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DS no 5— Sujet « difficile » Solution

 Partie I : Aspects de la propulsion spatiale (d’après Mines PSI 2015)

1—  Aspect cinétique— Loi de vitesse

1. La quantité de mouvement de la fusée à l’instant t
est

#»p f(t ) = m(t )v(t )ûz .

À l’instant t +dt , la masse de la fusée est

m(t +dt ) = m(t )−Dm dt .

Sa quantité de mouvement vaut donc

#»p f(t +dt ) = [m(t )−Dm dt ] v(t +dt )ûz .

Le gaz éjecté entre t et t+dt a pour masse dmg = Dm dt .
D’après la loi de composition des vitesses, sa vitesse
dans le référentiel terrestre en t +dt est

#»v g(t +dt ) = #»u + #»v (t +dt ) = v(t +dt )ûz −uûz .

On en déduit la quantité de mouvement

#»p g = [Dmv(t +dt )dt −Dmu dt ]ûz .

2. Considérons le système fermé {fusée + gaz}.

À l’instant t , sa quantité de mouvement est

#»
P (t ) = #»p f(t ) = m(t )v(t )ûz .

À l’instant t +dt , sa quantité de mouvement est

#»
P (t +dt ) = #»p f(t +dt )+ #»p g

= [m(t )−Dm dt ] v(t +dt )ûz

+ [Dmv(t +dt )dt −Dmu dt ]ûz

= m(t )v(t +dt )ûz −Dmu dt ûz .

La dérivée

d
#»
P

dt
= lim

dt→0

#»
P (t +dt )− #»

P (t )

dt

est donc donnée par

d
#»
P

dt
= m(t ) lim

dt→0

v(t +dt )− v(t )

dt
ûz −Dmuûz

=
(
m(t )

dv

dt
−Dmu

)
ûz .

Le système fermé {fusée + gaz} de masse totale m(t ) est
soumis à son seul poids ; le principe fondamental de

la dynamique appliqué à ce système dans le référentiel
terrestre considéré comme galiléen s’écrit alors

d
#»
P

dt
= m(t )#»g =−m(t )g ûz ,

soit en projection selon ûz

m(t )
dv

dt
−Dmu =−m(t )g .

On obtient bien l’équation différentielle demandée

m
dv

dt
= Dmu −mg . (1)

3. Formellement, l’équation (1) peut s’identifier au
principe de la dynamique appliqué à un système de
masse m(t ), les termes du membre de droite représen-
tant les « forces ». Outre le poids, il apparaît donc une
force ascendante, la force de poussée d’intensité

F = Dmu .

La fusée décolle si initialement, la force de poussée est
supérieure à son poids, soit

Dmu > m0g .

4. Le poids ressenti par m à la surface de la Terre est
mg . Avec un débit massique Dm, la durée Is nécessaire
à l’éjection de la masse m d’ergol est donnée par m =
DmIs.

Écrivons que la poussée fournie est équivalente au
poids de m à la surface de la Terre : Dmu = mg . On a

alors Is = m

Dm
soit

Is = u

g
.

5. La masse de la fusée à l’instant t étant

m(t ) = m0 −Dmt ,

l’équation (1) s’écrit

(m0 −Dmt )
dv

dt
= Dmu − (m0 −Dmt )g ,

soit
dv

dt
= Dmu

m0 −Dmt
− g .

La fusée partant du repos au sol (v(0) = 0), on a donc
ˆ v(t )

0
dv =

ˆ t

0

Dmu dt

m0 −Dmt
−
ˆ t

0
g dt ,

soit

v(t ) = u

ˆ t

0

Dm dt

m0 −Dmt
− g t .
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En posant y = m0 − Dmt , soit dy = −Dmdt , on peut
écrireˆ t

0

Dm dt

m0 −Dmt
=−
ˆ m0−Dmt

m0

dy

y
=−

[
ln y

]m0−Dmt

m0

=− ln

(
m0 −Dmt

m0

)
= ln

(
m0

m0 −Dmt

)
,

d’où comme m(t ) = m0 −Dmt :

v(t ) = u ln

(
m0

m(t )

)
− g t . (2)

On peut trouver cette expression plus simplement sans
expliciter la loi m(t ) :

m
dv

dt
= Dmu −mg =−dm

dt
u −mg

d’où

dv =−u
dm

m
− g dt

qui s’intègre en

v(t )− v0 =−u ln
m

m0
− g t .

6. La relation (2) donne la variation de vitesse v(t )− 0
quand la masse varie de m0 à m(t ). En considérant g =
0, la variation de vitesse quand la masse passe de mi à
mf est donnée par

∆V = u ln
mi

mf
. (3)

7. Il suffit d’appliquer la relation de Tsiolkovski (3).

Fusée à deux étages.

Pour le premier étage, on considère les masses mi =
134 tonnes et mf = 34,0 tonnes, d’où un accroissement

de vitesse ∆V1 = 6,86 km · s−1 .

Pour le deuxième étage, on considère les masses mi =
24,0 tonnes et mf = 4,00 tonnes, d’où un accroissement

de vitesse ∆V2 = 8,96 km · s−1 .

L’accroissement total de vitesse est

∆V = 15,8 km · s−1 .

Fusée à un seul étage.

On a mi = 134 tonnes et mf = 14,0 tonnes, d’où l’accrois-
sement de vitesse

∆V = 11,3 km · s−1 .

Une structure à deux étages permet un plus grand ac-
croissement de vitesse pour une même masse d’ergols.

8. La relation de Tsiolkovski s’écrit ici

∆V = u ln

(
mu +mc

mu

)
,

d’où
mc = mu

[
e

∆V
u −1

]
.

On calcule mc1 = 945 kg dans le cas de la propulsion

chimique, et mc2 = 156 kg dans le cas de la propulsion
ionique.

2—  Aspect énergétique — Rendement
propulsif du moteur fusée

9. La masse dm de gaz, animée de la vitesse (v −u)ûz

dans le référentiel d’étude, possède l’énergie cinétique

dEc = 1

2
dm(v −u)2 soit

δEc = 1

2
Dm(u − v)2 dt .

La puissance cinétique contenue dans le jet est donnée

par Pjet = δEc

dt
, soit

Pjet = 1

2
Dm(u − v)2 .

Le vaisseau se déplace à la vitesse v et est soumis la force
de poussée F = Dmu ; il reçoit donc de la part de la force
de poussée la puissance Ppous = F v soit

Ppous = Dmuv .

10. La vaisseau gagne la puissance Ppous. La puissance
totale dépensée est intégralement cédée au jet et au
vaisseau sous forme d’énergie cinétique ; une partie
est contenue dans jet (Pjet), l’autre cédée au vaisseau
(Ppous). Le rendement propulsif est donc donné par

η= Ppous

Ppous +Pjet

= Dmuv
1
2 Dm(u − v)2 +Dmuv

= uv

uv + u2

2 + v2

2 −uv

soit

η= 2uv

u2 + v2 .

On peut écrire η= 2 v
u

1+ ( v
u

)2 , soit

η(x) = 2x

1+x2 avec x = v

u
.

11. On calcule

η′(x) = 2

1+x2 +2x
(−2x)

(1+x2)2 = 2(1+x2)−4x2

(1+x2)2

= 2
1−x2

(1+x2)2 .

On a donc η′(x) = 0 pour x = 1 : le rendement propulsif
est maximal pour x = 1, c’est-à-dire pour u = v . La vi-
tesse d’éjection des gaz par rapport à la fusée est alors
égale à la vitesse de la fusée par rapport au sol ; les gaz
sont donc au repos par rapport au sol : seul la fusée
possède une énergie cinétique, aucun énergie cinétique
n’est cédée aux gaz.

Le rendement est nul dans deux cas :
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— pour x = 0 : on a alors v = 0; la fusée est au repos,
toute l’énergie est communiquée aux gaz;

— pour x →∞ : on a alors u = 0; la vitesse des gaz par
rapport à la fusée est nulle. . . Il n’y a donc pas de gaz
émis, et la force de poussée est nulle.

x

η(x)

0 1 2 3 4 5 6 7 8 9 10

ηmax = 1

3—  Étude de la quantité de mouvement et
de l’énergie cinétique de la fusée

12. L’équation (1) devient

m
dv

dt
= Dmu avec m(t ) = m0 −Dmt .

En intégrant comme à la question 5, on obtient

v(t ) = u ln

(
m0

m(t )

)
.

13. La quantité de mouvement de la fusée est donnée
par p = m(t )v(t ), soit

p = mu ln
(m0

m

)
.

Calculons

dp

dm
= u ln

(m0

m

)
+mu

m

m0

(
−m0

m2

)
soit

dp

dm
= u ln

(m0

m

)
−u .

On a donc
dp

dm
= 0 pour ln

(
m0

mp

)
= 1, soit pour

mp = m0

e
≈ 0,37m0 .

On a alors pmax = m0u

e
lne, soit

pmax = m0u

e
.

14. L’énergie cinétique de la fusée est Ec = 1

2
m(t )v2(t ),

soit

Ec = 1

2
mu2

(
ln

(m0

m

))2
.

Calculons

dEc

dm
= u2

2

[(
ln

m0

m

)2
+2m ln

(m0

m

) m

m0

(
−m0

m2

)]
= u2

2
ln

(m0

m

)[
ln

(m0

m

)
−2

]
.

On a donc
dEc

dm
= 0 pour ln

(
m0
mc

)
= 2, soit

mc = m0

e2 ≈ 0,14m0 .

On a alors

Ec,max = 1

2

m0u2

e2

(
lne2)2 = 1

2

m0u2

e2 (2)2

soit

Ec,max = 2m0u2

e2 .

15. Traçons les évolutions de v , p et Ec. Attention au
sens de lecture : la fusée est pleine pour r = 1, et elle a
éjecté tous ses gaz pour r = 0.

Les unités sont arbitraires en ordonnées (les 3 grandeurs
n’ont pas la même dimension).

r = m
m0

10 rcrp

p

Ec

v

16. La fusée atteint sa plus grande vitesse lorsque rf =
mf
m0

→ 0. Cependant, sa quantité de mouvement est très
petite car sa masse est très faible (elle tend vers zéro si
on néglige la masse de la fusée à vide). La collision serait
sans effet malgré sa grande vitesse (comme un insecte
sur votre pare-brise !).

Il faut programmer la collision quand p est maximale,

c’est-à-dire pour rp = 1

e
≈ 0,37 .

17. Pour que la fusée fasse un maximum de dégâts
lors de la collision, son énergie cinétique doit être
maximale ; il faut donc programmer la collision pour

rc = 1

e2 ≈ 0,14 .
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 Partie II : autour d’une centrale nucléaire—Centrale PSI 2024

1—  Préliminaire

1. Le système Σ∗ constitué du fluide entre l’entrée E et
la sortie S est un système ouvert.

On construit un système fermé Σ associé :

— à l’instant t , Σ est constitué du fluide dans Σ∗ et de
la masse δme de fluide qui rentre dans Σ∗ entre t et
t +dt ;

— à l’instant t +dt , Σ est constitué du fluide dans Σ∗ et
de la masse δms de fluide qui sort dans Σ∗ entre t et
t +dt .

La masse de Σ∗ est constante en régime stationnaire. La
conservation de la masse entre t et t+dt pour le système
fermé s’écrit

m(Σ∗)+δme = m(Σ∗)+δms

d’où δme = δms = δm, avec δm = Dm dt où Dm est le
débit massique.

L’énergie interne du système fermé est

UΣ(t ) =UΣ∗ +δUe =UΣ∗ +ueDm dt

et
UΣ(t +dt ) =UΣ∗ +δUs =UΣ∗ +usDm dt .

Sa variation est donc

dU = Dm(us −ue)dt .

Le premier principe appliqué au système fermé s’écrit

dU = δW +δQ .

Le travail reçu s’écrit en décomposant le travail des
forces de pression en amont et en aval (travail de trans-
vasement)

δW =+peSeve dt −psSsvs dt +δWu

d’où

Dm(us −ue)dt = peSeve dt −psSsvs dt +δWu +δQ

On peut écrire

δm = Dm dt =µeSeve dt =µsSsvs dt

d’où

Dm(us −ue)dt +
(

ps

µs
− pe

µe

)
Dm dt = δWu +δQ .

On fait apparaître le travail utile massique wu et le trans-
fert thermique massique q avec

δWu = wuDm dt et δQ = qDm dt .

On obtient alors(
us + ps

µs

)
−

(
ue + pe

µe

)
= wu +q ,

soit en introduisant l’enthalpie massique h = u + p

µ
:

hs −he = wu +q .

2—  Cycle de Hirn

2. Partant d’un liquide juste saturant, la compression se
fera dans le domaine du liquide. On nous donne la va-
riation d’entropie pour une phase condensée :

∆S =C ln
T1

T0
.

La compression étant isentropique, on a ∆S = 0, d’où
T1 = T0 .

Pour une phase condensée, on a ∆h = cp∆T , soit

h1 −h0 = cp(T1 −T0) .

Comme T1 = T0, on a

h1 = h0 .

Pour un liquide, une évolution isentropique peut donc
être considérée comme isenthalpique; son évolution
dans le diagramme des frigoristes est donc un segment
vertical.

3. Courbes dans le diagramme des frigoristes :

La « courbe en cloche » est la courbe de saturation, sous
laquelle se trouve le domaine diphasé. Sa branche de
gauche est la courbe d’ébullition (liquide saturant), sa
branche de droite est la courbe de rosée (vapeur satu-
rante).

Par construction, les droites verticales sont les isen-
thalpes, tandis que les droites horizontales sont les iso-
bares.

Les courbes en traits plein dans le domaine vapeur sont
les isothermes.

Les courbes en tirets sont les isentropes.

Dans le domaine diphasé, les isothermes sont horizon-
tales, tandis qu’elles sont verticales dans le domaine li-
quide.

Construction du cycle

L’état 0 est sur le courbe d’ébullition à la pression
0,04 bar.
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L’évolution 0 → 1 dans la pompe est une isenthalpe ver-
ticale d’après la question précédente, jusqu’à la pres-
sion 85,8 bar (état 1).

La transformation 1 → 1′ → 2 → 2′ est isobare. L’état 1′

est sur la courbe d’ébullition et l’état 2 sur la courbe de
rosée. L’évolution se poursuit jusqu’au point 2′ sur l’iso-

therme 500 °C.

L’évolution 2′ → 3 suit une courbe isentrope, jusqu’à la
pression initiale de 0,04 bar.

On revient au point 0 par une isobare (dans le conden-
seur).

0

1

1′ 2
2′

3

4. Le titre massique se calcule par la règle des mo-
ments, avec les enthalpies massiques ou les entropies
massiques.

L’entropie massique étant donnée pour l’état 2′ et l’évo-
lution 2′ → 3 étant isentropique, on a donc la valeur pré-
cise de l’entropie massique pour l’état 3. Nous aurons
donc le titre massique en vapeur à l’état 3 avec la plus
grande précision en utilisant la règle des moments avec
les entropies massiques :

x3 = s3 − s0

sV − s0

où sV est l’entropie massique du point de l’isobare à
0,040 bar sur la courbe de rosée.

On a
s3 = s2′ = 6,68 kJ ·kg−1 ·K−1 .

On donne

s0 = 0,42 kJ ·kg−1 ·K−1 et sV = 8,47 kJ ·kg−1 ·K−1 .

On en déduit

x3 = 6,68−0,42

8,47−0,42

soit x3 = 0,78 .

On en déduit alors l’enthalpie massique au point 3 :

h3 = x3hV + (1−x3)h0 = 0,78×2554+ (1−0,78)×121

soit 1 h3 = 2013 kJ ·kg−1 .

5. L’efficacité du cycle est définie par

η= énergie coûteuse

énergie utile
.

Ici, l’énergie utile est le travail cédé par le fluide à la tur-
bine (étape 2′ → 3), soit

wutile = h2′ −h3 .

L’énergie coûteuse est l’énergie thermique cédée par la
source chaude, soit

q2′→1 = h2′ −h1 .

On a donc

η= h2′ −h3

h2′ −h1
.

1. L’application numérique a été faite en gardant la valeur non arrondie de x3.
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D’après les données de l’énoncé et la question précé-
dente, comme h1 = h0, on a

η= 3391−2013

3391−121

soit η= 0,42 .

6. Le premier principe s’écrit

∆U =W +Qc +Qf .

Le cycle de Carnot étant réversible, le second principe
s’écrit

∆S = 0 = Qc

Tc
+ Qf

Tf
.

L’efficacité est

ηC = −W

Qc
= Qc +Qf

Qc
= 1+ Qf

Qc

soit

ηC = 1− Tf

Tc
.

La température maximale est Tc = 500 °C = 773 K.

La température minimale est Tf = 29 °C = 302 K.

On a donc ηC = 0,61 .

L’efficacité du cycle réel est inférieur à celle du cycle de
Carnot en raison des irréversibilité des transferts ther-
miques (la température du fluide n’est pas égale à celle
des sources ; les transferts thermiques correspondants
sont donc irréversibles).

On peut calculer le rendement de la machine :

ρ = η

ηC

soit ρ = 0,69.

3—  Cycle à double surchauffe

7. La partie 0 → 1 → 1′ → 2 → 2′ est inchangée par rapport au cycle précédent.

La détente isentropique dans la turbine HP suite la même courbe que l’état 2 → 3 précédente, mais s’arrête au
point 4 sur l’isotherme T4 = 300 °C.

L’étape 4 → 4′ est une surchauffe isobare, donc un segment horizontal jusqu’à l’isotherme T4′ = 500 °C.

On suit ensuite une détente isentropique 4′ → 5 dans la turbine BP jusqu’à la pression 0,40 bar.

0

1

1′ 2
2′

5

4

4′

ä Avec un tel cycle, il semble difficile de dire que x5 ≈ 1. On obtient cependant un mélange plus riche en vapeur
pour le cycle avec double surchauffe (on trouve x50,91). Pour obtenir x5 ≈ 1, il faudrait devenir sur certaines des
hypothèses relatives au fonctionnement. Par exemple, considérer des évolutions irréversibles dans les turbines,
ce qui entraîne une valeur supérieure de h5.
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Le travail utile récupéré est celui échangé au niveau des deux turbines, soit pour le travail reçu par l’extérieur :

wrécup =−w2′→4 −x4′→5 = h2′ −h4 +h4′ −h5 .

On lit h5 = 2220 kJ ·kg−1, h4 = 3020 kJ ·kg−1 et h4′ = 3460 kJ ·kg−1.

On donne h2′ = 3391 kJ ·kg−1. On calcule alors

wrécup = 1611 kJ ·kg−1 .

L’énergie « coûteuse » est celle dépensée dans les étapes de chauffe 1 → 2′ et de surchauffe 4 → 4′ soit

qcoût = h2′ −h1 +h4′ −h4 = 3391−121+3460−3020 = 3710 kJ ·kg−1 .

L’efficacité vaut alors

η= wrécup

qcoût
= 1611

3710

soi η= 0,43 .

L’augmentation de l’efficacité due à la double surchauffe est minime; l’intérêt de l’opération est d’éviter d’endom-
mager la turbine avec des gouttes d’eau.

4—  Cycle réel d’une tranche nucléaire

8. Les différents éléments ne sont pas traversés par le même débit massique.

Dans un échangeur thermique, le premier principe industriel s’écrit

Dm(hs −he) =Pth ,

où Pth est la puissance thermique reçue par le fluide.

Dans une turbine adiabatique, le premier principe industriel s’écrit

Dm(hs −he) =Pu ,

où Pu est la puissance mécanique utile reçue par le fluide.

La puissance thermique « coûteuse » est celle fournie à l’eau du circuit secondaire par l’eau du circuit primaire
dans les échangeurs principaux. D’après le tableau, le débit massique y est

Dm = 5412,1 t ·h−1 = 5412,1×103

3600
kg · s−1 .

L’enthalpie massique vaut he = 941,7 kJ ·kg−1 en entrée et hs = 2788,4 kJ ·kg−1 en sortie, d’où

Pth = Dm(hs −he) = 5412,1×103

3600
(2788,4−941,7) = 2,78×106 kW = 2,78 GW.

La puissance mécanique utile est celle échangée dans les turbines. Il faut tenir compte des différents débit sortant
de chaque turbine.

Turbine haute pression HP

Elle est alimentée par le débit massique entrant

Dm,HP = 5001,9 t ·h−1 = 5001,9×103

3600
kg · s−1

avec une enthalpie massique he,HP = 2787,1 kJ ·kg−1.

Il faut ensuite considérer les sorties vers les éléments R4, R5 et R6, ainsi que l’échappement de la turbine HP.

Le premier principe industriel s’écrit alors

Dm,HPhe,HP −Dm,R4hR4 −Dm,R5hR5 −Dm,R6hR6 −Dm,echap,HPhechap,HP =Précup,HP

Avec le tableau fourni, on calcule

Précup,HP = [5001,9×2787,1−402,1×2562,8−208,4×2622,6−214,3×2682,5−4177,1×2562,8]
1000

3600
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soit
Précup,HP = 301 kW = 0,301 GW.

On fait de même avec la turbine basse pression, les échangeurs concernés étant R1, R2 et R3 :

Dm,BPhe,BP −Dm,R1hR1 −Dm,R2hR2 −Dm,R3hR3 −Dm,echap,BPhechap,BP =Précup,BP

Avec le tableau fourni, on calcule

Précup,BP = [3704,0×2970,4−134,2×2377,8−235,4×2538,9−281,4×2731,5−3053,0×2242,2]
1000

3600

soit
Précup,BP = 687 kW = 0,687 GW.

La puissance mécanique utile récupéré vaut donc

Précup =Précup,HP +Précup,BP = 0,988 GW.

L’efficacité est du cycle est alors donnée par

η= Précup

Pth
= 0,687

2,78

soit η= 0,36 .

La puissance utile disponible aux bornes de l’alternateur vaut donc Pu = 988 MW.

 Partie III : le Millenium Bridge (Mines-Ponts PSI 2016)

1—  Le Millenium Bridge

1  Système élastique continu

1. Comme
∆L

L
est sans dimension, on a [E ] = [F ]

L
: le

module d’Young a la dimension d’une force surfacique
— ou contrainte. Il a donc l’unité d’une pression.

Le module de Young s’exprime en pascal.

2. Au repos, la tranche considérée est comprise entre
les abscisses x et x +dx.

Sous l’effet d’une traction, l’aire d’abscisse x se déplace
à l’abscisse x ′ = x + X (x, t ), et l’aire d’abscisse x +dx se
déplace à l’abscisse x ′′ = x+dx+X (x+dx, t ). La nouvelle
longueur de la tranche est alors

dx ′ = x ′−x = [x +dx +X (x +dx, t )]− [x +X (x, t )]

= X (x +dx, t )−X (x, t ) = dx + ∂X

∂x
dx .

La variation relative de sa longueur est donc

dx ′−dx

dx
= ∂X

∂x
.

La force de traction exercée par la partir droite sur la
partie gauche est donc donnée par la loi de Hooke :

#»
F (x, t ) = ES

dx ′−dx

dx
#»ux ,

soit
#»
F (x, t ) = ES

∂X

∂x
#»ux .

La tranche de longueur dx est soumise :

— à la force de traction −#»
F (x, t ) exercée par la partie à

gauche de l’abscisse x ;

— à la force de traction +#»
F (x+dx, t ) exercée par la par-

tie à droite de l’abscisse x +dx.

Son barycentre étant au premier ordre à l’abscisse

xG = x + dx

2
+X (x, t ) ,

le principe fondamentale de la dynamique appliquée
à la tranche de longueur dx et de masse dm = ρS dx
s’écrit, en projection selon #»ux :

ρS ẍG =−F (x, t )+F (x +dx, t ) = ∂F

∂x
dx ,

d’où

ρ
∂2X

∂t 2 = E
∂2X

∂x2 .

Le déplacement X (x, t ) vérifie donc l’équation

∂2X

∂t 2 − E

ρ

∂2X

∂x2 = 0 .
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On reconnaît l’équation de d’Alembert, avec la célérité

c =
√

E

ρ
.

3. Considérons un tronçon compris entre les abscisses
x et x +dx, de masse dm =µdℓ. Son mouvement se fai-
sant selon #»uy , le principe fondamental de la dynamique
s’écrit, en projection selon #»ux :

0 = T (x +dx, t )cosα(x +dx, t )−T (x, t )cosα(x, t ) .

Comme cosα(x, t ) ≈ 1 et cosα(x +dx, t ) ≈ 1, on a

0 = T (x +dx, t )−T (x, t ) = ∂T

∂x
dx = 0.

Le module de la tension est donc indépendant de x :

∂T

∂x
= 0 .

4. Projetons le principe de la dynamique appliqué à la
tranche de longueur dℓ selon #»ux :

µdℓ
∂2 y

∂t 2 = Ty (x +dx, t )−Ty (x, t ) = T0 sinα(x +dx, t )

−T0 sinα(x, t ) .

On a

sinα(x, t ) ≈α(x, t ) ≈ ∂y

∂x

d’où

µdℓ
∂2 y

∂t 2 = T0 [α(x +dx, t )−α(x, t )] = T0
∂α

∂x
dx

soit

µdℓ
∂2 y

∂t 2 = T0
∂2 y

∂x2 dx .

Avec dℓ=
√

dx2 +dy2, on a

µdx

√
1+

(
dy

dx

)2 ∂2 y

∂t 2 = T0
∂2 y

∂x2 dx

soit au premier ordre en
dy

dx

µ
∂2 y

∂t 2 = T0
∂2 y

∂x2 .

On peut donc écrire

∂2 y

∂t 2 = c2
ℓ

∂2 y

∂x2 avec c =
√

T0

µ0
.

2  Modèle de la poutre élancée

5. Une solution de la forme y(x, t ) = f (x)g (t ) est une
onde stationnaire.

Les ondes stationnaires apparaissent dans des milieux
finis ou semi-infini avec au moins une conditions aux
limites constante (comme un nœud de vibration par
exemple).

6. En écrivant que y(x, t ) = f (x)g (t ) vérifie l’équation
d’onde, on obtient

ρS f (x)g ′′(t )+ I E f (4)(x)g (t ) = 0,

soit
g ′′(t )

g (t )
=− I E

ρS

f (4)(x)

f (x)
.

Le premier terme étant indépendant de x et le second
de t , ces deux termes sont égaux à une constante α. On
se ramène donc au système de deux équations différen-
tielles 

g ′′(t )−αg (t ) = 0

f (4)(x)+ ρSα

I E
f (x) = 0

Selon le signe de α, la solution de l’équation en g (t ) est
affine, exponentielle ou sinusoïdale. Les deux premières
conduisent à une solution qui diverge ou qui tend vers 0,
inacceptable. La fonction g (t ) est donc nécessairement
périodique.

Pour un mode de vibration :

— l’équation différentielle en g (t ) est du second ordre,
et sa détermination nécessite 2 constantes d’intégra-
tion;

— l’équation différentielle en f (x) est d’ordre 4, et
sa détermination nécessaire 4 constantes d’intégra-
tion.

La solution s’écrivant y(x, t ) = g (t ) f (x), en regroupant
deux des constantes du produit, on se ramène à 5
constantes pour déterminer entièrement un mode de
vibration.

7. La solution g (t ) est périodique pour α < 0. Posons
α=−ω2 ; on a donc

g ′′(t )+ω2g (t ) = 0.

L’équation vérifiée par f (x) s’écrit alors

f (4)(x)− ρSω2

I E
f (x) = 0.

Il s’agit d’une équation différentielle linéaire à coeffi-
cients constants. L’équation caractéristique associée est

r 4 − ρSω2

I E
= 0.

On a donc

r 2 =±
√

ρSω2

I E
.
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Le cas r 2 =
√

ρSω2

I E
conduit à

r1 =
(
ρSω2

I E

)1/4

et

r2 =−
(
ρSω2

I E

)1/4

le cas r 2 =−
√

ρSω2

I E
conduit à

r3 = i

(
ρSω2

I E

)1/4

et

r4 =−i

(
ρSω2

I E

)1/4

Posons β=
(
ρSω2

I E

)1/4

. On a donc

r1 =β ; r2 =−β ; r3 = iβ et r4 =−iβ .

La fonction f (x) s’écrit donc comme une combinaison
linéaire

f (x) = A′ eβx +B ′ e−βx +C ′ eiβx +D e−iβx .

on peut changer de base de solution 2 et choisir les fonc-
tions trigonométriques :

f (x) = A cos(βx)+B sin(βx)+C cosh(β)+D sinh(βx)

avec

β=
(
ρSω2

I E

)1/4

.

8. La condition y(0, t ) = 0 conduit à

f (0) = A+C = 0.

La condition
∂2 y

∂x2

∣∣∣∣
x=0,t

= 0 conduit à

−Aβ2 +Cβ2 = 0.

On a donc
C =−A et C = A .

On en déduit A =C = 0 , et

f (x) = B sin(βx)+D sinh(βx) .

La condition y(L, t ) = 0 conduit à

B sin(βL)+D sinh(βL) = 0.

La condition
∂2 y

∂x2

∣∣∣∣
x=L,t

= 0 conduit à

−Bβ2 sin(βL)+Dβ2 sinh(βL) = 0.

On a donc

B sin(βL)+D sinh(βL) = 0

−B sin(βL)+D sinh(βL) = 0

ce qui revient à

B sin(βL) = 0

D sinh(βL) = 0

Comme sinh(βL) 6= 0, on a D = 0 .

La solution B = D = 0 étant à exclure (solution y(x, t ) =
0), on doit avoir B 6= 0, d’où sin(βL) = 0. Le paramètre β

ne peut donc prendre que des valeurs discrètes données
par

βnL = nπ .

On a donc

βn =
(
ρS

I E

)1/4p
ω= nπ

L
.

Les pulsations propres sont donc données par

ωn = n2π2

L2

√
I E

ρS
.

9. L’étude se limite à des vibrations de la forme y(x, t ) :
l’amplitude est indépendante de la cordonnée z laté-
rale. Tous les points sur une ligne perpendiculaire à
l’axe de la passerelle (soit x = cte) doivent donc avoir la
même élongation y(x, t ). Cela exclut donc les modes b,
d, g et h.

Les modes a, c, e et f correspondent à l’étude proposée.

Compte tenu de la question précédente, le mode n cor-
respond à

yn(x, t ) = Bn sin
(nπx

L

)
cos(ωn t +φn) avec n ∈ N∗ .

Le mode a présente deux nœuds (x = 0 et x = L) et un
ventre : il correspond donc à n = 1.

Le mode c présente trois nœuds et deux ventres : il cor-
respond donc à n = 2.

Le mode e présente 4 nœuds et 3 ventres : il correspond
à donc n = 3.

Le mode f présente 5 nœuds et 4 ventre : il correspond
donc à n = 4.

mode a c e f
n 1 2 3 4

2. On a ex = cosh(x)+ sinh(x) et eix = cos(x)+ isin(x).
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10. Les fréquences propres fn = ωn

2π
sont données par

fn = n2 π

2L2

√
I E

ρS
= n2

L2

π

2

√√√√ 1
12 bh3E

ρhb
= n2

L2 π

√
h2E

48ρ

On calcule

fn = n2

L2 π

√
(1,07)2 ×69×109

48×2700

soit

fn = 2452,8
n2

L2 .

Calculons les fréquences propres correspondant aux
premiers modes pour chaque travée.

travée L1 (70 m) L2 (144 m) L3 (108 m)
f1 (Hz) 0,50 0,12 0,21
f2 (Hz) 2,0 0,46 0,84
f3 (Hz) 4,6 1,1 1,9
f4 (Hz) 8,4 1,9 3,4
f5 (Hz) 13 2,9 5,3

On voit que la fréquence f ≈ 2 Hz , qui correspond à

la fréquence d’excitation des pas des piétons, est acces-
sible pour les trois travées : il s’agit du mode n = 2 pour
la travée L1, du mode n = 4 pour la travée L2 et du mode
n = 3 pour la travée L3.

Les vibrations latérales sont des ondes selon z(x, t ). Leur
étude est identique, en intervertissant h et b (y compris
dans l’expression de I ). On particulier, les fréquences
propres sont données par

f ′
n = n2

L2 π

√
b2E

48ρ

Les vibrations latérales se font en considérant la « lon-
gueur » b au lieu de L et la « largeur » L au lieu de b.

Les fréquences propres sont alors données par

f ′
n = n2

b2 π

√
h2E

48ρ
= n2 π

42

√
(1,07)2 ×69×109

48×2700
.

On calcule

fn = n2

L2 π

√
(4)2 ×69×109

48×2700

soit

f ′
n = 9169,2

L2

n2 .

Calculons les fréquences propres correspondant aux
premiers modes pour chaque travée.

travée L1 (70 m) L2 (144 m) L3 (108 m)

f ′
1 (Hz) 1,8 0,43 0,74

f ′
2 (Hz) 7,4 1,8 3,1

f ′
3 (Hz) 16 3,7 6,8

f ′
4 (Hz) 29 6,8 12

L’excitation latérale est due à l’alternance des pas du
pied gauche et du pied droit ; c’est donc la fréquence
d’un pied qui est à considérée, c’est-à-dire environ 1 Hz.
On est assez proche du mode fondamental de la travée
de 108 m. C’est ce mode de vibration qui a causé pro-
blème.

 Partie IV : la sonde de Clark (Centrale PSI 2006)

1. La masse molaire de KCl est M(KCl) = 39 + 35,5 =
74,5 g ·mol−1.

Dans un litre de solution, on a donc

n = 175

74,5
= 2,35 mol

de KCl, soit [Cl−] = 2,35 mol ·L−1.

On obtient le précipité de chlorure d’argent pour

[Ag+][Cl−] = Ks

soit pour [Ag+] = 8,9×10−12 mol ·L−1 .

2. L’oxydation du couple AgCl(s)/Ag(s) correspond à

Ag(s)+Cl−(aq) −−→ AgCl(s)+e− .

L’électrode d’argent est donc l’anode.

La réduction du couple O2/H2O correspond à

O2 +4H++4e− −−→ 2H2O .

L’électrode de platine est donc la cathode.

3. La courbe (1) correspond à la cathode car i < 0, donc
à l’électrode de platine.

La courbe (2) correspond à l’anode car i > 0, donc à
l’électrode d’argent.

4. À la réaction électrochimique

Ag++e− = Ag (R1)

est associée l’enthalpie libre standard

∆rG̃
o
1 =−FE o(Ag+/Ag).

À la réaction électrochimique

AgCl+e− = Ag+Cl− (R2)
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est associée l’enthalpie libre standard

∆rG̃
o
2 =−FE o(AgCl/Ag).

À la réaction de dissolution du précipité

AgCl = Ag++Cl− (R3)

est associée l’enthalpie libre standard

∆rG
o
3 =−RT lnK s .

On a (R2) = (R1)+ (R3) donc ∆rG̃o
2 =∆rG̃o

1 +∆rGo
3 soit

−FE o(AgCl/Ag) =−FE o(Ag+/Ag)−RT lnK s

d’où

E o(AgCl/Ag) = E o(Ag+/Ag)+ RT

F
lnKs

= E o(Ag+/Ag)+0,06logKs .

On calcule
E o(AgCl/Ag) = 0,16 V .

Le potentiel d’équilibre de l’électrode d’argent est
donné par la relation de Nernst :

Eéq = E o(AgCl/Ag)+0,06log
co

[Cl−]

soit Eéq = 0,14 V .

La courbe anodique « décolle » pour un potentiel de
l’ordre de 0,17 V, légèrement supérieur à Eéq : la valeur
calculée est conforme à la courbe courant-potentiel, qui
doit présenter un léger surpotentiel anodique.

5. Pour une différence de potentiel de 0,7 V, on est si-
tué sur la partie verticale de la courbe anodique, et sur
le palier horizontal de la courbe cathodique.

On peut donc lire sur ce dernier segment

I =−ic =−45 µA.

On a donc I = 45 µA .

6. La cinétique de l’électrolyse est limitée par le palier
de la courbe cathodique ; il s’agit d’un palier de diffu-
sion relatif à la réduction

O2 +4H++4e− −−→ 2H2O

Le réactif étant O2, c’est bien la diffusion de O2 à travers
la membrane qui limite la cinétique de l’électrolyse.

7. Loi de Fick pour la diffusion de l’espèce O2

jn =−D
dn(O2)

dx
=−DNO2

d[A]

dx
.

La courant particulaire en O2 est donné par le flux de jn :

In =−DNAS
d[O2]

dx
.

8. On oriente #»e x de l’extérieur à l’intérieur de la cellule.

En régime stationnaire, le profil de particules diffu-
santes est affine dans la membrane d’épaisseur δ, donc

d[O2]

dx
= [O2]int − [O2]ext

δ
.

Le courant particulaire en O2 vaut donc

In = DSNA
[O2]ext − [O2]int

δ

D’après la stœchiométrie de la réaction de réduction ca-
thodique, on a 4 électrons échangés par molécule de
O2 réduite. La densité de courant de charge à travers la
membrane est donc

j = 4e jn

et l’intensité d’électrolyse est

I = 4eIn = 4DSeNA
[O2]ext − [O2]int

δ
.

Comme eNA = F, constante de Faraday, on a

I = 4DSF
[O2]ext − [O2]int

δ
.

9. Pour [O2]int = 0, on obtient

Imax = 4DSF
[O2]ext

δ
.

On a donc

[O2]ext =
Imaxδ

4DSF
.

La mesure de Imax permet de déterminer [O2]ext.

10. Pour U < 0,32 V, l’électrolyse ne peut se dérouler :
I = 0.

Quand on augmente U , l’intensité I augmente jusqu’à
ce que l’on atteigne le pallier de diffusion, pour U ≈
0,62 V. L’intensité est alors égale à l’intensité du palier
de diffusion, soit Imax = 45 µA.

11. La mesure de I permet de déterminer la teneur en
O2 si on est sur le palier de diffusion cathodique. Si la
tension est trop faible, le courant maximal de diffusion
n’est pas atteint et la relation établie à la question 9 n’est
pas vérifiée.

12. Si on applique une différence de potentiel très su-
périeure à 0,7 V, on risque de provoquer aussi la ré-
duction de l’eau au niveau de la cathode. La relation
j = 4e jn n’est alors plus vérifiée (des électrons parti-
cipent à la réduction de H+), et cela entraîne le forma-
tion de H2 dans la cellule, ce qui est gênant.
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