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DS no 5 Sujet « difficile »

Le sujet comporte trois parties indépendantes.

Merci de suivre les conseils suivants :

— laisser un espace en début de copie pour la note et les commentaires ;

— laisser une marge à chaque page pour les commentaires et décompte des points ;

— respecter et indiquer la numérotation des questions;

— souligner ou encadrez les résultats.

 Partie I – Étude d’une éolienne

Depuis l’orientation des années 1970 vers des énergies nouvelles et renouvelables, le développement éolien est en
plein expansion. Les éoliennes fournissent de l’énergie électrique d’appoint mais peuvent couvrir, sur certains ter-
ritoires, notamment insulaires, l’ensemble de leur besoin électrique. Il existe différents types d’aérogénérateurs,
classés selon la géométrie de leur rotor et de son orientation par rapport à la direction du vent. Nous nous intéres-
seront aux plus courants (qui sont les plus puissants), ceux dont le rotor est d’axe parallèle à la vitesse du vent. Cet
axe sera noté (Ox).
Cette étude comprend deux parties. La première traitre de l’échange de puissance entre le vent et le rotor d’une
éolienne, dans des conditions idéalisées. La deuxième propose une analyse aérodynamique d’une éolienne. Ces
parties ne sont pas totalement indépendantes.

 Notations et données

Masse volumique de l’air ρ = 1,20 kg ·m−3

Viscosité dynamique de l’air η= 1,85×10−5 Pa · s

1—  Conversion de puissance d’un aérogénérateur. Limite de Betz.

Nous souhaitons déterminer la puissance que le vent peut céder à un dispositif éolien, dans un cadre très simplifié
et idéalisé reposant sur des hypothèses fortes. Nous supposons notamment que la vitesse de l’écoulement reste
parallèle à l’axe (Ox). Nous considérons encore que les champs de vitesse et de pression sont uniformes sur toute
section droite du tube de courant (figure I-1). Enfin, nous considérons l’écoulement d’air comme étant parfait,
stationnaire et incompressible. Les effets de la pesanteur ne sont jamais considérés.
La figure I-1 représente la portion [1,2] du tube de courant traversant l’éolienne. Nous notons respectivement
v1, v et v2 les vitesses loin en amont de l’éolienne, au niveau du rotor, et loin en aval de l’éolienne. Les sections
correspondantes sont notées S1, S et S2. Les plans (E) et (S) sont situés immédiatement en amont et en aval du
rotor. Nous considérons alors que SE = S = SS et vE = v = vS (les pressions pE et pS sont, a priori, différentes). La
pression de l’air au niveau des surfaces S1 et S2 est la pression atmosphérique p0.

FIGURE I-1 – Veine d’air traversant le rotor de l’éolienne. La surface S grisée se situe au niveau des pales du rotor. Il
s’agit de la surface offerte au passage du vent et sur laquelle s’appuie le tube de courant échangeant de la puissance
avec le rotor

q 1 — Justifier la forme générale du tube de courant représenté sur la figure I-1.
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q 2 — Exprimer le débit massique qm de l’air traversant l’éolienne.

Détermination de la vitesse v .

q 3 — En effectuant un bilan de quantité de mouvement sur la portion [1,2] du tube de courant, établir l’expres-
sion de la force

#»
F r/a que le rotor exerce, globalement, sur l’écoulement de l’air. Il sera utile d’y faire apparaître qm.

q 4 — En appliquant le théorème de Bernoulli entre les section (1) et (E), puis entre les sections (S) et (2), exprimer
les pressions pE et pS régnant au niveau des surfaces SE et SS .

q 5 — Du résultat précédent, établir une nouvelle expression de
#»
F r/a.

q 6 — En identifiant les deux expressions de la force
#»
F r/a, relier v à v1 et v2.

Puissance transférée de l’écoulement à l’éolienne et rendement de la conversion.

q 7 — À partir d’un bilan d’énergie mécanique, effectué sur la portion [1,2] du tube de courant, déduire l’expres-
sion de la puissance P cédée à l’éolienne par l’écoulement. On l’exprimera d’abord en fonction de ρ, v1, S1, v2 et
S2, puis en fonction de qm, v1 et v2.

q 8 — Nous posons P∗ = 1

2
ρSv3

1 . Attribuer une signification physique à cette grandeur.

q 9 — Nous posons r = v2/v1. Établir alors que le rendement de la conversion d’énergie, relativement à P∗, s’écrit

η+ = 1

2
(1+ r )2(1− r ) .

q 10 — Illustrer graphiquement la dépendance de η+ avec r .

q 11 — Interpréter ce tracé. Caractériser la situation optimale de fonctionnement, connue sous le nom de limite
de Betz.

Quelques remarques sur le cadre de l’étude.

q 12 — Expliquer brièvement pourquoi supposer que le champ de vitesse de l’écoulement reste purement axial
constitue une hypothèse forte.

q 13 — Le théorème de Bernoulli est-il applicable entre les sections (E) et (S) ? Réponse à argumenter.

q 14 — Expliquer (brièvement) ce qui détermine, en pratique, le rapport r .

 Partie II – Ondes et vagues : aspects énergétiques

1—  Étude dumouvement de la houle en eau peu profonde

Les vagues sont souvent perçues comme un simple mouvement ondulatoire de la surface de l’eau. Elles peuvent
être décrites comme une somme d’ondes sinusoïdales élémentaires. Ce modèle, bien que simple en apparence,
est intéressant pour comprendre et analyser des situations réelles. Ce problème s’attachera, dans un un premier
temps, à mettre en équation la propagation de la houle pour pouvoir, dans un second temps, estimer l’énergie
véhiculée par cette dernière.

FIGURE II-1 – Schéma d’ensemble.

L’eau est assimilée à un fluide incompressible. Sa masse volumique est notée ρ.
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L’écoulement est supposé parfait. Le champ de pesanteur est uniforme et noté #»g =−g #»e z .
L’air impose au-dessus de la surface libre une pression constante et uniforme po.
Toute l’étude se fera dans le référentiel galiléen lié au fond marin. Le fond de l’eau est supposé rigide, immobile
et horizontal à la cote z = 0. Dans la modélisation proposée ici, le système est considéré comme invariant par
translation parallèle à l’axe (O y). Tous les champs sont eulériens et ne dépendent plus que des variables x, z et t .
L’étude est menée dans le plan (xOz).
À l’origine des temps, la colonne d’eau est au repos et la surface libre de l’eau est horizontale et située à la cote z =
H . Lorsque celle-ci est en mouvement, la cote de la surface libre de l’eau est notée z(x, t ) = H +η(x, t ). L’amplitude
du mouvement de la surface libre notée η0, la longueur d’onde λ du phénomène étudié et la profondeur H de
l’eau satisfont à l’inégalité suivante : η0 ¿ H ¿λ. On dit encore que l’étude est faite en eau peu profonde.
L’eau subit une perturbation et, de fait, est mise en mouvement. Il n’y a pas de mouvement permanent d’ensemble
du fluide selon l’axe (Ox). Dans le tout le problème les termes convectifs sont négligés.
On note p(x, z, t ) la pression de l’eau au point M(x, z) à l’instant t .
Afin de décrire le comportement de la houle, le champ eulérien des vitesses est de la forme

#»v (M , t ) = vx (x, z, t )#»e x + vz (x, z, t )#»e z .

On admettra dans tout le problème que |vx (x, z, t )| À |vz (a, z, t )| et que la composante suivant (Ox) de la vitesse
ne dépend pas de z. On pourra alors écrire #»v (M , t ) = vx (x, t )#»e x dans toute la suite du problème. Les grandeurs
vx (x, t ) et η(x, t ) sont des infiniment petits du même ordre.

q 1 — En admettant que le champ de pression a la même expression qu’en hydrostatique, et en tenant compte
de la pression à la surface libre de l’eau, établir l’expression de la pression p(x, z, t ) en fonction de po, ρ, g , z, H et
η(x, t ).

q 2 — En linéarisant l’équation de la dynamique appliquée à une particule de fluide, établir la relation

ρ
∂vx (x, t )

∂t
=−∂p(x, z, t )

∂x
.

q 3 — Établir alors la relation entre la dérivée temporelle
∂vx (x, t )

∂t
de vx (x, t ), la dérivée spatiale

∂η(x, t )

∂x
de η(x, t )

et g . Cette relation sera notée « (1) ».

FIGURE II-2 – Schéma au niveau mésoscopique du volume de contrôle V ∗ de largeur L selon (O y). L’échelle selon
(Ox) est très dilatée par souci de clarté.

Afin d’établir l’équation de propagation de l’onde de surface, on se propose de faire un bilan de masse sur un
volume de contrôle V ∗, fixe et indéformable, situé à l’abscisse x, de largeur élémentaire dx, d’épaisseur L suivant
la direction (O y) et de hauteur toujours supérieure à H+η(x, t ). (figure II-2). La situation est représentée à l’instant
t puis à l’instant t +dt sur la figure II-2. Pour mémoire, la grandeur η(x, t ) représente l’écart vertical élémentaire,
selon (Oz), à la position du fluide au repos.

q 4 — Établir l’expression de la masse d’eau, notée m(x, t ) contenue dans le volume V ∗ à l’instant t en fonction

des variables ρ, L, H , η(x, t ) et dx. En déduire l’expression de sa variation temporelle
∂(m(x, t ))

∂t
.
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q 5 — Établir l’expression de la masse δme qui entre dans le volume de contrôle en x, entre t et t +dt , en fonction
de ρ, H , vx (x, t ), η(x, t ), L et dt .

q 6 — Établir l’expression de la masse δms qui sort du le volume de contrôle en x+dx, entre t et t+dt , en fonction
de ρ, H , vx (x +dx, t ), η(x +dx, t ), L et dt .

q 7 — À partir des questions 4, 5 et 6, et en effectuant, à l’ordre le plus bas, un bilan de masse sur la volume de
contrôle entre t et t +dt , établir l’expression suivante, noté « (2) » :

∂vx (x, t )

∂x
=− 1

H

∂η(x, t )

∂t
. (2)

q 8 — À partir des équations (1) et (2), établir alors l’équation de propagation suivante

∂2η(x, t )

∂x2 = 1

g H

∂2η(x, t )

∂t 2 .

q 9 — Établir l’expression de la relation de dispersion en cherchant une solution de l’équation de propagation
sous la forme η(x, t ) = η0 cos(ωt −kx).

q 10 — Établir l’expression de la vitesse de phase en fonction de g et de H . Déterminer si le phénomène de pro-
pagation est dispersif ou non.

2—  Aspects énergétiques

On reste dans les conditions précédentes et on s’intéresse au cas particulier où l’évolution spatiale et temporelle
de la surface libre de l’eau peut être décrite par une onde plane progressive sinusoïdale η(x, t ) = η0 cos(ωt −kx) où

k est le vecteur d’onde tel que k = 2π

λ
et λ est la longueur d’onde.

q 11 — L’expression habituelle de l’énergie potentielle de pesanteur Epp d’un système quelconque de masse m
est donnée par Epp = mg z+cte (axe (Oz) vertical ascendant). Préciser à quel point spécifique de ce système la cote
z est associée.

q 12 — Montrer que l’expression de l’énergie potentielle de pesanteur élémentaire dEpp(x, t ) d’une tranche élé-
mentaire de fluide de hauteur H +η(x, t ), d’épaisseur dx et de largeur L, telle que définie à la figure II-1, s’écrit

dEpp(x, t ) = ρg L

(
η(x, t )

)2

2
dx ,

avec comme référence Epp,ref = 0 en l’absence de perturbation, c’est-t-dire lorsque η(x, t ) = 0.

q 13 — En déduire l’expression de la valeur moyenne temporelle de la densité linéique d’énergie potentielle 〈e〉 =
〈dEpp

dx
〉 en fonction de η0, g , L et ρ.

q 14 — En se situant toujours en eau peu profonde, établir l’expression de l’énergie cinétique élémentaire dEc(x, t )
de la même tranche de fluide, de hauteur H +η(x, t ), d’épaisseur dx et de largeur L, en fonction de L, ρ, dx H et de
la vitesse vx (x, t ).

q 15 — À partir de la relation (1), exprimer vx (x, t ) en fonction de x, t , η0, k, ω et g .

Exprimer ensuite l’amplitude de vx (x, t ) uniquement en fonction de η0, H et g .

q 16 — En déduire l’expression de la valeur moyenne temporelle de la densité linéique d’énergie cinétique 〈κ〉 =
〈dEc

dx
〉 en fonction de η0, g , L et ρ.

q 17 — Exprimer la propriété qui se dégage des expressions littérales des valeurs moyennes des densités linéiques
d’énergie potentielle 〈e〉 et d’énergie cinétique 〈κ〉 obtenues précédemment.

q 18 — En déduire la densité d’énergie linéique moyenne totale 〈w〉 transportée par une tranche élémentaire de
fluide, en fonction de η0, g , L et ρ.

q 19 — On note 〈PL〉 la puissance moyenne par unité de largeur de front L, suivant (O y), transportée par l’onde.
Établir l’expression de cette puissance moyenne en fonction de la vitesse de propagation de l’énergie, égale ici à la
célérité de l’onde, et de la densité d’énergie linéique moyenne 〈w〉 obtenue précédemment.

Montrer que 〈PL〉 peut s’écrire

〈PL〉 =
ρη2

0

2

p
H

√
g 3 .
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q 20 — Vérifier l’homogénéité de la relation obtenue à la question précédente, pour la grandeur 〈PL〉.
q 21 — Application numérique. Calculer la valeur de 〈PL〉 en prenant les valeurs typiques suivantes :

— profondeur de l’eau : H = 100 m;

— amplitude verticale de la houle : η0 = 0,36 m;

— masse volumique de l’eau : ρ = 1,0×103 kg ·m−3 ;

— accélération de la pesanteur : g = 10 m · s−2.

q 22 — Sachant qu’un foyer français consomme en moyenne 12 kWh/jour, calculer le nombre de foyers qui peuvent
alimentés par un dispositif de largeur L = 1,0 m.

 Partie III — Accumulateur cadmium-nickel

1—  Généralité

On représente la chaine électrochimique de façon simplifiée par

ªCd(s)|Cd(OH)2(s)||Ni(OH)2(s)|Ni2O3(s)⊕

L’électrolyte utilisé est une solution concentrée de potasse K(OH) de pH très proche de 14.
Les espèces chimiques contenant les éléments Ni et Cd sont à l’état solide.

q 1 — Déterminer les nombres d’oxydation des éléments Ni et Cd dans les 4 espèces considérées :

Cd(s), Cd(OH)2(s), Ni(OH)2(s) et Ni2O3(s).

Les domaines d’existence et de prédominance associés au nickel et à l’eau sont représentées sur le diagramme
E-pH de la figure III-1.

FIGURE III-1 – Diagrammes E-pH du nickel et de l’eau

On donne, pour l’élément Ni, les équations des frontières entre les différents domaines. Les potentiels sont expri-
més en volt.

(1) : E1 =−0,30

(2) : E2 = 0,12−0,06pH

(3) : E3 = 1,86−0,18pH

(4) : E4 = 1,02−0,06pH

Les données sont indiquées pour une concentration d’espèces dissoutes c0 = 1,0×10−2 mol ·L−1 et une tempéra-
ture de 25 °C.

q 2 — Tracer sur la copie le diagramme E-pH du cadmium en prenant en compte les espèces Cd2+, Cd(OH)2(s) et
Cd(s).
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L’énoncé comporte en annexe une reproduction agrandie de la figure III-1 ; cette reproduction est un support proposé
pour la réflexion. On peut, par exemple, y superposer le diagramme E-pH du cadmium pour répondre aux questions
se basant sur le diagramme complet. Cette figure n’est pas à rendre avec la copie, mais elle peut être schématiquement
reproduite si nécessaire.

2—  Étude de la décharge

q 3 — Identifier l’anode et la cathode lors de la décharge de l’accumulateur. Écrire la demi-équation électronique
observée à chaque électrode en milieu fortement basique. En déduire l’équation de la réaction lorsque l’accumu-
lateur débite.

q 4 — Déterminer les potentiels rédox E+ et E− de chaque pôle, et en déduire ENiCd, différence de potentiel prévue
par la thermodynamique aux bornes de la pile.

q 5 — Déduire de ENiCd la valeur de l’enthalpie libre standard ∆rGo pour la réaction de décharge de l’accumu-
lateur. Calculer à partir des données l’enthalpie standard de réaction ∆rH o. En déduire l’entropie standard de
réaction ∆rSo.

On se placera à 25 °C et on considérera que l’enthalpie standard de la réaction et l’entropie standard de réaction
sont indépendantes de la température.

q 6 — En déduire la variation de la tension ENiCd avec la température.

L’accumulateur Cd-Ni est réputé pour délivrer une tension indépendante de la concentration en potasse K(OH) et
pour sa stabilité face aux variations de température ambiante.

q 7 — Les calculs précédents confirment-ils ou non ces propriétés?

3—  Étude de la recharge

On souhaite recharger l’accumulateur.

q 8 — Comment brancher un générateur externe pour recharger l’accumulateur ? On précisera clairement le signe
des bornes du générateur sur la schéma.

q 9 — Écrire l’équation de la réaction réalisée pendant la charge.

q 10 — Quelle est la tension minimale Umin, prévue par des considérations thermodynamiques, nécessaire pour
que le générateur puisse recharger l’accumulateur ?

q 11 — Quels phénomènes pourraient causer une augmentation significative de cette valeur ? On argumentera
de façon rigoureuse.

 Données numériques

 Potentiels standard redox

élément Ni Ni2+/Ni : E o
a =−0,24 V Ni2O3/Ni2+ : E o

b = 1,43 V
élément Cd Cd2+/Cd : E o

c =−0,40 V
couples de l’eau H2O/H2 : E o

d = 0,00 V O2/H2O : E o
e = 1,23 V

constante de Faraday F = 96480 C ·mol−1

 Produits de solubilité

Ni(OH)2(s) : pKs1 = 16 Cd(OH)2(s) : pKs2 = 14

 Valeurs thermodynamiques

Produit ionique de l’eau à 25 °C : pKe = 14.
Enthalpies standard de formation à 25 °C :

espèce H2O(ℓ) Cd(OH)2(s) Ni(OH)2s Ni2O3(s)
∆fH

o (kJ ·mol−1) −285,8 −560,7 −529,7 −489,0
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 Annexe : diagramme E-pH du nickel et de l’eau
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