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Ondes III — Phénomènes de propagation linéaires

 Équations d’onde linéaires

 Exemple

Des phénomènes peuvent être régis par des équations d’onde autres que l’équation de d’Alembert.

Câble coaxial résistif Le câble coaxial résistif peut être modélisé par le schéma
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La tension vérifie l’équation d’onde
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∂t
= 0.

 Ondes planes pseudo-progressives harmoniques

Une solution de l’équations d’onde précédente sous forme d’onde progressive harmonique s(x, y) = S0 ei(ωt−kx)

ne peut convenir que si k est complexe.

Une onde plane pseudo-progressive harmonique est une onde plane harmonique de la forme

s(x, t ) = S0 ei(ωt−kx)

dont le module d’onde est complexe, noté k = k ′+ ik ′′.

En écrivant que cette onde vérifie l’équation d’onde, on en déduit la relation de dispersion k(ω).

La solution générale d’une équation d’onde unidimensionnelle linéaire peut s’écrire comme la superpo-
sition d’ondes planes pseudo-progressives harmoniques, dont l’écriture en notation complexe est de la
forme :

s(x, t ) = S0 exp
(
i(ωt −kx)

)
.

Une telle onde est solution de l’équation d’onde si ω et k vérifient une relation de dispersion k(ω) que l’on
peut mettre sous la forme :

k(ω) = k ′(ω)+ ik ′′(ω) .

ä La partie réelle k ′(ω) traduit la propagation de l’onde, à la vitesse de phase vφ = ω

k ′(ω)
. Le signe de k ′(ω)

donne le sens de propagation (propagation selon les x croissants si k ′ > 0).

ä Si la vitesse de phase dépend de la pulsation ω, le phénomène est dispersif.

ä La partie imaginaire k ′′(ω) ̸= 0 traduit la dépendance spatiale de l’amplitude de l’onde.

Dans le cas k ′(ω) > 0 (propagation selon les x croissants), une atténuation correspond à k ′′(ω) < 0.

En notant S0 = S0 eiψ, l’onde réelle s’écrit

s(x, t ) = S0 ek ′′(ω)x cos[ωt −k ′(ω)x +ψ] .

ä Si k ′′ = 0, on retrouve une onde progressive (harmonique).

ä Si k ′ = 0, il n’y a pas de propagation; l’onde est dite évanescente : s(x, t ) = S0 ek ′′(ω)x cos(ωt +ψ).
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 Superposition de deux ondes de fréquences proches dans un milieu non absorbant et dis-
persif

On considère la superposition de deux ondes progressives harmoniques :

s1(x, t ) = s0 cos(ω1t −k1x) et s2(x, t ) = s0 cos(ω2t −k2x) , avec ω2 >ω1 .

En notant ω0 = ω1 +ω2

2
la pulsation moyenne, on a ω1 =ω0 − δω

2
et ω2 =ω0 + δω

2
, avec δω=ω2 −ω1 ≪ω0.

On se place dans le cas d’un milieu faiblement dispersif : on peut linéariser k(ω) au voisinage de k0 = k(ω0), soit

k1 = k(ω1) = k

(
ω0 − δω

2

)
≈ k0 − δω

2

(
dk

dω

)
ω0

et k2 = k(ω2) = k

(
ω0 + δω

2

)
≈ k0 + δω

2

(
dk

dω

)
ω0

.

 Description de l’onde résultante

En posant δk = k2 −k1, on obtient

s(x, t ) = 2s0 cos

[
δω

2
t − δk

2
x

]
cos(ω0t −k0x) .

ä Le terme cos(ω0t −k0x) représente une onde de période spatiale λ0 = 2π

k0
.

ä Le terme cos

[
δω

2
t − δk

2
x

]
représente une variation de période spatiale

4π

δk
≫ λ0 : c’est l’enveloppe qui mo-

dule l’amplitude de l’onde de période λ0.

x

s(x,0)
2s0

−2s0

s(x,0)

4π/δk

λ0

 Propagation de l’onde résultante

L’onde résultant de la superposition de deux ondes de fréquences proches s’écrit

s(x, t ) = 2s0 cos

[
δω

2

(
t − x

vg

)]
cos

[
ω0

(
t − x

vφ

)]

ä vφ = ω0

k0
est la vitesse de phase, vitesse de propagation de la phase de l’onde.

ä vg =
(

dω

dk

)
k0

est la vitesse de groupe, vitesse de propagation de l’enveloppe de l’onde.

x

s(x, t )

enveloppe, se propage à

(
dω

dk

)
k0

phase, se propage à
ω0

k0
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 Propagation d’un paquet d’ondes

 Description d’un paquet d’ondes

Un paquet d’ondes est une onde présentant des oscillations de fréquence f = 1/T0, sur une durée finie ∆t :

t

s(x, t )

T0

∆t

Une telle onde peut se décomposer comme une superposition d’une infinité d’ondes harmoniques dont les

pulsations sont telles que ω ∈
[
ω0 − ∆ω

2
,ω0 + ∆ω

2

]
, avec ∆ω≪Ω0.

La largeur fréquentielle du paquet d’ondes est ∆ f = ∆ω

2π
.

On admet la propriété générale suivante :

Un paquet d’ondes de durée ∆ est caractérisé par un spectre dont la largeur fréquentielle ∆ f est telle que

∆ f ∆t ≈ 1.

 Propagation d’un paquet d’ondes

Dans un milieu faiblement dispersif :

— l’enveloppe d’un paquet d’ondes se propage sans se déformer à la vitesse de groupe vg =
(

dω

dk

)
k0

;

— à l’intérieur de l’enveloppe, la phase se propage à la vitesse de phase vφ = ω0

k0
.

x

s(x, t )

enveloppe, se propage à vg = dω

dk

phase, se propage à vφ = ω

k

ä Le paquet d’ondes peut s’écrire sous la forme s(x, t ) = F

(
t − x

vg

)
cos

[
ω0

(
t − x

vφ

)]
, avec vg =

(
dω

dk

)
k0

la vitesse

de groupe et vφ = ω0

k0
la vitesse de phase, où F

(
t − x

vg

)
est l’enveloppe du paquet d’ondes.

ä L’enveloppe se propage sans se déformer dans le cas d’un milieu faiblement dispersif.

ä Si la dispersion est plus importante, l’enveloppe se déforme au cours de la propagation. On observe un éta-
lement du paquet d’ondes au cours de la propagation :

y(x,0)

x

y(x, t1 > 0)

x
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x
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x

y(x, t4 > t3)
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