considere une chaine infinie de boules char-
gées qui ne peuvent se déplacer que sur les fils ho-
rizontaux.
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Donner I’équation d’onde :

— si chaque boule n’interagit qu’avec ses deux
plus proches voisines;

— sichaque boule interagit avec toutes les autres
(une infinité).
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