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Equation de d’Alembert — solution
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2 — Ligne a constantes réparties

Schéma :
i(x,r) Adx i(x+dx, 1)
u(x, 1) I'dx =— u(x+dx, 1
X x+dx

1. La tension aux bornes de I'inductance s’écrit

0i(x, 1)

, ) — dx, 1) = Ad ,
u(lx,t)—ulx+dx,t) X o

soit a l'ordre le plus bas :

_Ou(x, 1) _Aai(x, t)
ox ot

Le courant traversant le condensateur est donné par la
loi des nceuds :

i, -0+ 0 =Tdr 0000,

soit a I'ordre le plus bas :

0I(x,1) Fawx, )
ox or

On obtient un systéme de deux équations couplées en
ulx,eti(x,t):

oul(x,t) __Aai(x, 1)
ox ot
0i(x, 1) B _rau(x, 1)

ox or

2. Pour obtenir I'équation vérifiée par u(x, t), il faut
éliminer i(x, t) en utilisant la propriété
0%i(x,1) _ 0%i(x,1)
dxd0t ~  0tdx

En dérivant la premiére équation par rapport a x, on
obtient :

ulx,t)  0%i(x, 1)
0x2 dxat
En dérivant la seconde par rapport a t, on obtient :

0%i(x,1)
atdx

On en déduit alors :

u(x, t)
otz

Fux,t) 1 dulx,1)
0 TA 0x?

0
1. Onaeneffetdé = a—idt.

De méme, dériver la premiére équation par rapport a ¢
conduit a

Pulx,n) | 0%i(x,1)
otox o2
Dériver la seconde par rapport a x conduit a
0%i(x, 1) _0%ulx,1)
ox2 ~ oxdr
?ux,t) _ 0°y(x,t)

D’apreés le théoreme de Schwarz,
0x0t

on en déduit I'équation vérifiée par I'intensité :

0tox

O%ilx,t) _ 1 iy,
0> TA 0x?

La tension et I'intensité vérifient I'équation de d’Alem-
bert.

La célérité correspondante est | c = —— |.

vTA

[**]
1. On consideére la tranche de fluide comprise entre x
et x+dx alinstant ¢, et on mene les calculs au premier
ordre. La hauteur de cette tranche est h+¢(x, t) au pre-

mier ordre (¢ est un infiniment petit du premier ordre).
La masse de la tranche de fluide est donc

3 — Ondes dans un bassin profond

dm = pLdx[h+¢(x, 1)].
Pendant dt, comme ¢(x, ) dépend du temps, elle varie

del o
d®>m = uLdx—dr.
m= RS

Déterminons I'expression de cette variation de masse
al’aide d'un bilan.
Il entre pendant d¢, a I’abscisse x, la masse
82my = pv(x, t)LIh+&—x,1)1dt = pv(x, t)Lhdt.
Il sort pendant d¢, a I’abscisse x + dx, la masse
d?myydy = pv(x+dx, Oh+E(x +dx, H]dt
=~ uv(x+dx, f)Lhdt.
Le bilan s’écrit

d?m=56°my—62myrdy

soit o P
v
Ldx—dt=-uLh—dxdt,
HEX5 B
d’ol
o __,0v
or  ox
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2. Les calculs étant menés au premier ordre, on peut
négliger I'accélération convective (7 - grad)7 dans
I'équation d’Euler, qui s’écrit

-

ov orad P+ ug

— =-—gra .
H ot g HE
En projetant sur €, on obtient

opP

0=-——-pug,

d’otl1 en intégrant
PM,t)=—-ugz+a(x,t)

ol a(x,t) est la « constante » d'intégration (constante
par rapport a z, donc a priori fonction de x).

La surface libre est a la cote i+ ¢(x, t), et la pression 'y
vaut Py :

P(h+¢(x,0),t) =Py+—ugh—ugé(x,n)+alx,1),

d'ot a(x,t) = Py+ugh+ugé(x,t). Le champ des pres-
sions est donc donné par

P(M,t)=Py+pugh—z)+pugéx,t) .

Projetons I’équation d’Euler linéarisée sur & :

61/_ oP
Hor ™ ox

soit avec I'expression de P(M, t) établie précédemment

ov

ot

9
gax'

3. En dérivant la relation précédent par rapport a t, il
vient
0%v 0%¢ B hazv
02~ Soxor 8'ox?

On retrouve I'’équation de d’Alembert décrivant la pro-

pagation d'une onde ala célérité c=+/gh .

4 — Onde sur une barre

On considére la tranche comprise au repos entre les
abscisses x et x + dx, de masse dm = pSdx. En pré-
sence de 'onde, elle se trouve située entre les abscisses
x+u(lx, t)etx+dx+ u(x+dx, ).

X x+dx

| |
! u(x,r) : u(x+dx, 1)
| | o
i i x
x+u(x,t) x+dx+u(x+dx, 1)
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L'allongement de la tranche considérée est

ou(x,t)
0x

ulx+dx, t)—u(x,t) = dx.

Sa longueur au repos étant dx, son allongement relatif
est
u(x+dx, 1) —ulx, ) _ du(x, t)
dx o ox

A une force de traction F > 0 correspond un allonge-

.. 0u . .
ment relatif e > 0; la force de traction s’écrit alors :
X

ou(x,t)

dF(x,t) = ES
(x,9) 0x

La tranche comprise entre x et x + dx est soumise a:

odF 0%u(x, t
dF(x+dx, 0 —dF(, 0 = 298 gr = ps 4D 4
0x 0x2

L'abscisse du centre de gravité de la tranche est

CIx+ dx+u(x, )]+ [x+ u(x, 1]

X
¢ 2
3 dx u(x,t)+u(x+dx,1)
B 2
dx
=x+—+ulxt
2
au premier ordre.
o . 0Pulxn) .
Son accélération vaut donc X = 2 etle principe

fondamental de la dynamique appliqué a la tranche
considérée s’écrit :

2 2
xa u(x,t) :ESO u(x, t)d

pSdx—73 ox2

soit :

®u(x,t) _E % u(x, t)
0t?

p 0x?

On reconnait I'’équation de d’Alembert, dont la solu-
tion peut s’écrire u(x,t) = Af(c—xt)+ Bg(x +ct), la
célérité des ondes progressives étant donnée par

E
c=1/— .
o
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5 — Chaine d’atomes

1. La masse (n) est soumise d'une part a I'action du
ressort « de droite ». Sa longueur étant :

La=Xps1(0) = x0(0) = 2%, 1 + Eppr (6) — X0 — & (8)
=a+&n1(0) —&4(0)

cette action vaut
Ty =k(La—al &y = k[E41(£) = En(D)] €.

La méme masse est soumise d’autre part a I’action du
ressort « de gauche », de longueur :

Lg =X (1) = Xp_1(8) = X+ E (1) = Xy =&y (1)
=a+&p(t)—En1(0).

Cette action vaut donc
Ty=—klLg—al €y = —k[En(t) =& (D] €.

Laccélération de la masse (n) étant

dzxnﬂ»_dzfnﬂ
de2 7 de2 7Y

appliquons a celle-ci le principe fondamental de la dy-
namique en projection sur 'axe Ox :

d?¢,
m-a = klEni1 () —En(D—k[Ex () —Ep1(D)].

2. Undéveloppement de Taylor al’ordre 2 au voisinage
de x| permet d’écrire :

et

2 A2
_ (0 _ p 0 o 08 at 0%
En-1(0) =&(x, —a, 1) =&(xy, 1) A=+ ———
B 'f a2 626
=)Ao

Alordre le plus bas non nul, il reste

0
KIEps1(8) = En(O] = KIE (1) = Ep1 (D] = azﬁ,
d’ou

0% ka?d%

02 m 0x2
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6 — Boules chargées

Dans un premier temps, il faut paramétrer le systéme
pour décrire les mouvement des boules :

X
+ann+1
Yn+1
a
A M y
Yn
_ann—l
Yn-1
+6]n

On repere par y,(t) la position horizontale de la boule
derang n alinstant ¢.
Sur la figure, on a y,—1(#) <0, y,(£) >0 et y,+1(£) > 0.

1¢r cas : chaque boule n’interagit qu’avec ses deux plus
proches voisines
La boule en M,, subit de la part de la boule en M, la
force électrostatique
q 2 M n+l1 M n
4meg (Mps1 Mp)3’
et de la part de la boule en M,,_; la force
q 2 M n-1 M n
4mey (Mp—1My)3’

_
Fpi—n=-

s
Fpi-n=-

En notant R la réaction du fil sur la boule de rang n
(normale 4 €, en considérant qu'il n’y a pas de frot-
tement) et m sa masse, le principe fondamental de la
dynamique s’écrit

d?x, _,

— — —
m dr? €x=Fpy1—n+ Fp1—n+t R.
En projetant selon €y, on obtient
dzJ/n _ 672 Yn = Vn+1 6/2 Yn—Yn-1

"4 T ameo My MR 4meg (Mo M)
Afin de simplifier I'étude, nous allons envisager des
mouvements de faible amplitude, soit |x;| < a. On a
alors

My M,=a et M, M,=a

et’équation du mouvement devient

dzyn _ q2
MG = " ameead Yn 0= Y0+ YD) = ynoa (0]
soit
dzyn 6]2
m dr2 :_47.[50“3 [zyn(t)_J/nH(f)—yn_l(t)] .

Nous allons considérer que la longueur d’onde A du
phénomene est grande devant a, ce qui fait que yj, va-
rie faiblement entre deux boules voisines.
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Cela permet de passer a la limite continue, en intro-
duisant une fonction y(x, t), de classe €2, qui coincide
avec y,(t) pour x = na.

En développant a I'ordre deux, on a

(x+a,t)=y(x, t)+aay+a 62
y ' y ox 2 0x?’
soiten x = na
dy a®d’*y
Yn+1(8) = yu(8) + da + P
De méme
2 32
B y a 0%y
yx—a,t)=yx,t) - aa— + ?@,
soiten x = na
2 A2
_ y 0%y
Yn-108) = yn(1) — da— + ?@
On en déduit
262y
Y1)+ yn1(8) =2y,() +a o
ox
L'équation du mouvement s’écrit alors
Oy & 20%y
o0r? dmegad 0x?

soit
aZy _ qZ 62y
02 Amegma 0x%

On obtient I’équation de d’Alembert

02 2
_y = Cza_y avec Cc= L .
0t? 0x? Vanegma

2¢ cas : chaque boule n’interagit avec toutes les autres

Compte tenu de l'alternance des signes des charges,
ona

P —

qz Mn+2Mn
47'[“5'0 (Mn+2Mn)3 '

s
Fpipon=

On peut généraliser pour une boule derang n+ p :

My, M,
Foopon = (cyp L Moo
4meg (Mp2Mp)3

Dans le cas de mouvements de faible amplitude, on a
Mpy+p M, = pa;laprojection de la force précédente se-
lon €, s'écrit

2

Fx,n+p—»n:(_1)p q 3 (Yn—Yn+p)-

4dmegasd
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La résultante des forces subie par la boule 7 selon €,
s’écrit alors

o0

F,= Z Fx,n+p—»n + Fx,n—p—»n
p=1

2

q 2Yn=Yn+p = ¥Yn-p
P .
4n80a3 Z( ) p3

Comme précédemment, on peut développer

(x+ap,t)=y(x,)+a 0y azpzaz
Y pE=YE pax 2 0x2
soiten x = na
dy a’p? oty
Yn+p(8) = yn(t)+apa—+ A
De méme
dy a2p262
)/(x—ap,t):y(x,t)—apa T
soiten x = na
ay a2p? %y
On adonc
62
yn+p(t)+yn—p(t)=2yn(t)+a2p2é,
d’ou
Z a2p202y
47r£0a3 Ox2

On reconnait la série harmonique alternée

(o) -1 p
Z( ) =-In2,
p=1
d’ou
_ ¢*In2 %y
 Amega 0x?

Le principe de la dynamique appliqué a la boule de
rang n s’écrit

azy_

0y _ g*In2 0%y
or?

Amega 0x2

On obtient 'équation de d’Alembert avec une célérité
différente du cas précédent :

0%y 0%y ) cln2
——=¢c" —= avec ¢ =———=cln2
or? 0x2 Vinegma
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