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TD ondes no 2 Corde vibrante

1—  Résonance sur une corde vibrante [*]

On étudie les petits mouvements dans la direction #»e z

d’une corde métallique de longueur L, fixée en ses deux
extrémités d’abscisses x = 0 et x = L. On néglige la pe-
santeur. La corde est parcourue par un courant d’in-
tensité I = I0 cosωt et plongée dans un champ magné-
tique

#»
B = B0 sin

πx

L
#»e y .

On note F la tension de la corde et µ sa masse linéique.

1. Montrer que le déplacement z(x, t ) d’un point de
la corde est solution d’une équation aux dérivées par-
tielles de la forme

∂2z

∂t 2 − c2 ∂
2z

∂x2 =
(

I0B0

µ

)
sin

(πx

L

)
cosωt ,

où c est une constante à exprimer en fonction des don-
nées.

2. En régime sinusoïdal forcé, on cherche une solution

de la forme z(x, t ) =C sin
πx

L
cosωt .

Déterminer C pour ω ̸=πc/L.

Que se passe-t-il lorsque ω tend vers πc/L ?

2—  Corde vibrante [*]

On considère une corde vibrante de masse linéique µ,
sans élasticité et sans torsion, se déformant faiblement
au voisinage d’un axe Ox : à l’ordre d’approximation
considéré, le point M qui a pour coordonnées (x,0)
au repos passe au point de coordonnées (x, y(x, y)). Le
déplacement y(x, t ) est un infiniment petit d’ordre un

ainsi que l’angle α(x, t ) = ∂y

∂x
que fait la corde au point

d’abscisse x avec l’axe Ox.

1. Établir rapidement l’équation d’onde relative aux
mouvements transversaux de faible amplitude.

2. La masse linéique d’une corde de guitare a pour
ordre de grandeur le gramme par mètre, et sa longueur
est de l’ordre du mètre.. Donner un ordre de grandeur
réaliste de la tension de cette corde.

3. La corde de longueur L est fixée à ses deux extrémi-
tés en x = 0 et x = L. Elle n’est soumise à aucune excita-
tion aux dates positives, mais on lui donne une forme
y(x, t = 0) = Y (x) à la date t = 0 et on l’abandonne sans

vitesse initiale, c’est-à-dire que
∂y

∂t
(x, t = 0) = 0.

On cherche une solution de type mode propre, c’est-à-
dire de la forme y(x, t ) = f (x)cos(ωt ).

Montrer que f (x) est de la forme

f (x) = A sin
(ωx

c

)

et que les seules pulsations possibles sont de la forme
ωn = nω1, avec n entier.

Exprimer la pulsation ω1 du mode fondamental en
fonction de L et c.

4. On suppose que y(x,0) = 4b sin3
(πx

L

)
.

Déterminer y(x, t ).

On donne sin3 x = 3

4
sin x − 1

4
sin(3x).

3—  Corde vibrante [*]

On applique une tension T sur une corde de longueur
L, de massique linéique µ, fixée à ses extrémités x = 0
et x = L.

1. Établir l’équation de d’Alembert en précisant les hy-
pothèses effectuées, et exprimer la célérité en fonction
des paramètres de la corde.

2. Soit les solutions suivantes de l’équation précé-
dente :

2.a) y(x, t ) = A cos(ωt −kx) ;

2.b) y(x, t ) = A cos(ωt +kx) ;

2.c) y(x, t ) = (A cosωt +B sinωt )(C coskx +D sinkx) ;

2.d) y(x, t ) = A cos(ωt +kx)+ A cos(ωt −kx) ;

2.e) y(x, t ) = A cos(ωt +kx)+B cos(ωt −kx)

avec |A| ̸= |B |.

Interpréter physiquement chaque solution.

3. La corde est fixée à ses deux extrémités. Parmi les
solutions proposées précédemment, quelle est celle
qui convient? En déduire les pulsations ω possibles.

4. On suppose qu’à l’instant t = 0, la corde est plate
(pas de perturbation) ; la solution est d’amplitude Y .
Déterminer complètement l’expression de y(x, t ).

5. La tension exercée sur la corde est de 10 N. La corde
mesure 2,0 m et, lorsque celle-ci est excitée à une fré-
quence de 10 Hz, on observe 5 nœuds de déplacement
(en incluant les extrémités de la corde). Déterminer la
masse linéique de la corde.

On rappelle la formule trigonométrique :

cos p +cos q = 2cos
( p +q

2

)
cos

( p −q

2

)
.
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4—  Du plomb ou de l’or?

On réalise le montage de la corde de Melde à l’aide d’un
vibreur commandé par un GBF dont on peut régler la
fréquence f , d’une corde de longueur L et de masse li-
néique µ, à laquelle on accroche un corps de masse m.
On note T la tension de la corde.

vibreur

expérience 1f = 20 Hz

vibreur

expérience 2f = 38 Hz

1. La célérité des ondes transversales sur la corde vi-
brante est de la forme c = T aµb . Par analyse dimen-
sionnelle, déterminer les exposants a et b.

2. On désire savoir si la sphère est en or ou en plomb
(un examen visuel ne suffit pas car elle est peinte).

Dans l’expérience 1, on observe le phénomène de ré-
sonance en ondes stationnaires représenté sur la figure
pour la fréquence f = 20 Hz.

Dans l’expérience 2, on plonge la sphère dans un ré-
cipient rempli d’eau. On observe alors le phénomène
de résonance comme indiqué sur la figure pour la fré-
quence f ′ = 38 Hz.

Masses volumiques : ρ(Pb) = 11350 kg ·m−3 et ρ(Au) =
19300 kg ·m−3.

La sphère est-elle en or ou en plomb?

5—  Étude d’une corde pincée [**]

On considère une corde vibrante de longueur L, de ten-
sion T , de masse linéique µ, fixe à ses deux extrémités.
Une corde pincée est écartée de sa position d’équilibre
par un doigt (ou un plectre) ; la corde est ensuite lâchée
avec une vitesse initiale nulle. Le contact avec le doigt
est supposé ponctuel, à l’abscisse a. On adopte une
description simplifiée de la forme initiale de la corde
par un profil triangulaire.

0 a L x

h

y

1. Écrire les conditions initiales y(x,0) = Y (x) et
∂y

∂t
(x,0).

2. Compte tenu des conditions aux limites y(0, t ) = 0
et y(L, t ) = 0, on cherche une solution de l’équation de
d’Alembert sous la forme :

y(x, t ) =
∞∑

n=1
yn(x, t ) =

∞∑
n=1

y0n sin
(nπx

L

)
cos

(
ncπt

L
+ψn

)
où c est la célérité.

Déterminer les constantes ψn .

3. Considérons la fonction F (x), de période 2L, im-
paire, coïncidant avec y(x, t ) sur l’intervalle [0,L] :
F (x) = y(x, t ) pour x ∈ [0,L].

En utilisant l’annexe, rappeler l’expression générale du
développement en série de Fourier d’une fonction im-
paire, 2L-périodique. Montrer que les coefficients du
développement s’expriment ici en fonction du profil
initial Y (x) de la corde, et les calculer.

4. Discuter de la dépendance des amplitudes des har-
moniques avec leur rang n.

5. Comment peut-on supprimer l’harmonique de
rang n du son émis?

6. Simplifier l’expression de y(x, t ) quand a → 0. Que
peut-on dire alors du timbre du son émis lorsque le
point d’excitation de la corde est proche d’une extré-
mité?

7. La brillance d’un son est décrite par le centre de gra-
vité spectral défini par

CGS =
∑N

n=1 nbn∑N
n=1 bn

pour un son constitué de N harmoniques. Un CGS bas
correspond à un son mat, tandis qu’un son brillant est
caractérisé par un CGS élevé. En considérant les 30
premiers harmoniques, comparer numériquement la
brillance du son émis par une corde de guitare pour

a = L

4
et pour a = L

20
. On pourra utiliser Python pour

les calculs numériques.

6—  Étude d’une corde frappée [**]

On considère une corde vibrante de longueur L, de ten-
sion T , de masse linéique µ, fixe à ses deux extrémi-
tés. Initialement, la corde est au repos dans sa situa-
tion d’équilibre. À t = 0, un marteau de largeur e frappe
la corde à l’abscisse a, communiquant aux points de
la corde avec lesquels il est en contact au moment du
choc une vitesse u #»e y , les autres points de la corde res-
tant au repos.

0 a − e
2 a + e

2
L x

#»u

#»u

y
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1. Écrire les conditions initiales y(x,0) et
∂y

∂t
(x,0) =V (x).

2. Compte tenu des conditions aux limites y(0, t ) = 0
et y(L, t ) = 0, on cherche une solution de l’équation de
d’Alembert sous la forme :

y(x, t ) =
∞∑

n=1
yn(x, t ) =

∞∑
n=1

y0n sin
(nπx

L

)
cos

(
ncπt

L
+ψn

)
où c est la célérité.

Déterminer les constantes ψn .

3. On suppose que e ≪ L.

Considérons la fonction V (x), de période 2L, impaire,

coïncidant avec
∂y

∂t
(x, t ) sur l’intervalle [0,L] :

F (x) = ∂y

∂t
(x, t ) pour x ∈ [0,L] .

En utilisant l’annexe, rappeler l’expression générale du
développement en série de Fourier d’une fonction im-
paire, 2L-périodique. Montrer que les coefficients du
développement s’expriment ici en fonction du profil
initial de vitesse V (x) de la corde, et les calculer.

4. Montrer que l’on peut supprimer des harmoniques
en choisissant judicieusement un paramètre. Com-
ment supprimer l’harmonique de rang n = 7, disso-
nant?

7—  Corde lestée [***]

On considère une corde de longueur L, fixée à des ex-
trémités. En son milieu, on fixe une masse m0 sur la
corde. On néglige la pesanteur, et la tension de la corde
est T0 au repos. On note c la célérité des ondes trans-
verses.
On note y1(x, t ) l’élongation de la corde pour la portion
0⩽ x < L/2 et y2(x, t ) son élongation pour L/2 < x ⩽ L.

1. Compte tenu de la condition imposée en x = 0,
quelle forme proposer pour la solution y1(x, t ) ? Même
question pour y2(x, t ) compte tenu de la condition im-
posée en x = L.

2. Établir deux relations vérifiées par y1(x, ) et y2(x, t )
ou leurs dérivées en x = L/2.

Nous cherchons les modes propres de la corde lestée.

3. Montrer qu’un premier groupe de modes propres
est constitué d’un sous-ensemble des modes propres
de la corde vibrante non lestée.

4. Montrer qu’un second groupe de modes propres est
constitué des solutions de l’équation

cotan

(
ωL

2c

)
=α

(
ωL

2c

)
,

où l’on précisera l’expression de α en fonction de para-
mètres du problème.

Proposer une résolution graphique.

Étudier les cas limites m0 ≪ m et m0 ≫ m, où m est la
masse de la corde.

8—  Corde vibrante dont l’extrémité estmobile[***]

L’étude d’une corde vibrante dont les deux extrémités
sont fixes ne permet pas de décrire rigoureusement un
instrument à corde : la puissance sonore rayonnée par
la corde elle-même est trop faible pour être perçue;
c’est le couplage de la corde avec la table d’harmonie
de l’instrument, au niveau des extrémités de la corde,
qui permet de produire une puissance sonore impor-
tante. Il faut donc tenir compte du mouvement des ex-
trémités de la corde. Nous adopterons un modèle sim-
plifié en considérant qu’une extrémité de la corde est
mobile.
La corde est supposée homogène, de masse linéique µ,
soumise à une tension T uniforme.

 Extrémité purement élastique

On considère que la corde est fixée en x = 0 à un ressort
de raideur K , au repos quand l’extrémité de la corde est
à l’élongation y(0, t ) = 0.
On suppose que l’autre extrémité de la corde est immo-
bile : y(L, t ) = 0.

y

0
y(0, t )

L x

On rappelle que l’élongation transversale vérifie
l’équation de d’Alembert

∂2 y

∂t 2 − c2 ∂
2 y

∂x2 = 0 avec c =
√

T

µ
.

1. On étudie les modes propres de vibration de la
corde en cherchant une solution de la forme

y(x, t ) = Y (x)cos(ωt ) .

Établir l’équation différentielle vérifiée par Y (x). On
posera k =ω/c.

2. À l’aide de la condition en x = L, exprimer Y (x) en
fonction de k, L et x.

3. À l’aide de la condition en x = 0, établir une relation

entre

(
∂y

∂x

)
x=0

et y(0, t ). En déduire une relation entre

Y ′(0) et Y (0).

4. En déduire que k vérifie une équation, dont les so-
lutions forment une suite discrète kn . Établir de même
l’équation vérifiée par les pulsations propres ωn .

5. Par une représentation graphique appropriée, com-
parer ωn à nω1. Quel est l’effet sur les fréquences
propres de la corde de la prise en compte d’une extré-
mité élastique ?
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 Extrémité purement massique

Une masse M0 se trouve à l’extrémité x = 0 de la corde;
elle peut se déplacer librement le long de l’axe O y . On
néglige l’influence de la pesanteur sur la masse M0.

M0

y

0 L
x

Les solutions de l’équation d’onde sont cherchée de la
forme y(x, t ) = Y (x)cos(ωt ), où Y (x) vérifie l’équation
différentielle établie à la question 1.a. La condition en

x = L, inchangée, conduit à l’expression de Y (x) établie
en 1.b.

6. À l’aide de la condition en x = 0, établir une relation

entre

(
∂y

∂x

)
x=0

et
∂2 y

∂t 2 (0, t ).

7. En déduire que k vérifie une équation, dont les so-
lutions forment une suite discrète kn . Établir de même
l’équation vérifiée par les pulsations propres ωn . On ne
cherchera pas à la résoudre.

8. Par une représentation graphique appropriée, com-
parer ωn à nω1. Quel est l’effet sur les fréquences
propres de la corde de la prise en compte d’une extré-
mité massique?

 Annexe : décomposition en série de Fourier

Soit u(t ) un signal de période T . On peut écrire u(t ) comme la somme d’une série trigonométrique :

u(t ) = a0

2
+

+∞∑
n=1

[
an cos(nωt )+bn sin(nωt )

]
avec


an = 2

T

ˆ T /2

T /2
u(t )cos(nωt )dt

bn = 2

T

ˆ T /2

T /2
u(t )sin(nωt )dt
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