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Corde vibrante — solution

1 — Résonance sur une corde vibrante

-
1. Un élément de la corde d¢ est soumis, en plus de la
—
tension a chaque extrémité, a la force de Laplace d Fy.
. d —>
Au premier ordre, onad?¢ =dx ey, et

=1 — — . TX —
dFpL=1IdxexABe), :IOBocoswtsdexez.

Notons T la tension de la corde.

Le principe de la dynamique appliqué a cet élément de
corde de masse dm = pdx s’écrit, en projection sur € :

% 1B rsin ™ ax 4 72
X—s = coswtsin—dx —.
HEX gz = 000 L ox2
On a donc
0z 02622—(1030)sin(nx)coswt
ar? ox2 \ pu L ’
T
avec [c=4/— .
7

2. On remplace z(x, t) par 'expression proposée dans
I’équation différentielle, et on obtient

4 mc
— ourw # —.
CZTEZ _wz p L

nc .

Lorsque w — T qui est la pulsation du mode fonda-
mental, on a C — oo : on observe un phénomene de
résonance. Dans la pratique, I'amplitude n’est pas infi-
nie!

2 — Corde vibrante

1. Notons T la tension de la corde, considérée comme
uniforme (résultat obtenu en projetant le PFD selon
Ox).
Le principe fondamental de la dynamique pour un élé-
ment de corde compris entre les abscisses x et x +dx
s'écrit
2
s

0 — —
dmﬁ y=—T(x, )+ T(x+dx,1). (1)

Projetons (1) selon € :

2

pd(a—t;/ =—-Tsina(x,t)+ Tsina(x+dx, 1)

~-Tax, )+ Ta(x+dx, 1)
Comme d¢ ~dx,ona

0 0
pdx— = —T% dx avec al(x,t)= %

On en déduit

7y 0%y
2
222 2
Cox2 o @
avec

i

Cc= — 1.
u

L'équation (2) est appelée équation de d’Alembert.

2. Soit Llalongueur dela corde d'une guitare. Le mode
fondamental est tel que

A—zL—f—l\/E
AT

La tension vaut donc T = 4L? f?p.
Ondonnepu~1g-m™!.
La longueur a pour ordre de grandeur L = 1 m; la fré-

quence a pour ordre de grandeur f ~ 102 Hz. On en dé-
duit T =4 x 1 x 100? x 1073 = 400 N.

En ordre de grandeur ' T =~ 10N .

3. Ecrivons que y(x,f) = f(x)cos(wt) est solution
de (2):

A0+ f(x) =0,
soit

de (1)2
a2t /=0

dont la solution générale est de la forme
. (WX wx
flx) = ASIH(T) + Bcos (T) .
La condition y(0, ) =0, Vt s’écrit f(0) = 0 = B. Finale-

ment :

fx) =Asin(%) .

La condition y(L, ) =0, V¢ s’écrit

. (oL
Asin|—1|=0.
c

. (oL , . wL
Comme A#0,onasin|— | =0,d ot — = n.
c c

Les seules pulsations possibles sont de la forme

(o7/

W, =Nnwy| avec wlzf.
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4. La condition initiale se linéarise en 3. Les conditions aux limites sont

Snx) (3) y(0,0)=y(L,t)=0; V.

. (TTX .
y(x,0) = Sbsm(T) - bsm(T .
Elles ne peuvent étre vérifiées que par une onde sta-
tionnaire (présence de deux nceuds de vibration);
seules les solutions y; et y, peuvent donc a priori
neit ) convenir.

La solution générale du mouvement est une superpo-
sition des modes propres :

et . (NTX
Y0 = ng‘l An s1n( L )COS( Si on considere la solution yy(x, t), la conditionen x =0
s’écrit 2Acos(wt) = 0, V¢, dou A =0 et yy(x,t) = 0.

la condition initiale s’écrivant alors Cette solution ne peut convenir.

0 o nnx La solution y3(x, ) donne d'une part :
y(x,0) = Z Ay sm(T) .
n=1

¥3(0,1) =[Acos(wt) + Bsin(w)]C =0

En identifiant avec(3), on en déduit que seuls les har-

moniques n =1 et n = 3 sont présents : d'ou € =0. D'autre part:

x (37 mx y3(L, ) = [Acos(wt) + Bsin(w?)]Dsin(kL) = 0.
Ajsin (T) + Agsin - |= 3bsin (T)
On a donc soit D = 0, ce qui entraine y3(x, ) = 0 qui est

— bsin (?’n_x) exclus, soit sin(kL) = 0. On a donc kL = nn, avec n € N.
L
T
De la relation de dispersion w = kc avec ¢ = {/—; on
valable Vx, d’ot1 A] =3b et A3 = —b. On en déduit H
déduit :
cm
w,=n—,avecneN .
(x,1) =3bsin(ﬂ)cos(ﬂ) L
Vi L L
. (3 - x) (3 o t) 4, D’apres la question précédente,
—bsin|—|c Ak

¥3(x,t) = D[Acos(w?) + Bsin(w?)] sin(kx).

» Cette onde n’est ni stationnaire, ni progressive.
La condition initiale s’écrit :

3 — Corde vibrante ¥3(x,0) =0= ADsin(kx),Vx.

1. Question de cours : établir On a donc soit D =0, soit A= 0.
Le premier cas est exclus car on aurait y3(x, t) = 0.
0’y To%y

B Onadonc A =0, ce qui donne
0>  uox?

0 avec |c=

=S

y3(x, ) = DBsin(wt) sin(kx).

2. Toutes les solutions sont harmoniques. , . L .
Lamplitude de la solution étant Y = DB, la solution de

Dans I'ordre : I'équation différentielle est donc

(1) onde progressive dans le sens x croissants;

(2) onde progressive dans le sens x décroissants; y3(x, ) = Ysin(w?)sin(kx) ,

(3) onde stationnaire;

(4) et (5) superposition de deux ondes progressives de avec . cnr nn T

sens opposés. k,= nz et wy,= nT = ;

On remarquera que le 4¢ cas est en fait une onde sta-

tionnaire : 5. Lobservation de 5 nceuds de déplacement corres-

pond a 4 fuseaux.
Ya(x, t) = Alcos(wt + kx) + cos(wt — kx)]

=2Acos(wt)cos(kx)

y(x, 1) A
. . . SN N
Le cas (5) n'est ni une onde progressive, ni une onde ’ \ / \L X
. . N
stationnaire. N \/\ N2 \/
N~ N - -
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La longueur d'un fuseau étant A/2, on a donc L = 2A.

c .
Comme A = ?, ou f est la fréquence, on en déduit,

compte tenu de I’expression de la célérité c:

2T
Fywu
d’ ol
AT  4x10
v X —0,10kg-m!.

T2 2x10°

La corde a pour masse linéique | u=100g-m™! .

4 — Duplomb oudel'or?

1. Effectuer I'analyse dimensionnelle... On retrouve
a=1/2etb=-1/2.

2. Dans la 1 expérience, la tension de la corde est
T = mg = pVg en notant p la masse volumique de la
boule et V son volume. On obtient ce résultat en écri-
vant que la somme des forces appliquées la boule est
nulle a I'équilibre : elle est soumise a son poids et a la
tension de la corde.

On observe deux fuseaux, donc la longueur d’'onde A =
c
— vaut A = L, soit

=L [PV,

Vv u

Dans la 2¢ expérience, la boule est soumise a la tension
de la corde, a son poids, et a la poussée d’Archiméde
(résultante des forces de pression de fluide).

On en déduit la tension de la corde est T = mp —I1, ol
1, = pe V g est la poussée d’Archiméde, en notant p. la
masse volumique de I'’eau.

On observe 4 fuseaux, donc L = 21, d’ot1 la longueur

d’onde
voL_1 [lp=pJVE
2 f g
On en déduit
12
A
f2 p—pe
soit
@f2-f*p=4f2pe.
On a donc
4 f?
PRt

On calcule p = 10,3pe = 10,3 x 103 kg-m~3.
La boule est — hélas — en plomb!
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5 — Etude d’une corde pincée

1. La condition initiale portant sur la position de la
corde s’écrit :

(x,0) = %x pour0< x< a
YU =9 ha-x <L’
T~ poura<x<

La condition initiale portant sur la vitesse s’écrit
oy
—(x,0)=0 .
ot

2. La vitesse de chaque point de la corde est donnée
par:

0 x new . (nux\ . (ncwt
O—J;(x,t):—nzz"lyo,lTsm(T)sm( T +1//n).

La condition initiale correspondante s’écrit alors :

oy & ncr nrx

—(x,0) = — —sin|[——|sin =0 Vx.
5501 == X you = sin (== Jsin,

On en déduit siny,, = 0; on peut donc choisir | ¢, =0,
Vn.On aalors :

ey nnx ncmt
(x, 1) = sin|—— cos( )
y I;I_VOn ( I ) I3

(4)

3. Le développement en série de Fourier d'une fonc-
tion impaire de période 2L s’écrit :

X . Xy X . X
F(x) = L b, sin (Zﬂnﬁ) = r;l b, s1n(n7rz)
avec:
L . .
by, = oL _LF(x) sin (Znnﬂ) dx

2 [t X
= —/ F(x) sin(mt—) dx.
L Jo L
Sur I'intervalle [0, L], 1a fonction F coincide par défini-
tion a I’élongation initiale : F(x) = y(x,0); on a donc:

/aﬁxsin(nnf) dx
0o a L
+/LMsin(nnf) dx}
a L-a L
E Z/Oaxsin(nn%) dx
Lila/aL(L—x)sin(nn%) dx| .

L
nnw s .
Posons k = A les intégrales se calculent en intégrant

2
bn:Z

+

par parties :

a X a 1 a
/ xsinkxdx = [—— cos(kx)] +— / cos(kx)dx
0 k 0 k 0

1 1
= —% cos(ka)+ﬁ [sin(kx)]g = —% cos(ka)+ﬁ sin(ka)
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et

L

al cos(kx)

L
/ (L—x)sin(kx)dx = [—

a

a cos(ka) — i [sin(kx)]L

e L-
—%/a cos(kx)dx = 2

L— in(k
= ka cos(ka) + y

= 0 d’apres les conditions aux limites. On a

car sin(kL)

donc:
2 h h .
by, = I [—E cos(ka) + e sin(ka)
h h
+E cos(ka) + m sin(ka)
2h
- =" sin(k
al—a) sin(ka)

soit en remplacant k par son expression :

2h1?

n= msin(nnz) .

La fonction F se décompose sur Ren :
o0
) X
F(x) = n;l b, sm(nnz) )

Comme y(x,0) = F(x) sur [0, L], on peut écrire :

00 ) x
y(x,0) = nZ::l by sin (mrz) .

Or, d’apres I'expression (4) établie a la question précé-
dente :

y(x,0) = Z Yonsin ( nzx)

En identifiant les deux derniéres égalités, on peut en
déduire yp, = b,. En remplacant b, par son expres-
sion, on en déduit le développement de la solution de
I’équation d’onde :

= 2hI?

=Y
Y0 ,ZX::I n?m?a(L—

4. L'amplitude de 'harmonique de rang n est :

sin(rm%) .

_ 2n1?
" n2n2a(L - a)

Les amplitudes des harmoniques décroissent donc en
1/n?; elles sont rapidement trés faibles quand n aug-
mente. Le son ne sera pas tres riche en harmoniques,
c’est-a-dire pas trés brillant a I'écoute.

5. L'amplitude de 'harmonique de rang n est propor-
a
tionnelle a sin (nnz) Elle est nulle si le point d’excita-

a
tion de la corde a une abscisse a telle que sin (nnz) =

. pL o LoD .
0, soit a = —, avec p entier. L'endroit ol1 'on excite la

n
corde influe donc sur le timbre du son émis.
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N . . nma nna
6. Lorsque a est tres petit (a < L),onasin—— ~ —

et L—a~ L, et'expression de b, se simplifie en

b 2hI? 1
~ — n—,
" m2m2al L

soit :

2h
bn: - |.
nm

Lamplitude des harmoniques ne décroit plus qu'en
1/n :le son émis est plus riche en harmoniques.

7. Uamplitude de l'harmonique de rang n varie
comme

B a
by, = p sm(nnL) .
On peut calculer le CGS pour les 30 premiers harmo-
niques avec Python par exemple, en utilisant |'expres-
sion

Zn 1nsm(

1 .
PREA wz sin (*

)
nPia

‘)

L
4

Pour une attaque de la corde a a = Z, on trouve CGS =
1,18; pour a = %, on obtient CGS = 3,37. Le son est
plus brillant si on pince la corde en un point proche de
son extrémité.

6 — Etude d’une corde frappée
1. La corde étant initialement au repos, on en déduit
y(x,0)=0/|,Vxel0,L].
Les vitesses des points de la corde sont donnés a t =0
par:
0 pour0<x<a
oy

) . a(x,O): u poura<x<ate
0 poura+e<x<L

2. La condition portant sur y(x,0) s’écrit :

o0

y(x,0=> yOnsm( 7

n=1

)cos(wn) , Vxel0,L]

N . T .
d’ot cos(yy,) =0, Vn. Le choix |y, = = convient.

2
I'équation de d’Alembert est cherchée sous la forme :

ncmt n)

ncmt
Comme cos( = sm(T), la solution de

)

&0 . (NTX\ .
y(x, 1) = n;l Yon Sin (T) s1n(

ncnt)
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3. Le développement en série de Fourier d'une fonc-
tion impaire de période 2L s’écrit :

Vi(x)= i b, sin (Znn%) = i by, sin(nn%) (6)
= n=1

n=1
avec :
L X
b, =— V (x)sin (Znn—) dx
2L | ; 2L

2 L
= —/ V(x) sin(nnf) dx.
LJo L
Sur l'intervalle [0, L], la fonction V coincide par défini-

tion a la vitesse initiale : V(x) = G_Jt/ (x,0); onadonc:

2 [ x
b, = —/ usin(nn—) dx.
LJas L

. . X .
Comme e < L, la fonction sm(nnz), de période 2L,
varie trés peu sur un intervalle de largeur e; on peut

donc considérer que pour a — —

sin (nn%) =~ sin (%) On en déduit :

e
<x< a+5, elle vaut

by, = %uesin(%)

D’apres (5) :

0 X ncew ncwt) . (nAXx
a—};(x, t):n;lTyOncos( )sm(—)
On en déduit :
oy X nen . (nTX
6_t(x’ 0) = nz::1 Tyon sm(T) .

0
Comme par construction V(x) = G_Jt/(x' 0), en identi-
fiant avec le développement (6) on obtient :

ncmn

2ue (mm) _ TJ’On

b,, = —sin|——
"L L

d’ot1 'amplitude de ’harmonique de rang n :

2ue . (nza)

on = —— sin
¥ ncm

La solution de I'équation de d’Alembert vérifiant les
conditions initiales s’écrit alors :

X 2ue . (nma\ . (nux\ . [(ncmwt
y(x,t)—n;lnmsm( I )sm( I )sm( T )

Les amplitudes des harmoniques décroissent en 1/n,
plus lentement que dans le cas d’'une corde pincée (se
reporter a l'exercice précédent, ou 1'on a établi une dé-
croissance en 1/712). Le son d’un piano est plus riche
en harmoniques que le son d’'un clavecin (instrument
a cordes pincées).
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4. L'amplitude de 'harmonique de rang n, donnée par

2ue (mza)

on = —— Sin
y ncm

est nulle si a, position du point d'impact du marteau
sur la corde, est tel que sin(%¢) = 0, soit 274 = p,

avec p entier. Il faut donc que
L .
ap=p— avecpentier,l<p<sn-1.
n

On supprimera '’harmonique de rang n = 7 en choisis-

na .
sant I = pm, soit

L
azp?.

Comme 0 < a < L, 6 positions conviennent, de p=1a
p=6.

Le modele étudié ici est tres simplifié. Le spectre du son
ne dépend pas seulement de la position du point d'im-
pact, mais aussi du poids et de la forme du marteau,
du diametre de la corde, de la durée du contact entre
le marteau et la corde. Dans la pratique, la position du
marteau nest pas calculée de facon a éteindre des har-
moniques, mais de fagon a obtenir la sonorité voulue.
En général, al L variede1/12 a1/17 pour un piano mo-
derne.

7 — Corde lestée

1. On impose un nceud de vibration en x = 0; on
cherche donc une solution en onde stationnaire, telle
que la partie spatiale soit nulle pour x = 0. On écrit
donc

y1(x, ) = Yisin(kx) cos(wt +v1).

On impose de méme un nceud de vibration en x = L;
on cherche donc une solution en onde stationnaire,
telle que la partie spatiale soit nulle pour x = L. On écrit
donc

Yo(x, t) = Yosin[k(L— x)] cos(wt + ).

2. On écrit d'une part la continuité de la corde en son

milieu, soit
J/l 2 ) - J/2 2 y .

On écrit le principe fondamental de la dynamique ap-
pliqué ala masse mg, en projection selon Oy :

(7)

62 N4l

mow (L12,1) = sz + le

olla projection selon Oy de la force de tension exercée
par la partie droite de la corde est

3
Tpy = Tog(le, )

5/8
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et celle exercée par la partie gauche
0N
le = —TOW(L/Z, t) .

On adonc

2

3 B B
12,0 =T, [ﬂ(uz, -2 (12,0
0x 0x

-5 . (8
mo—= 2 (8)

3. Avec les expressions de y, (x, t) et y»(x, t) établies a
la question 1, la relation (7) s’écrit

. (kL . (kL
Y sin > cos(wt+vy) = Yo sin > cos(wt+yy) Vi.

Cette relation peut étre vérifiée si
sin|—|=0
2

, ... kL
c’est-a-dire si — = n.
2
27 .
Les modes propres k; = nT conviennent.

Les modes propres de la corde non lestée sont k,, = n%
Le sous-ensemble qui convient ici est constitué des
modes propres pairs de la corde non lestée.

» Ces modes propres présentent un noeud de vibra-
tion au milieu, 1a ol est présente la masse my.
Cette masse restant immobile pour ces modes, elle
ne perturbe pas le mouvement de la corde, et ces
modes continuent de pouvoir étre observés.

4. Sisin(kL/2) # 0, la relation de continuité s’écrit
Yicos(wt+ ;) =Yocos(wt+yy) V.

On a donc y; =y et Y] = Y>. Notons ¢ le déphasage
commune et Yy 'amplitude commune. On a donc

y1(x, ) = Yysin(kx) cos(wt + )

et

Yo(x, ) = Yosin[k(L— x)] cos(wt + o).
On adonc

6y1 _

E(L/Z) = kYycos(kL/2)cos(wt+g)
et

5
%(L/z) = kY cos(kL/2) cos(@t + ).
X

Larelation (8) s’écrit, apres simplification par cos(wt +
W) car la relation doit étre vérifiée pour tout ¢

2 . (kL kL
—w”“myYpsin > =-2kYyTycos >

soit
9 . (kL kL
w”mgsin > =2kTycos -

CPGE PSI 2025-2026
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T
On en déduit avec ¢ = —2 et w = kc

U
(wL) 1 mow? mowc  Mowc
cotan|— | = = = =
2c tan(“z)—g‘) ZkTo 2T0 Z,UCZ
_my (wL)
B puL\ 2c
soit
(wL) (wL) my
cotan|—|=a|— avec |a=—|.
2c 2c pL

my
On remarque que @ = —, ot m = uL estla masse de la
m

corde.

oL N . .
En posant X = g Of se raméne a la résolution de

cotan X = aX. Nous pouvons faire une résolution gra-
phique, en cherchant les intersections des graphes de
f(X)=cotanX et g(x) = a X.

cotan X
\ ‘ a>1
\ \ a1
z 4 3n 2 Sm 3 m X
2 2 2 2

On peut distinguer deux cas limites.

Pour a « 1, soit my << m, on obtient les solutions

N 2n+1n

oit en+
SO1 Wy =~ n —_—.
2 " L

n

On retrouve les modes impairs de la corde vibrante
non lestée (la masse du lest est négligeable). Ces modes

. . . CTt
viennent en compléments des modes pairs w, = ZnT
trouvés précédemment.

Pour a > 1, soit my > m , on obtient les solutions
. fo3/1
Xp=nm soit w,= ZnT.

On retrouve les modes pairs de la corde vibrantes, déja
déterminés précédemment : si la masse du lest est tres
élevée, il impose un nceud de vibration du fait de iner-
tie (la corde ne peut le mettre en mouvement).
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8 — Corde vibrante dont I'extrémité est mobile

Extrémité purement élastique

2
1. L'élongation vérifie I'équation de d’Alembert 7y

) 0r?
0%y

2— = = Z

c Fp) 0, avec ¢ 0

Avec y(x,t) = Y(x)cos(wt), cette équation s'écrit

—w?Y (x)cos(wt) — c2Y" (x) cos(wt) = 0, soit
Y'(x)+k*Y(x)=0

oul'onaposé k=w/c.

2. Lacondition alalimite étant y(L) = 0, nous écrivons
la solution générale de ’équation précédente sous la
forme d'un sinus (un sinus étant nul quand son argu-
ment est nul, la prise en compte de la condition sera
plus simple) :

Y(x) = Asin(kx +¢).

La condition Y (L) = 0 s’écrit alors Y (L) = Asin(kL +
) = 0; on peut choisir ¢ = —kL, d’olt

Y (x) = Asin[k(x—L)] |.
3. La composante verticale de la tension de la corde a

I'extrémité x = 0 est donnée par

d
T, (0, = Tsina(0, £) ~ Ta(0, ) = T(—y) .
0x x=0

Elle est d’autre part égale a la tension du ressort dont
I’élongation est y(0, t), d’ou la relation

T(G_y) =Ky(0,1)
axx:O_ U .

On en déduit TY'(0) cos(wt) = KY (0) cos(wt), d’ou
TY'(0)=KY(0) .
4. La condition précédente s’écrit
TkAcos(kl)=—-KAsin(kL).

Lensemble de ses solutions forme un ensemble dis-
cret. Cette équation peut s’écrire

kn

tan(k,L) = — -

Avec wy, = k;,c, on a de méme

(wnL) w, T
tan =— .
Kc

5. Onreprésente sur le méme graphe

owT
et glw)=——1:

wlL
f () —tan(T) Ko

CPGE PSI 2025-2026

Lycée Jean Perrin

Les fréquence propres sont données par l'intersec-
tion des deux courbes. Les points correspondant aux
harmoniques, de pulsations nw; dans le cas de l'ex-
trémité rigide, sont notés H,. On voit sur le graphe
que wy < nw;  : leffet d’'une extrémité élastique est
d’abaisser les fréquences propres.

Extrémité purement massique

6. Lacomposante verticale de la tension de la corde en
0

X =0 a été établie précédemment : T, (0, 1) = T(—y) .
ox x=0

Le principe fondamental de la dynamique appliqué a

I'extrémité de la corde de masse M, s’écrit, en projec-

tion selon ¢,

o’y ay
My—0,0))=T|— .
05z P (ax)x:o
7. Avec y(x,t) = Asin[k(x — L)] cos(wt), on en déduit

Tk
—w?Mysin(-kL) = Tkcos(kL), d'out tan(kL) =
ow

5
Comme w = kc, on en déduit

T

L)=——
tan(k, L) MocZk,

)

I'indice n précisant que les solutions forment un en-
semble discret.

Comme w = k¢, on a

(wnL) T
tan

c Mycw,,

8. On représente sur le méme graphe

wlL
f(w)—tan(T) et g(w)—Mocw
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TD ondesn° 2 Corde vibrante — solution

T
Moyew
4_

Les fréquence propres sont données par l'intersection
des deux courbes. Les points correspondant aux har-
moniques, de pulsations nw; dans le cas de l'extré-
] mité rigide, sont noté H,. On voit sur le graphe que
5 W, > nw | :Peffet d'une extrémité massique est d’éle-
ver les fréquences propres.

H3/w_L

2I Hl;‘ ; H2 é 1‘0 ¢

~

tan(“’T)
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