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TD ondes no 4 Ondes acoustiques

1—  Ordres de grandeur [*]

On considère une source sonore émettant une onde
plane harmonique d’intensité 60 dB, de fréquence f =
1 kHz, dans l’air à la température T0 = 20 °C. Calculer
numériquement :
— l’amplitude de la pression acoustique pm ;
— l’amplitude de la vitesse particulaire vm ;
— l’amplitude du déplacement particulaire ξm ;
— l’écart de température ∆T = Tm −T0.

2—  Linéarisation [*]

On considère une onde acoustique décrite par le
champ des vitesses

#»v 1 = v1(x, t )#»e x =U1 cos(ωt −kx)#»e x .

1. Qualifier cette onde le plus précisément possible.

2. Rappeler l’expression de l’accélération d’une parti-

cule de fluide, #»a = D#»v

Dt
.

3. Donner l’ordre de grandeur du terme local en fonc-
tion de U1 et ω.

4. Donner l’ordre de grandeur du terme convectif en
fonction de k et U1.

5. Comparer ces deux termes dans le cadre de l’ap-
proximation acoustique où |v1|≪ c.

3—  Onde sonore dans un gaz [*]

On veut établir l’équation de propagation des ondes
sonores dans un tuyau par un raisonnement lagran-
gien, c’est-à-dire en suivant une particule de fluide, qui
est par construction un système fermé, dans son mou-
vement.
Le tuyau, de section S constante, contient un fluide ho-
mogène au repos en l’absence d’onde. La pression du
fluide vaut alors P0, sa masse volumique µ0 et sa tem-
pérature T0.
Les effets de la pesanteur et les causes d’amortisse-
ment ne sont pas pris en compte.
Le système fermé étudié est une tranche de fluide
d’épaisseur dx au repos, comprise entre les abscisses
x et x +dx. En présence de l’onde acoustique, ξ(x, t ),
appelé déplacement acoustique, représente le dépla-
cement de la face de la particule de fluide par rap-
port à son abscisse x lorsque le fluide n’est pas per-
turbé. Quand le fluide est perturbé par l’onde sonore,
la particule de fluide se trouve donc entre les abscisses
x +ξ(x, t ) et x +dx +ξ(x +dx, t ).
On note p(x, t ) = P (x, t )−P0 la pression acoustique et
µ(x, t ) =µ0 +µ1(x, t ) la masse volumique.

ξ(x, t ) ξ(x +dx, t )

x x +dx x

1. Commenter sans la justifier l’hypothèse

∣∣∣∣ ∂ξ∂x

∣∣∣∣≪ 1,

dite de l’« approximation acoustique », retenue dans
tout ce problème : tout terme d’ordre supérieur ou égal

à 2 en
dξ

dx
sera négligé.

2. En exprimant la conservation de la masse de la
tranche de fluide, exprimer µ1(x, t ) en fonction de µ0

et
∂ξ

∂x
.

3. Traduire, au même ordre, la relation fondamentale
de la dynamique appliquée à la tranche de fluide et en

déduire la relation liant
∂2ξ

∂t 2 à
∂p

∂x
.

Il faut faire une hypothèse supplémentaire sur la na-
ture de la transformation subie par le fluide, que nous
supposerons être un gaz parfait de masse molaire M ,
de constante γ, à la température T0 au repos.

4. L’évolution de la tranche de fluide est supposée iso-
therme.

En déduire une relation entre p et µ1.

Montrer alors que ξ vérifie l’équation de d’Alembert, et
exprimer la célérité cT de l’onde sonore en fonction de
T0 et des constantes caractéristiques du gaz.

5. L’évolution de la tranche de fluide est supposée
adiabatique réversible.

Montrer que ξ vérifie l’équation de d’Alembert, et ex-
primer la célérité c de l’onde sonore en fonction de T0

et des constantes caractéristiques du gaz.

6. Calculer la célérité des ondes sonores pour l’air de
masse molaire M = 29 g ·mol−1 avec ces deux modèles.
On donne R = 8,31 J ·K−1 ·mol−1 et γ= 1,4. On prendra
T0 = 293 K.

Quelle est l’hypothèse à retenir?

4—  Trompette [*]

On considère un instrument de musique de type trom-
pette, modélisé par un tuyau de longueur L et de dia-
mètre d .

1. On donne p1(L, t ) = 0. Pourquoi ?

2. On donne p1(0, t ) = p0 cos(ωt ). Résoudre l’équation
de d’Alembert.
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3. Le spectre du son est constitué des fréquences
250 Hz, 500 Hz et 1000 Hz. Déterminer la longueur L de
l’instrument. Le modèle linéaire est-il cohérent?

4. Le vecteur densité de courant énergétique
#»
Π est-il

égal à p1(x, t )#»v 1(x, t ) ou a P0
#»v 1(x, t ), où P0 est la pres-

sion atmosphérique ? Calculer
#»
Π en x = L. Commenter.

5—  Isotherme ou adiabatique? [**]

On considère une onde acoustique se propageant dans
un fluide assimilé à un gaz parfait de masse molaire M .
L’évolution du fluide est considérée comme isotherme,
à la température T0.

1. Comment faut-il modifier les équations de l’acous-
tique linéaire pour prendre en compte l’évolution iso-
therme du fluide ?

2. Établir l’équation d’onde vérifiée par la surpres-
sion p1, et en déduire l’expression de la célérité cT des
ondes.

3. Calculer cT dans le cas de l’air, de masse molaire
M = 29 g·mol−1, à la température T0 = 300 K. On donne
R = 8,314 J ·K−1 ·mol−1.

Le coefficient de diffusivité thermique du milieu est
Dth.

4. Quelle est la longueur caractéristique des variations
spatiales des champs dues à une onde acoustique de
fréquence f ?

5. Montrer que la diffusion thermique est négligeable
si la fréquence vérifie une condition à expliciter.

On donne c = 340 m · s−1 et Dth = 2×10−5 m2 · s−1 pour
l’air ; discuter de l’hypothèse.

6—  Onde dans un tuyau élastique [**]

On considère un tuyau cylindrique souple, contenant
un fluide homogène. Une onde acoustique se propage
dans ce fluide.
On note µ(x, t ) = µ0 + µ1(x, t ) la masse volumique ;
p(x, t ) = P0+p1(x, t ) la pression, #»v (x, t ) = v1(x, t )#»e x la
vitesse des particules de fluide, et S(x, t ) = S0 +S1(x, t )
la section du tuyau.
On se place dans la cadre de l’approximation acous-
tique.
L’élasticité du tuyau est décrite par son coefficient de

distensibilité D = 1

S

dS

dP
.

On note χS le coefficient de compressibilité isentro-
pique du fluide.

1. En effectuant un bilan de masse sur une tranche
comprise entre x et x +dx, établir la relation

µ0
∂S1

∂t
+S0

∂µ1

∂t
=−µ0S0

∂v1

∂x
.

2. Montrer que la surpression acoustique vérifie
l’équation de d’Alembert, et exprimer la célérité c en
fonction des données.

3. Calculer la célérité des ondes dans un tuyau métal-
lique (Dm = 10−11 Pa−1), puis dans un tuyau élastique
(Dél = 4×10−5 Pa−1). Commenter.

Le fluide est de l’eau, pour lequel µ0 = 1×103 kg ·m−3

et χS = 5,1×10−10 Pa−1.

La section du tuyau est S0 = 7,35×10−2 m−2.

7—  Flûte traversière [**]

Une flûte traversière est modélisée par un tuyau de sec-
tion S constante et de longueur ℓ ouvert à ses deux
extrémités. Lorsque le musicien souffle dans l’embou-
chure latérale de la flûte, les vibrations produites ex-
citent une onde stationnaire harmonique décrite par la
surpression acoustique

p(x, t ) = Pa cos(ωt )cos(kx +α) .

1. Quelles sont les conditions aux limites aux deux ex-
trémités? Pourquoi modéliser l’onde sonore par une
onde stationnaire?

2. Déterminer complètement l’onde de pression ainsi
que les fréquences des sons pouvant être joués par
cette flûte.

3. La flûte émet un do à 264 Hz quand tous ses trous
sont bouchés, à une température de 20 °C. Quelle est la
longueur de la flûte, sachant que seul le fondamental
est excité?

4. Quelle est la fréquence du son émis à une tempéra-
ture de 10 °C, tous les trous étant bouchés?

5. Où se trouve le trou qu’on doit déboucher pour
jouer un ré à 294 Hz, à une température de 20 °C?

6. Déterminer le champ des vitesses dans le tuyau
ainsi que le vecteur densité de courant énergétique
acoustique moyen.

8—  Clarinette [**]

On considère une clarinette comme étant un tube de
longueur L et de section S. Son extrémité en x = 0 est
fermée et on impose une pression P0 en x = L. Au re-
pos, la pression dans le tube est P0, la masse volumique
µ0 et on note c la célérité d’une onde sonore dans l’air.
Le musicien lance une onde sonore dans le tube en
x = 0 :

P (x, t ) = P0 cos(ωt )cos(kx) .

1. Justifier la forme de cette onde.

2. Déterminer l’expression de l’onde de vitesse dans le
tube.

3. Lister les conditions aux limites.

4. Quels sont les pulsations ω possibles dans ce tube ?
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5. La pulsation du fondamental pour une flûte est
cπ/L. Comparer le hauteur du son d’une flûte et d’une
clarinette de même longueur.

6. Déterminer la hauteur du son émis par une clari-
nette de longueur 65 cm dont tous les trous sont bou-
chés à l’exception du trou central.

7. Quelle est cette note? Qu’est-ce que le timbre?

9—  Bruit d’explosion [**]

1. Une explosion retentit et est entendue par un obser-
vateur à une distance D à l’horizontale. On considère la
température constante égale à T0. Calculer la durée τh

que met l’onde à parcourir cette distance.

2. L’observateur se situe maintenant à la verticale à
une même distance D . La température évolue selon la
loi T (z) = T0−B z. Déterminer la durée correspondante
τv.

3. À partir de quelle distance D l’écart relatif entre τh

et τv est-il supérieur à 1 % ?

 Données

L’air est supposé parfait diatomique avec γ = 1,40, de
masse molaire M = 29 g ·mol−1.
T0 = 288 K.
B = 5×10−3 K ·m−1.

10—  Diapason [**]

Un diapason est un instrument en forme de U, qui pro-
duit une note dans la hauteur sert de référence, le la
à 440 Hz. La caisse de résonance du diapason est une
boîte en bois parallélépipédique creuse dont l’un des
côtés est ouvert. Lorsque le diapason est encastré sur
sa caisse, on entend un la très pur et puissant.

1. Pourquoi la longueur de la boîte, entre l’extrémité
ouverte et l’extrémité fermée, est-elle d’environ 19 cm?

2. Le la se fait-il entendre plus ou moins longtemps
avec la caisse que sans?

3. Estimer la célérité des ondes dans le diapason.

11—  Puissance sonore du violon [**]

1. On considère un violon avec une corde de longueur
ℓ, fixée à ses deux extrémités, selon l’axe (Ox). Un mu-
sicien pince la corde donnant naissance à une onde
de célérité c. Donner l’équation vérifiée par l’élonga-
tion y(x, t ), ainsi que la relation liant la fréquence et le
mode.

2. On donne ℓ= 33 cm. Un musicien pince la corde en
son centre. Quelle est la fréquence du son émis ? Quel
est l’utilité d’un archet?

3. Le niveau d’intensité sonore est défini par

L(dB) = 10log

(
I

I0

)
,

où I0 = 1,2×10−12 W ·m−2 est le seuil d’audibilité, ou
seuil de perception. À a = 1,0 m du violon, on me-
sure L = 70 dB. Jusqu’à quelle distance d peut-on en-
tendre le violon? Utiliser les approximations qui vous
semblent pertinentes.

La figure suivante représente les courbes d’égale sen-
sation auditive (isosonies).

12—  Fréquences propres d’une sphère rigide [***]

On cherche à étudier les modes propres de vibration à
l’intérieur d’une sphère rigide de rayon R. On écrit la
surpression sous la forme

p(r, t ) = A

r
ei(ωt−kr )+B

r
ei(ωt+kr ) .

1. Justifier cette expression et écrire le champ des vi-
tesses.
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2. En notant Dv le débit volumique à travers une
sphère de rayon r , que peut-on dire de lim

r→0
Dv ? Quelles

sont les conditions aux limites? Déterminer l’équation
vérifiée par les fréquences propres.

3. Donner une valeur numérique approchée de la plus
basse de ces fréquences. Effectuer l’application numé-
rique pour R = 5,0 cm.

13—  Sphère pulsante et impédance de rayonne-
ment [***]

Une sphère de centre fixe O dont le rayon

a(t ) = a0 +a1 cos(ωt )

varie sinusoïdalement avec une amplitude a1 ≪ a0 ≪
λ émet des ondes sonores dans tout l’espace extérieur
à la sphère, rempli d’air de masse volumique ρ0 où la
célérité des ondes sonores vaut c. Compte tenu de la
symétrie sphérique du problème, on cherche pur les
ondes de pression et de. vitesse des solutions de la
forme P1(r, t ) et v1(r, t )#»e r en coordonnées sphériques.
Le laplacien d’un champ scalaire f (r, t ) s’écrit

∆ f = 1

r

∂2(r f )

∂r 2 .

1. Déterminer la forme générale des solutions P1(r, t )
de l’équation de d’Alembert et interpréter.

Dans tout le suite, on ne conserve que la solution

P1(r, t ) = 1

r
f
(
t − r

c

)
.

Justifier ce choix.

2. Dans toute la suite, on cherche une solution sinu-
soïdale de la forme

P1(r, t ) = A

r
cos(ωt −kr −α) .

Que vaut k ?

Déterminer le champ des vitesses correspondant en
tout point.

Que devient-il dans la « zone de rayonnement », i.e.
pour r ≫λ?

Quelle est alors localement la structure de l’onde?

Que vaut le rapport
P1(r, t )

v1(r, t )
dans ce domaine?

3. Déterminer A et α en fonction des données du pro-
blème en examinant le champ des vitesses au voisinage
de la sphère (zone de « champ proche »).

4. Calculer la puissance moyenne rayonnée dans tout
l’espace par la sphère.

On modélise l’extrémité ouverte d’un tuyau cylin-
drique de rayon a0 (d’une flûte par exemple) par la
sphère pulsante précédente, et on cherche à interpré-
ter la condition aux limites usuelle que l’on écrit à la
sortie d’un tel tuyau : « nœud de pression, ventre de vi-
tesse ».

5. Exprimer le rapport complexe
P 1(r, t )

v1(r, t )
dans le cas

de la sphère pulsante à une distance r quelconque, en
fonction de ρ0, c, ω et r .

6. En déduire que l’« impédance de rayonnement » du
tuyau sonore, définie en r = a0, vaut sensiblement

Z ray ≈ ρ0c

[(ωa0

c

)2
+ j

ωa0

c

]
.

On justifiera quantitativement l’approximation faite.

7. Interpréter la condition aux limites usuelles que l’on
écrit à la sortie d’un tel tuyau : « nœud de pression,
ventre de vitesse ».

14—  Accordons-nous [***]

Imaginez vous un concert, salle Pleyel ; il fait chaud et
au bout d’un moment les instruments sont moins per-
formants.
La température augmente de 5 °C, de combien de 1/2
tons est désaccordé le la d’un instrument à vent?

15—  Hautbois [***]

Un hautbois est modélisé par un tuyau conique de
sommet O, d’axe de symétrie Ox, de longueur ℓ et
d’angle au sommet α. L’extrémité du cône est ouverte
sur l’atmosphère. On suppose que l’onde sonore ré-
gnant dans le hautbois est caractérisée par une sur-
pression acoustique p1(x, t ), une fluctuation de masse
volumique µ1(x, t ) et un champ de vitesse #»v (x, t ). On
note S(x) la section du tuyau conique à l’abscisse x.

1. En effectuant un bilan de masse sur une tranche de
cône comprise entre les abscisses x et x +dx, montrer
qu’à l’ordre 1 on a

S
∂µ1

∂t
+µ0

∂(Sv1)

∂x
= 0.

2. En déduire que l’équation de propagation régissant
la surpression acoustique s’écrit

∂2p1

∂t 2 = c2

S

∂

∂x

(
S
∂p1

∂x

)
.

3. Que vaut S(x) ? En déduire que

∂2p1

∂t 2 = c2

x

∂2(xp1)

∂x2 .

4. On cherche une solution de la forme

p1(x, t ) = f (x)

x
cosωt .

Déterminer complètement le champ de surpres-
sion acoustique p1(x, t ). Quelles sont les fréquences
propres d’un hautbois de longueur ℓ?
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