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TD ondes no 1 Équation de d’Alembert— solution

2—  Ligne à constantes réparties [*]

Schéma :
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1. La tension aux bornes de l’inductance s’écrit

u(x, t )−u(x +dx, t ) =Λdx
∂i (x, t )

∂t
,

soit à l’ordre le plus bas :

−∂u(x, t )

∂x
=Λ

∂i (x, t )

∂t
.

Le courant traversant le condensateur est donné par la
loi des nœuds :

i (x, t )− i (x +dx, t ) = Γdx
∂u(x +dx, t )

∂t
,

soit à l’ordre le plus bas :

−∂I (x, t )

∂x
= Γ

∂V (x, t )

∂t
.

On obtient un système de deux équations couplées en
u(x, t ) et i (x, t ) :

∂u(x, t )

∂x
=−Λ∂i (x, t )

∂t
∂i (x, t )

∂x
=−Γ∂u(x, t )

∂t
.

2. Pour obtenir l’équation vérifiée par u(x, t ), il faut
éliminer i (x, t ) en utilisant la propriété

∂2i (x, t )

∂x∂t
= ∂2i (x, t )

∂t∂x
.

En dérivant la première équation par rapport à x, on
obtient :

∂2u(x, t )

∂x2 =−Λ∂2i (x, t )

∂x∂t
.

En dérivant la seconde par rapport à t , on obtient :

∂2i (x, t )

∂t∂x
=−Γ∂

2u(x, t )

∂t 2 .

On en déduit alors :

∂2u(x, t )

∂t 2 = 1

ΓΛ

∂2u(x, t )

∂x2 .

De même, dériver la première équation par rapport à t
conduit à

∂2u(x, t )

∂t∂x
=−Λ∂2i (x, t )

∂t 2 .

Dériver la seconde par rapport à x conduit à

∂2i (x, t )

∂x2 =−Γ∂
2u(x, t )

∂x∂t
.

D’après le théorème de Schwarz,
∂2ux, t )

∂x∂t
= ∂2 y(x, t )

∂t∂x
;

on en déduit l’équation vérifiée par l’intensité :

∂2i (x, t )

∂t 2 = 1

ΓΛ

∂2i (x, t )

∂x2 .

La tension et l’intensité vérifient l’équation de d’Alem-
bert.

La célérité correspondante est c = 1p
ΓΛ

.

3—  Ondes dans un bassin profond [**]

1. On considère la tranche de fluide comprise entre x
et x+dx à l’instant t , et on mène les calculs au premier
ordre. La hauteur de cette tranche est h+ξ(x, t ) au pre-
mier ordre (ξ est un infiniment petit du premier ordre).
La masse de la tranche de fluide est donc

dm =µLdx[h +ξ(x, t )] .

Pendant dt , comme ξ(x, t ) dépend du temps, elle varie
de 1

d2m =µLdx
∂ξ

∂t
dt .

Déterminons l’expression de cette variation de masse
à l’aide d’un bilan.

Il entre pendant dt , à l’abscisse x, la masse

δ2mx =µv(x, t )L[h +ξ−x, t )]dt ≈µv(x, t )Lh dt .

Il sort pendant dt , à l’abscisse x +dx, la masse

d2mx+dx =µv(x +dx, t )[h +ξ(x +dx, t )]dt

≈µv(x +dx, t )Lh dt .

Le bilan s’écrit

d2m = δ2mx −δ2mx+dx

soit

µL dx
∂ξ

∂t
dt =−µLh

∂v

∂x
dx dt ,

d’où
∂ξ

∂t
=−h

∂v

∂x
.

1. On a en effet dξ= ∂ξ

∂t
dt .
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2. Les calculs étant menés au premier ordre, on peut
négliger l’accélération convective ( #»v · #      »

grad) #»v dans
l’équation d’Euler, qui s’écrit

µ
∂#»v

∂t
=−#      »

gradP +µ#»g .

En projetant sur #»e z , on obtient

0 =−∂P

∂z
−µg ,

d’où en intégrant

P (M , t ) =−µg z +α(x, t )

où α(x, t ) est la « constante » d’intégration (constante
par rapport à z, donc a priori fonction de x).

La surface libre est à la cote h +ξ(x, t ), et la pression y
vaut P0 :

P (h +ξ(x, t ), t ) = P0 +−µg h −µgξ(x, t )+α(x, t ) ,

d’où α(x, t ) = P0 +µg h +µgξ(x, t ). Le champ des pres-
sions est donc donné par

P (M , t ) = P0 +µg (h − z)+µgξ(x, t ) .

Projetons l’équation d’Euler linéarisée sur #»e x :

µ
∂v

∂t
=−∂P

∂x

soit avec l’expression de P (M , t ) établie précédemment

∂v

∂t
=−g

∂ξ

∂x
.

3. En dérivant la relation précédent par rapport à t , il
vient

∂2v

∂t 2 =−g
∂2ξ

∂x∂t
= g h

∂2v

∂x2

On retrouve l’équation de d’Alembert décrivant la pro-

pagation d’une onde à la célérité c =√
g h .

4—  Onde sur une barre

On considère la tranche comprise au repos entre les
abscisses x et x + dx, de masse dm = ρS dx. En pré-
sence de l’onde, elle se trouve située entre les abscisses
x +u(x, t ) et x +dx +u(x +dx, t ).

x x +dx

x +u(x, t ) x +dx +u(x +dx, t )

x

x

u(x, t ) u(x +dx, t )

L’allongement de la tranche considérée est

u(x +dx, t )−u(x, t ) = ∂u(x, t )

∂x
dx .

Sa longueur au repos étant dx, son allongement relatif
est

u(x +dx, t )−u(x, t )

dx
= ∂u(x, t )

∂x
.

À une force de traction F > 0 correspond un allonge-

ment relatif
∂u

∂x
> 0; la force de traction s’écrit alors :

dF (x, t ) = ES
∂u(x, t )

∂x
.

La tranche comprise entre x et x +dx est soumise à :

dF (x +dx, t )−dF (x, t ) = ∂dF

∂x
dx = ES

∂2u(x, t )

∂x2 dx .

L’abscisse du centre de gravité de la tranche est

xG = [x +dx +u(x, t )]+ [x +u(x, t )]

2

= x + dx

2
+ u(x, t )+u(x +dx, t )

2

= x + dx

2
+u(x, t )

au premier ordre.

Son accélération vaut donc ẍG = ∂2u(x, t )

∂t 2 et le principe

fondamental de la dynamique appliqué à la tranche
considérée s’écrit :

ρS dx
∂2u(x, t )

∂t 2 = ES
∂2u(x, t )

∂x2 dx ,

soit :

∂2u(x, t )

∂t 2 − E

ρ

∂2u(x, t )

∂x2 .

On reconnaît l’équation de d’Alembert, dont la solu-
tion peut s’écrire u(x, t ) = A f (c − xt ) + B g (x + ct ), la
célérité des ondes progressives étant donnée par

c =
√

E

ρ
.
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5—  Chaîne d’atomes

1. La masse (n) est soumise d’une part à l’action du
ressort « de droite ». Sa longueur étant :

Ld = xn+1(t )−xn(t ) = x0
n+1 +ξn+1(t )−x0

n −ξn(t )

= a +ξn+1(t )−ξn(t )

cette action vaut

#»
T d = k[Ld −a] #»e x = k[ξn+1(t )−ξn(t )] #»e x .

La même masse est soumise d’autre part à l’action du
ressort « de gauche », de longueur :

Lg = xn(t )−xn−1(t ) = x0
n +ξn(t )−x0

n−1 −ξn−1(t )

= a +ξn(t )−ξn−1(t ) .

Cette action vaut donc

#»
T g =−k[Lg −a] #»e x =−k[ξn(t )−ξn−1(t )] #»e x .

L’accélération de la masse (n) étant

d2xn

dt 2
#»u x = d2ξn

dt 2
#»u x ,

appliquons à celle-ci le principe fondamental de la dy-
namique en projection sur l’axe Ox :

m
d2ξn

dt 2 = k[ξn+1(t )−ξn(t )]−k[ξn(t )−ξn−1(t )] .

2. Un développement de Taylor à l’ordre 2 au voisinage
de xn

0 permet d’écrire :

ξn+1(t ) = ξ(x0
n +a, t ) = ξ(x0

n , t )+a
∂ξ

∂x
+ a2

2

∂2ξ

∂x2

= ξn(t )+a
∂ξ

∂x
+ a2

2

∂2ξ

∂x2

et

ξn−1(t ) = ξ(x0
n −a, t ) = ξ(x0

n , t )−a
∂ξ

∂x
+ a2

2

∂2ξ

∂x2

= ξn(t )−a
∂ξ

∂x
+ a2

2

∂2ξ

∂x2 .

À l’ordre le plus bas non nul, il reste

k[ξn+1(t )−ξn(t )]−k[ξn(t )−ξn−1(t )] = a2 ∂
2ξ

∂x2 ,

d’où

∂2ξ

∂t 2 − ka2

m

∂2ξ

∂x2 = 0 .

6—  Boules chargées

Dans un premier temps, il faut paramétrer le système
pour décrire les mouvement des boules :

+q Mn+1

−q Mn

−q Mn−1

+q

yn+1

yn

yn−1

x

a

y

On repère par yn(t ) la position horizontale de la boule
de rang n à l’instant t .
Sur la figure, on a yn−1(t ) < 0, yn(t ) > 0 et yn+1(t ) > 0.

1er cas : chaque boule n’interagit qu’avec ses deux plus
proches voisines

La boule en Mn subit de la part de la boule en Mn+1 la
force électrostatique

#»
F n+1→n =− q2

4πε0

#                 »
Mn+1Mn

(Mn+1Mn)3 ,

et de la part de la boule en Mn−1 la force

#»
F n−1→n =− q2

4πε0

#                 »
Mn−1Mn

(Mn−1Mn)3 ,

En notant
#»
R la réaction du fil sur la boule de rang n

(normale à #»e x en considérant qu’il n’y a pas de frot-
tement) et m sa masse, le principe fondamental de la
dynamique s’écrit

m
d2xn

dt 2
#»e x = #»

F n+1→n + #»
F n−1→n + #»

R .

En projetant selon #»e x , on obtient

m
d2 yn

dt 2 =− q2

4πε0

yn − yn+1

(Mn+1Mn)3 − q2

4πε0

yn − yn−1

(Mn−1Mn)3

Afin de simplifier l’étude, nous allons envisager des
mouvements de faible amplitude, soit |xn | ¿ a. On a
alors

Mn+1Mn ≈ a et Mn−1Mn ≈ a

et l’équation du mouvement devient

m
d2 yn

dt 2 =− q2

4πε0a3

[
yn(t )− yn+1(t )+ yn(t )− yn−1(t )

]
soit

m
d2 yn

dt 2 =− q2

4πε0a3

[
2yn(t )− yn+1(t )− yn−1(t )

]
.

Nous allons considérer que la longueur d’onde λ du
phénomène est grande devant a, ce qui fait que yn va-
rie faiblement entre deux boules voisines.
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Cela permet de passer à la limite continue, en intro-
duisant une fonction y(x, t ), de classe C2, qui coïncide
avec yn(t ) pour x = na.
En développant à l’ordre deux, on a

y(x +a, t ) = y(x, t )+a
∂y

∂x
+ a2

2

∂2 y

∂x2 ,

soit en x = na

yn+1(t ) = yn(t )+a
∂y

∂x
+ a2

2

∂2 y

∂x2 .

De même

y(x −a, t ) = y(x, t )−a
∂y

∂x
+ a2

2

∂2 y

∂x2 ,

soit en x = na

yn−1(t ) = yn(t )−a
∂y

∂x
+ a2

2

∂2 y

∂x2 .

On en déduit

yn+1(t )+ yn−1(t ) = 2yn(t )+a2 ∂
2 y

∂x2

L’équation du mouvement s’écrit alors

m
∂2 y

∂t 2 =− q2

4πε0a3

[
−a2 ∂

2 y

∂x2

]
soit

∂2 y

∂t 2 = q2

4πε0ma

∂2 y

∂x2 .

On obtient l’équation de d’Alembert

∂2 y

∂t 2 = c2 ∂
2 y

∂x2 avec c = qp
4πε0ma

.

2e cas : chaque boule n’interagit avec toutes les autres

Compte tenu de l’alternance des signes des charges,
on a

#»
F n+2→n = q2

4πε0

#                 »
Mn+2Mn

(Mn+2Mn)3 .

On peut généraliser pour une boule de rang n +p :

#»
F n+p→n = (−1)p q2

4πε0

#                 »
Mn+p Mn

(Mn+2Mn)3 .

Dans le cas de mouvements de faible amplitude, on a
Mn+p Mn ≈ pa ; la projection de la force précédente se-
lon #»e x s’écrit

Fx,n+p→n = (−1)p q2

4πε0a3p3 (yn − yn+p ) .

La résultante des forces subie par la boule n selon #»e x

s’écrit alors

Fx =
∞∑

p=1
Fx,n+p→n +Fx,n−p→n

= q2

4πε0a3

∞∑
p=1

(−1)p 2yn − yn+p − yn−p

p3 .

Comme précédemment, on peut développer

y(x +ap, t ) = y(x, t )+ap
∂y

∂x
+ a2p2

2

∂2 y

∂x2

soit en x = na

yn+p (t ) = yn(t )+ap
∂y

∂x
+ a2p2

2

∂2 y

∂x2 .

De même

y(x −ap, t ) = y(x, t )−ap
∂y

∂x
+ a2p2

2

∂2 y

∂x2

soit en x = na

yn−p (t ) = yn(t )−ap
∂y

∂x
+ a2p2

2

∂2 y

∂x2 .

On a donc

yn+p (t )+ yn−p (t ) = 2yn(t )+a2p2 ∂
2 y

∂x2 ,

d’où

Fx =− q2

4πε0a3

∞∑
p=1

(−1)p a2p2

p3

∂2 y

∂x2

= (−1)
q2

4πε0a

∂2 y

∂x2

∞∑
p=1

(−1)p

p

On reconnaît la série harmonique alternée

∞∑
p=1

(−1)p

p
=− ln2,

d’où

Fx = q2 ln2

4πε0a

∂2 y

∂x2 .

Le principe de la dynamique appliqué à la boule de
rang n s’écrit

m
∂2 y

∂t 2 = q2 ln2

4πε0a

∂2 y

∂x2 .

On obtient l’équation de d’Alembert avec une célérité
différente du cas précédent :

∂2 y

∂t 2 = c ′2
∂2 y

∂x2 avec c ′ = c ln2p
4πε0ma

= c ln2 .
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