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TD ondes no 2 Corde vibrante— solution

1—  Résonance sur une corde vibrante

1. Un élément de la corde d
#»

ℓ est soumis, en plus de la
tension à chaque extrémité, à la force de Laplace d

#»
F L.

Au premier ordre, on a d
#»

ℓ = dx #»e x , et

d
#»
F L = I dx #»e x ∧B #»e y = I0B0 cosωt sin

πx

L
dx #»e z .

Notons T la tension de la corde.

Le principe de la dynamique appliqué à cet élément de
corde de masse dm =µdx s’écrit, en projection sur #»e z :

µdx
∂2z

∂t 2 = I0B0 cosωt sin
πx

L
dx +T

∂2z

∂x2 .

On a donc

∂2z

∂t 2 − c2 ∂
2z

∂x2 =
(

I0B0

µ

)
sin

(πx

L

)
cosωt ,

avec c =
√

T

µ
.

2. On remplace z(x, t ) par l’expression proposée dans
l’équation différentielle, et on obtient

C = I0

B0
µ

1
c2π2

L2 −ω2
pour ω ̸= πc

L
.

Lorsque ω→ πc

L
, qui est la pulsation du mode fonda-

mental, on a C → ∞ : on observe un phénomène de
résonance. Dans la pratique, l’amplitude n’est pas infi-
nie !

2—  Corde vibrante

1. Notons T la tension de la corde, considérée comme
uniforme (résultat obtenu en projetant le PFD selon
Ox).

Le principe fondamental de la dynamique pour un élé-
ment de corde compris entre les abscisses x et x +dx
s’écrit

dm
∂2 y

∂t 2
#»e y =−#»

T (x, t )+ #»
T (x +dx, t ) . (1)

Projetons (1) selon #»e y :

µdℓ
∂2 y

∂t 2 =−T sinα(x, t )+T sinα(x +dx, t )

≃−Tα(x, t )+Tα(x +dx, t )

Comme dℓ≃ dx, on a

µdx
∂2 y

∂t 2 =−T
∂α

∂x
dx avec α(x, t ) = ∂y

∂x
.

On en déduit

c2 ∂
2 y

∂x2 − ∂2 y

∂t 2 = 0 (2)

avec

c =
√

T

µ
.

L’équation (2) est appelée équation de d’Alembert.

2. Soit L la longueur de la corde d’une guitare. Le mode
fondamental est tel que

Λ= 2L = c

f
= 1

f

√
T

µ
.

La tension vaut donc T = 4L2 f 2µ.

On donne µ≈ 1 g ·m−1.

La longueur a pour ordre de grandeur L ≈ 1 m; la fré-
quence a pour ordre de grandeur f ≈ 102 Hz. On en dé-
duit T ≈ 4×1×1002 ×10−3 = 400 N.

En ordre de grandeur T ≈ 102 N .

3. Écrivons que y(x, t ) = f (x)cos(ωt ) est solution
de (2) :

c2 f ′′(x)+ω2 f (x) = 0,

soit
d2 f

dx2 + ω2

c2 f (x) = 0

dont la solution générale est de la forme

f (x) = A sin
(ωx

c

)
+B cos

(ωx

c

)
.

La condition y(0, t ) = 0, ∀t s’écrit f (0) = 0 = B . Finale-
ment :

f (x) = A sin
(ωx

c

)
.

La condition y(L, t ) = 0, ∀t s’écrit

A sin

(
ωL

c

)
= 0.

Comme A ̸= 0, on a sin

(
ωL

c

)
= 0, d’où

ωL

c
= nπ.

Les seules pulsations possibles sont de la forme

ωn = nω1 avec ω1 = cπ

L
.
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4. La condition initiale se linéarise en

y(x,0) = 3b sin
(πx

L

)
−b sin

(
3πx

L

)
. (3)

La solution générale du mouvement est une superpo-
sition des modes propres :

y(x, t ) =
∞∑

n=1
An sin

(nπx

L

)
cos

(
ncπt

L

)
,

la condition initiale s’écrivant alors

y(x,0) =
∞∑

n=1
An sin

(nπx

L

)
.

En identifiant avec(3), on en déduit que seuls les har-
moniques n = 1 et n = 3 sont présents :

A1 sin
(πx

L

)
+ A3 sin

(
3πx

L

)
= 3b sin

(πx

L

)
−b sin

(
3πx

L

)
valable ∀x, d’où A1 = 3b et A3 =−b. On en déduit

y(x, t ) = 3b sin
(πx

L

)
cos

(
cπt

L

)
−b sin

(
3πx

L

)
cos

(
3cπt

L

)
.

ä Cette onde n’est ni stationnaire, ni progressive.

3—  Corde vibrante

1. Question de cours : établir

∂2 y

∂t 2 − T

µ

∂2 y

∂x2 = 0 avec c =
√

T

µ
.

2. Toutes les solutions sont harmoniques.

Dans l’ordre :

(1) onde progressive dans le sens x croissants ;

(2) onde progressive dans le sens x décroissants ;

(3) onde stationnaire ;

(4) et (5) superposition de deux ondes progressives de
sens opposés.

On remarquera que le 4e cas est en fait une onde sta-
tionnaire :

y4(x, t ) = A [cos(ωt +kx)+cos(ωt −kx)]

= 2A cos(ωt )cos(kx)

Le cas (5) n’est ni une onde progressive, ni une onde
stationnaire.

3. Les conditions aux limites sont

y(0, t ) = y(L, t ) = 0 ; ∀t .

Elles ne peuvent être vérifiées que par une onde sta-
tionnaire (présence de deux nœuds de vibration) ;
seules les solutions y3 et y4 peuvent donc a priori
convenir.

Si on considère la solution y4(x, t ), la condition en x = 0
s’écrit 2A cos(ωt ) = 0, ∀t , d’où A = 0 et y4(x, t ) = 0.
Cette solution ne peut convenir.

La solution y3(x, t ) donne d’une part :

y3(0, t ) = [A cos(ωt )+B sin(ωt )]C = 0

d’où C = 0. D’autre part :

y3(L, t ) = [A cos(ωt )+B sin(ωt )]D sin(kL) = 0.

On a donc soit D = 0, ce qui entraîne y3(x, t ) = 0 qui est
exclus, soit sin(kL) = 0. On a donc kL = nπ, avec n ∈ N.

De la relation de dispersion ω = kc avec c =
√

T

µ
; on

déduit :

ωn = n
cπ

L
,avec n ∈ N .

4. D’après la question précédente,

y3(x, t ) = D[A cos(ωt )+B sin(ωt )]sin(kx) .

La condition initiale s’écrit :

y3(x,0) = 0 = AD sin(kx) ,∀x .

On a donc soit D = 0, soit A = 0.

Le premier cas est exclus car on aurait y3(x, t ) = 0.

On a donc A = 0, ce qui donne

y3(x, t ) = DB sin(ωt )sin(kx) .

L’amplitude de la solution étant Y = DB , la solution de
l’équation différentielle est donc

y3(x, t ) = Y sin(ωt )sin(kx) ,

avec

kn = n
π

L
et ωn = n

cπ

L
= nπ

L

√
T

µ
.

5. L’observation de 5 nœuds de déplacement corres-
pond à 4 fuseaux.

x

y(x, t )

L

λ
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La longueur d’un fuseau étant λ/2, on a donc L = 2λ.

Comme λ = c

f
, où f est la fréquence, on en déduit,

compte tenu de l’expression de la célérité c :

L = 2

f

√
T

µ

d’où :

µ= 4T

L2 f 2 = 4×10

22 ×102 = 0,10 kg ·m−1 .

La corde a pour masse linéique µ= 100 g ·m−1 .

4—  Du plomb ou de l’or?

1. Effectuer l’analyse dimensionnelle. . . On retrouve
a = 1/2 et b =−1/2.

2. Dans la 1re expérience, la tension de la corde est
T = mg = ρV g en notant ρ la masse volumique de la
boule et V son volume. On obtient ce résultat en écri-
vant que la somme des forces appliquées la boule est
nulle à l’équilibre : elle est soumise à son poids et à la
tension de la corde.

On observe deux fuseaux, donc la longueur d’onde λ=
c

f
vaut λ= L, soit

L = 1

f

√
ρV g

µ
.?

Dans la 2e expérience, la boule est soumise à la tension
de la corde, à son poids, et à la poussée d’Archimède
(résultante des forces de pression de fluide).

On en déduit la tension de la corde est T = mp −Πa où
Πa = ρeV g est la poussée d’Archimède, en notant ρe la
masse volumique de l’eau.

On observe 4 fuseaux, donc L = 2λ′, d’où la longueur
d’onde

λ′ = L

2
= 1

f ′

√
(ρ−ρe)V g

µ
.

On en déduit

4 = f ′2

f 2

ρ

ρ−ρe

soit

(4 f 2 − f ′2)ρ = 4 f 2ρe .

On a donc

ρ = 4 f 2

4 f 2 − f ′2 ρe .

On calcule ρ = 10,3ρe = 10,3×103 kg ·m−3.

La boule est — hélas — en plomb!

5—  Étude d’une corde pincée

1. La condition initiale portant sur la position de la
corde s’écrit :

y(x,0) =
{

h
a x pour 0⩽ x ⩽ a
h(L−x)

L−a pour a < x ⩽ L
.

La condition initiale portant sur la vitesse s’écrit

∂y

∂t
(x,0) = 0 .

2. La vitesse de chaque point de la corde est donnée
par :

∂y

∂t
(x, t ) =−

∞∑
n=1

y0n
ncπ

L
sin

(nπx

L

)
sin

(
ncπt

L
+ψn

)
.

La condition initiale correspondante s’écrit alors :

∂y

∂t
(x,0) =−

∞∑
n=1

y0n
ncπ

L
sin

(nπx

L

)
sinψn = 0 ∀x .

On en déduit sinψn = 0; on peut donc choisir ψn = 0 ,

∀n. On a alors :

y(x, t ) =
∞∑

n=1
y0n sin

(nπx

L

)
cos

(
ncπt

L

)
. (4)

3. Le développement en série de Fourier d’une fonc-
tion impaire de période 2L s’écrit :

F (x) =
∞∑

n=1
bn sin

(
2πn

x

2L

)
=

∞∑
n=1

bn sin
(
nπ

x

L

)
avec :

bn = 2

2L

ˆ L

−L
F (x)sin

(
2πn

x

2L

)
dx

= 2

L

ˆ L

0
F (x)sin

(
nπ

x

L

)
dx .

Sur l’intervalle [0,L], la fonction F coïncide par défini-
tion à l’élongation initiale : F (x) = y(x,0) ; on a donc :

bn = 2

L

[ˆ a

0

h

a
x sin

(
nπ

x

L

)
dx

+
ˆ L

a

h(L−x)

L−a
sin

(
nπ

x

L

)
dx

]

= 2

L

[
h

a

ˆ a

0
x sin

(
nπ

x

L

)
dx

+ h

L−a

ˆ L

a
(L−x)sin

(
nπ

x

L

)
dx

]
.

Posons k = nπ

L
; les intégrales se calculent en intégrant

par parties :
ˆ a

0
x sinkx dx =

[
−x

k
cos(kx)

]a

0
+ 1

k

ˆ a

0
cos(kx)dx

=−a

k
cos(ka)+ 1

k2 [sin(kx)]a
0 =−a

k
cos(ka)+ 1

k2 sin(ka)
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et
ˆ L

a
(L−x)sin(kx)dx =

[
−L−x

k
cos(kx)

]L

a

− 1

k

ˆ L

a
cos(kx)dx = L−a

k
cos(ka)− 1

k2

[
sin(kx)

]L

a

= L−a

k
cos(ka)+ sin(ka)

k2

car sin(kL) = 0 d’après les conditions aux limites. On a
donc :

bn = 2

L

[
−h

k
cos(ka)+ h

ak2 sin(ka)

+h

k
cos(ka)+ h

k2(L−a)
sin(ka)

]
= 2h

k2a(L−a)
sin(ka)

soit en remplaçant k par son expression :

bn = 2hL2

n2π2a(L−a)
sin

(
nπ

a

L

)
.

La fonction F se décompose sur R en :

F (x) =
∞∑

n=1
bn sin

(
nπ

x

L

)
.

Comme y(x,0) = F (x) sur [0,L], on peut écrire :

y(x,0) =
∞∑

n=1
bn sin

(
nπ

x

L

)
.

Or, d’après l’expression (4) établie à la question précé-
dente :

y(x,0) =
∞∑

n=1
y0n sin

(nπx

L

)
.

En identifiant les deux dernières égalités, on peut en
déduire y0n = bn . En remplaçant bn par son expres-
sion, on en déduit le développement de la solution de
l’équation d’onde :

y(x, t ) =
∞∑

n=1

2hL2

n2π2a(L−a)
sin

(
nπ

a

L

)
sin

(nπx

L

)
sin

(
ncπt

L

)
.

4. L’amplitude de l’harmonique de rang n est :

bn = 2hL2

n2π2a(L−a)
sin

(
nπ

a

L

)
.

Les amplitudes des harmoniques décroissent donc en
1/n2 ; elles sont rapidement très faibles quand n aug-
mente. Le son ne sera pas très riche en harmoniques,
c’est-à-dire pas très brillant à l’écoute.

5. L’amplitude de l’harmonique de rang n est propor-

tionnelle à sin
(
nπ

a

L

)
. Elle est nulle si le point d’excita-

tion de la corde a une abscisse a telle que sin
(
nπ

a

L

)
=

0, soit a = pL

n
, avec p entier. L’endroit où l’on excite la

corde influe donc sur le timbre du son émis.

6. Lorsque a est très petit (a ≪ L), on a sin
nπa

L
∼ nπa

L
et L−a ∼ L, et l’expression de bn se simplifie en

bn ∼ 2hL2

n2π2aL
nπ

a

L
,

soit :

bn = 2h

nπ
.

L’amplitude des harmoniques ne décroît plus qu’en
1/n : le son émis est plus riche en harmoniques.

7. L’amplitude de l’harmonique de rang n varie
comme

bn = B

n2 sin
(
nπ

a

L

)
.

On peut calculer le CGS pour les 30 premiers harmo-
niques avec Python par exemple, en utilisant l’expres-
sion ∑30

n=1
1
n sin

(nPia
L

)∑30
n=1

1
n2 sin

(nPia
L

) .

Pour une attaque de la corde à a = L
4 , on trouve CGS =

1,18; pour a = L
20 , on obtient CGS = 3,37. Le son est

plus brillant si on pince la corde en un point proche de
son extrémité.

6—  Étude d’une corde frappée

1. La corde étant initialement au repos, on en déduit
y(x,0) = 0 , ∀x ∈ [0,L].

Les vitesses des points de la corde sont donnés à t = 0
par :

∂y

∂t
(x,0) =


0 pour 0⩽ x < a

u pour a ⩽ x < a +e

0 pour a +e ⩽ x ⩽ L

2. La condition portant sur y(x,0) s’écrit :

y(x,0) =
∞∑

n=1
y0n sin

(nπx

L

)
cos(ψn) = 0 , ∀x ∈ [0,L]

d’où cos(ψn) = 0, ∀n. Le choix ψn =−π

2
convient.

Comme cos

(
ncπt

L
− π

2

)
= sin

(
ncπt

L

)
, la solution de

l’équation de d’Alembert est cherchée sous la forme :

y(x, t ) =
∞∑

n=1
y0n sin

(nπx

L

)
sin

(
ncπt

L

)
. (5)
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3. Le développement en série de Fourier d’une fonc-
tion impaire de période 2L s’écrit :

V (x) =
∞∑

n=1
bn sin

(
2πn

x

2L

)
=

∞∑
n=1

bn sin
(
nπ

x

L

)
(6)

avec :

bn = 2

2L

ˆ L

−L
V (x)sin

(
2πn

x

2L

)
dx

= 2

L

ˆ L

0
V (x)sin

(
nπ

x

L

)
dx .

Sur l’intervalle [0,L], la fonction V coïncide par défini-

tion à la vitesse initiale : V (x) = ∂y

∂t
(x,0) ; on a donc :

bn = 2

L

ˆ a+ e
2

a− e
2

u sin
(
nπ

x

L

)
dx .

Comme e ≪ L, la fonction sin
(
nπ

x

L

)
, de période 2L,

varie très peu sur un intervalle de largeur e ; on peut

donc considérer que pour a − e

2
⩽ x ⩽ a + e

2
, elle vaut

sin
(
nπ

x

L

)
≃ sin

(nπa

L

)
. On en déduit :

bn = 2

L
ue sin

(nπa

L

)
.

D’après (5) :

∂y

∂t
(x, t ) =

∞∑
n=1

ncπ

L
y0n cos

(
ncπt

L

)
sin

(nπx

L

)
.

On en déduit :

∂y

∂t
(x,0) =

∞∑
n=1

ncπ

L
y0n sin

(nπx

L

)
.

Comme par construction V (x) = ∂y

∂t
(x,0), en identi-

fiant avec le développement (6) on obtient :

bn = 2ue

L
sin

(nπa

L

)
= ncπ

L
y0n

d’où l’amplitude de l’harmonique de rang n :

y0n = 2ue

ncπ
sin

(nπa

L

)
.

La solution de l’équation de d’Alembert vérifiant les
conditions initiales s’écrit alors :

y(x, t ) =
∞∑

n=1

2ue

ncπ
sin

(nπa

L

)
sin

(nπx

L

)
sin

(
ncπt

L

)
.

Les amplitudes des harmoniques décroissent en 1/n,
plus lentement que dans le cas d’une corde pincée (se
reporter à l’exercice précédent, où l’on a établi une dé-
croissance en 1/n2). Le son d’un piano est plus riche
en harmoniques que le son d’un clavecin (instrument
à cordes pincées).

4. L’amplitude de l’harmonique de rang n, donnée par

y0n = 2ue

ncπ
sin

(nπa

L

)
est nulle si a, position du point d’impact du marteau
sur la corde, est tel que sin

(nπa
L

) = 0, soit nπa
L = pπ,

avec p entier. Il faut donc que

ap = p
L

n
avec p entier, 1⩽ p ⩽ n −1 .

On supprimera l’harmonique de rang n = 7 en choisis-

sant
7πa

L
= pπ, soit

a = p
L

7
.

Comme 0 < a < L, 6 positions conviennent, de p = 1 à
p = 6.

Le modèle étudié ici est très simplifié. Le spectre du son
ne dépend pas seulement de la position du point d’im-
pact, mais aussi du poids et de la forme du marteau,
du diamètre de la corde, de la durée du contact entre
le marteau et la corde. Dans la pratique, la position du
marteau n’est pas calculée de façon à éteindre des har-
moniques, mais de façon à obtenir la sonorité voulue.
En général, a/L varie de 1/12 à 1/17 pour un piano mo-
derne.

7—  Corde lestée

1. On impose un nœud de vibration en x = 0; on
cherche donc une solution en onde stationnaire, telle
que la partie spatiale soit nulle pour x = 0. On écrit
donc

y1(x, t ) = Y1 sin(kx)cos(ωt +ψ1) .

On impose de même un nœud de vibration en x = L ;
on cherche donc une solution en onde stationnaire,
telle que la partie spatiale soit nulle pour x = L. On écrit
donc

y2(x, t ) = Y2 sin[k(L−x)]cos(ωt +ψ2) .

2. On écrit d’une part la continuité de la corde en son
milieu, soit

y1

(
L

2
, t

)
= y2

(
L

2
, t

)
. (7)

On écrit le principe fondamental de la dynamique ap-
pliqué à la masse m0, en projection selon O y :

m0
∂2 y1

∂t 2 (L/2, t ) = T2y +T1y

où la projection selon O y de la force de tension exercée
par la partie droite de la corde est

T2y = T0
∂y2

∂x
(L/2, t )
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et celle exercée par la partie gauche

T1y =−T0
∂y1

∂x
(L/2, t ) .

On a donc

m0
∂2 y1

∂t 2 (L/2, t ) = T0

[
∂y2

∂x
(L/2, t )− ∂y1

∂x
(L/2, t )

]
. (8)

3. Avec les expressions de y1(x, t ) et y2(x, t ) établies à
la question 1, la relation (7) s’écrit

Y1 sin

(
kL

2

)
cos(ωt+ψ1) = Y2 sin

(
kL

2

)
cos(ωt+ψ2) ∀t .

Cette relation peut être vérifiée si

sin

(
kL

2

)
= 0

c’est-à-dire si
kL

2
= nπ.

Les modes propres kn = n
2π

L
conviennent.

Les modes propres de la corde non lestée sont kn = n
π

L
.

Le sous-ensemble qui convient ici est constitué des
modes propres pairs de la corde non lestée.

ä Ces modes propres présentent un nœud de vibra-
tion au milieu, là où est présente la masse m0.
Cette masse restant immobile pour ces modes, elle
ne perturbe pas le mouvement de la corde, et ces
modes continuent de pouvoir être observés.

4. Si sin(kL/2) ̸= 0, la relation de continuité s’écrit

Y1 cos(ωt +ψ1) = Y2 cos(ωt +ψ2) ∀t .

On a donc ψ1 =ψ2 et Y1 = Y2. Notons ψ0 le déphasage
commune et Y0 l’amplitude commune. On a donc

y1(x, t ) = Y0 sin(kx)cos(ωt +ψ0)

et
y2(x, t ) = Y0 sin[k(L−x)]cos(ωt +ψ0) .

On a donc

∂y1

∂x
(L/2) = kY0 cos(kL/2)cos(ωt +ψ0)

et
∂y2

∂x
(L/2) =−kY0 cos(kL/2)cos(ωt +ψ0) .

La relation (8) s’écrit, après simplification par cos(ωt +
ψ0) car la relation doit être vérifiée pour tout t

−ω2m0Y0 sin

(
kL

2

)
=−2kY0T0 cos

(
kL

2

)
,

soit

ω2m0 sin

(
kL

2

)
= 2kT0 cos

(
kL

2

)
.

On en déduit avec c2 = T0

µ
et ω= kc

cotan

(
ωL

2c

)
= 1

tan
(
ωL
2c

) = m0ω
2

2kT0
= m0ωc

2T0
= m0ωc

2µc2

= m0

µL

(
ωL

2c

)

soit

cotan

(
ωL

2c

)
=α

(
ωL

2c

)
avec α= m0

µL
.

On remarque que α= m0

m
, où m =µL est la masse de la

corde.

En posant X = ωL

2c
, on se ramène à la résolution de

cotan X = αX . Nous pouvons faire une résolution gra-
phique, en cherchant les intersections des graphes de
f (X ) = cotan X et g (x) =αX .

cotan X

X

α≪ 1

α≫ 1

π
2

π 3π
2

2π 5π
2

3π 7π
2

On peut distinguer deux cas limites.

Pour α≪ 1, soit m0 ≪ m, on obtient les solutions

Xn ≈ (2n +1)π

2
soit ωn ≈ (2n +1)

cπ

L
.

On retrouve les modes impairs de la corde vibrante
non lestée (la masse du lest est négligeable). Ces modes

viennent en compléments des modes pairs ωn = 2n
cπ

L
trouvés précédemment.

Pour α≫ 1, soit m0 ≫ m , on obtient les solutions

Xn ≈ nπ soit ωn ≈ 2n
cπ

L
.

On retrouve les modes pairs de la corde vibrantes, déjà
déterminés précédemment : si la masse du lest est très
élevée, il impose un nœud de vibration du fait de iner-
tie (la corde ne peut le mettre en mouvement).
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8—  Corde vibrante dont l’extrémité est mobile

 Extrémité purement élastique

1. L’élongation vérifie l’équation de d’Alembert
∂2 y

∂t 2 −

c2 ∂
2 y

∂x2 = 0, avec c =
√

T
µ .

Avec y(x, t ) = Y (x)cos(ωt ), cette équation s’écrit
−ω2Y (x)cos(ωt )− c2Y ′′(x)cos(ωt ) = 0, soit

Y ′′(x)+k2Y (x) = 0

où l’on a posé k =ω/c.

2. La condition à la limite étant y(L) = 0, nous écrivons
la solution générale de l’équation précédente sous la
forme d’un sinus (un sinus étant nul quand son argu-
ment est nul, la prise en compte de la condition sera
plus simple) :

Y (x) = A sin(kx +φ) .

La condition Y (L) = 0 s’écrit alors Y (L) = A sin(kL +
φ) = 0; on peut choisir φ=−kL, d’où

Y (x) = A sin[k(x −L)] .

3. La composante verticale de la tension de la corde à
l’extrémité x = 0 est donnée par

Ty (0, t ) = T sinα(0, t ) ≈ Tα(0, t ) = T

(
∂y

∂x

)
x=0

.

Elle est d’autre part égale à la tension du ressort dont
l’élongation est y(0, t ), d’où la relation

T

(
∂y

∂x

)
x=0

= K y(0, t ) .

On en déduit T Y ′(0)cos(ωt ) = K Y (0)cos(ωt ), d’où

T Y ′(0) = K Y (0) .

4. La condition précédente s’écrit

T k A cos(kl ) =−K A sin(kL) .

L’ensemble de ses solutions forme un ensemble dis-
cret. Cette équation peut s’écrire

tan(knL) =−knT

K
.

Avec ωn = knc, on a de même

tan

(
ωnL

c

)
=−ωnT

K c
.

5. On représente sur le même graphe

f (ω) = tan

(
ωL

c

)
et g (ω) =−ωT

K c
:

ωL
c

tan
(
ωL
c

)
−ωT

K c

H1 H2 H3 H4

Les fréquence propres sont données par l’intersec-
tion des deux courbes. Les points correspondant aux
harmoniques, de pulsations nω1 dans le cas de l’ex-
trémité rigide, sont notés Hn . On voit sur le graphe
que ωn < nω1 : l’effet d’une extrémité élastique est
d’abaisser les fréquences propres.

 Extrémité purement massique

6. La composante verticale de la tension de la corde en

x = 0 a été établie précédemment : Ty (0, t ) ≈ T

(
∂y

∂x

)
x=0

.

Le principe fondamental de la dynamique appliqué à
l’extrémité de la corde de masse M0 s’écrit, en projec-
tion selon #»e y

M0
∂2 y

∂t 2 (0, t ) = T

(
∂y

∂x

)
x=0

.

7. Avec y(x, t ) = A sin[k(x − L)]cos(ωt ), on en déduit

−ω2M0 sin(−kL) = T k cos(kL), d’où tan(kL) = T k

M0ω2 .

Comme ω= kc, on en déduit

tan(knL) = T

M0c2kn
,

l’indice n précisant que les solutions forment un en-
semble discret.

Comme ω= kc, on a

tan

(
ωnL

c

)
= T

M0cωn
.

8. On représente sur le même graphe

f (ω) = tan

(
ωL

c

)
et g (ω) = T

M0cω
:
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ωL
c

tan
(
ωL
c

)

T
M0cω

H1 H2

H3

Les fréquence propres sont données par l’intersection
des deux courbes. Les points correspondant aux har-
moniques, de pulsations nω1 dans le cas de l’extré-
mité rigide, sont noté Hn . On voit sur le graphe que
ωn > nω1 : l’effet d’une extrémité massique est d’éle-

ver les fréquences propres.
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