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Ondes acoustiques

[*]

Un niveau acoustique de 60 dB correspond a une in-

1 — Ordres de grandeur

tensité I = Ip x 105 =106 W-m™2.
Avec
<p ) pE
= (i = P
HocC 2,uoc

on en déduit py, = \/2upcl.
D’apres I'équation d’état du gaz parfait, on a

MP,

=—2=120kg-m"
Mo = RT, g
et
RT,
=/ L0 =343 mes 7,
M

d’ott goc =408kg-m=2-s71,

On en déduit | py, =2,9x 1072 Pa .

Lamplitude de la vitesse se déduit de vy, = P_m, soit

HoC

Um=7,0x10"°m-s7! .

Pour un signal sinusoidal de fréquence f,ona v; = 3
la vitesse vaut vy = wéy =21 f&y, d'olt | =11nm |.
Pour une évolution adiabatique réversible d'un gaz
parfait, la température et la pression vérifient la loi de
Laplace PI"YTY = cte, soit en différentielle logarith-
mique

a )dP N dr 0

PVt =

Les variations de pression et de température étant trés
faibles, nous les assimilons aux différentielles; d’ ot
y-1To

—AP.
Y Po

AT =

Comme en amplitude AP = py,ona AT =2,4x10"°K

On vérifie que py, < Py et AT <« Ty, ainsi que vy < cet
¢m < A oulalongueur d'onde est A = ¢/ f =0,34 m. On
est tout a fait dans le cadre de 'approximation acous-
tique.

[*]
On considere une onde acoustique décrite par le
champ des vitesses

2 — Linéarisation

V1i=v1(x,1) €=U cos(wt—kx).

1. Cest une onde plane progressive harmonique
(OPPH) dans le sens des x croissants.

2. Laccélération d'une particule de fluide s’écrit

Z—E—a—vﬂv rad) U
Dt 0t 8 ’

3. Le terme local a pour ordre de grandeur

—=wU .
ot !

0
4. Ona 6_111 = kV)sin(wt—kx) = kU, en ordre de gran-
X

deur, donc le terme convectif a pour ordre de grandeur
—
I(V - grad) V|l = kU? .

5. On peut écrire

I(V-grad) 7l oU; ¢
= — <1
on kUlz U,
ot

dans le cadre de I'approximation acoustique (|v1| < ¢).
—

. ovy ., . .
On peut alors écrire @ = TS (linéarisation).

[*]
1. Le déplacement de la tranche de fluide est, en pra-

tique, tres inférieur a la longueur d’onde d’'une onde
sonore harmonique se propageant dans le tuyau: |{| <

A.On adonc % e i «< 1.
0x

x
2. La masse de la tranche de fluide au repos est dm =
toSdx. La conservation de sa masse s’écrit :

3 — Onde sonore dans un gaz

HoSdx =uS[dx+¢é(x+dx, 1) —E(x, )]
0¢
=uS|dx+—-—=d
i 0x *
avec U = oy + 1, Soit:
= (o + )1+ang +u+ ]
Ho = (Ho + H1 ax | = HoT LT o

en négligeant le terme du second ordre. On a donc:

0¢

H1 Z—Moax

3. Appliquonsle principe de la dynamique a la tranche
de masse dm = ppSdx:

62
,uOdea > =[P(x)—P(x+dx, ]S
au premier ordre, soit avec P(x, t) = Py + p(x, 1) :
0%¢ 0
Ho 2P

o~
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4. Pour le fluide au repos, 'équation d’état s’écrit

P_RTO
0= Mﬂo-

Pour le fluide perturbé, elle s’écrit

RT,
Py+plx, 1) = V(Ho +u1(x, 1),

d’ou
_RTy
p= M M1
Onadonc:
0°¢  RTy0wm _ RTy 0%
Ho ="M ox Mo ox2
d’out

0x2 cror? =V "M

5. Un gaz parfait subissant une évolution adiabatique
réversible obéit a la loi de Laplace Pu~" = cte.
Onadonc:

Popy" = (Po+ p)(po + 1) 7"

- p m\™r
= Pop,” (1 +— (1 + —)
oo Py Ho
soit:
-y
1= 1+£)(1+&) z(1+£)(l—y&).
Py Ko Py Ko
En se limitant au premier ordre, on a donc:
_ YPo  YRTy
=-—u=- -
Mo M

On en déduit donc comme précédemment

0%¢ 1 0% 0 avec c [YRT,
—_— = \Y =1/ —.
0x%2 cr 0t? M

6. Oncalcule c7 =290 m-s~tetc=343m-s™ ..

La seconde valeur est en accord avec I'expérience, et
c’est 'hypothese d’adiabaticité qui est a retenir.

[**]
1. L'équation d’Euler et I'’équation de conservation de
la masse ne dépendent pas de la nature de I’évolution
du fluide; elles sont inchangées :

671)1 - 6,u1 >

—— = —grad et — +updivv, =0.

Ho—>~ gradp; 5 Ho 1

L'évolution du fluide n’étant plus adiabatique, il est évi-
demment exclus d’utiliser la relation traduisant I’adia-
baticité de cette évolution. Il faut utiliser le coefficient
de compressibilité isotherme :

1(6V) 1 (au)
XTZ—— _— = —|— .
vV\iopP T % oP T
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En suivant le méme raisonnement qu’en cours, on éta-
blit la relation linéarisée :

H1=HoXTP1-

2. On établit I’équation d’onde vérifiée par la surpres-
sion de la méme facon qu’en cours :
62 P1 1
0t>  poxr

Apl =0.

La célérité des ondes acoustiques vaut alors :

1
\//JOXT.

Dans le cas du gaz parfait, le coefficient de compressi-
bilité isotherme a la température Ty vaut :

cT =

190 (nRTo) _nRT, 1
M="ver TP Jp VEZ Py
On adonc:
_Ho_ M
HoXT Py RT
P, RT,
en utilisant I’équation d’état 2= VO'

On en déduit I'expression de la célérité :

_ [RTy
cr=1\/ 77

Lexpression de la célérité peut étre établie plus directe-
ment dans le cas du gaz parfait. Léquation d’état du gaz

M
parfait permet d’écrire [y = EPO en l'absence d’'onde
0

sonore. En présence de l'onde, la température restant
égale a Ty, on obtient :

+U = (Po+ p1)
Ho 'ul_RTo 0t p1
_ M
,Ul—RTom-

Les équations d’Euler et de la conservation de la masse
permettent d’écrire :

_ a(ﬂo diV_I—})l) _ Ozpl

div(grad p1) =Ap; =

ot ot
aor M p1  1*p;
A= RT, 07 2 92

RT,

On retrouve l'expression de la célérité ct =

3. Oncalcule c7 =293 m-s~!. Cette valeur n’est pas en
accord avec les résultats expérimentaux.
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4.a) Ils’agit delalongueur d’'onde A = %

4.b) Pendant une période T = 1/f, la diffusion ther-
mique se fait sur une longueur caractéristique
Duy

Lin= VDT = 7 .

Lévolution peut étre considérée comme adiabatique
si on peut négliger la diffusion thermique, c’est-a-dire
si, pendant une période, elle se fait sur une longueur
Ly < A Il faut donc

D c c?
Zh 2 soit f<—.
ff D

Pour l'air, il faut f < 6 x 10% Hz = 6 GHz. Cette condi-
tion est largement vérifiée dans le domaine des ondes
acoustiques.

[**]
1. Considérons la tranche de fluide comprise entre les

abscisses x et les abscisses x+dx. Nous allons effectuer
un bilan de masse sur ce systéme.

6 — Onde dans un tuyau élastique

La masse de fluide vaut dm(x,t) = u(x, )S(x, ) dx.
Pendant dt, elle varie de

o b
d’m= dm(x, t+dt)—dm(x, t) = %dt

0S(x, 1) ou(x, 1)
S(x, ) —2— | dxdt.
5 TS DT |dx

La masse échangée a travers les frontiéres pendant d¢
vaut (on compte positivement la masse recue par le
systeme)

= | plx, 1)

82 meen = p(x, HS(x, t)v(x, ) dt
—ulx+dx, )S(x+dx, t)v(x+dx, t)dt
o(uSv)
e
0x
Le bilan de masse s’écrit d?m = 62 mgcp, soit apres sim-
plification par dxdz :

ous) B o(uSv)
ar ~ ox
Comme S(x, 1) = So + S1(x, 1), p(x, 1) = po + p1(x, £) et
v(x, 1) = v1(x, 1), en notant avec I'indice 1 les grandeurs
infiniment petites d’ordre 1, le bilan s’écrit
051 0w

HE_F E:_H 0x K 0x

soit en explicitant chaque grandeur

xdt.

(o + ) 2L 1 (504 51 2
Ho + K1) 0+ 51

(o + 1) (S0 + S22 — (ptg + gy
= — —_— v —
Ho + H1)(S0 1 ox Ho + 16x

om

—(Sg+ S .
(So I)Vlax
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En se limitant au premier ordre vis-a-vis des termes
d’indice 1, on obtient

N/ L
Hoat °6t_'u006x'
2. La relation traduisant ’adiabaticité de I’évolution
du fluide s’écrit
U op1

EIr T

La section du tuyau dépend de la pression P. En 'ab-
sence d’onde, elle vaut S(Py) = Sp. En présence de
I'onde sonore, elle vaut

ds
S(P)=S(Py+ p1) = S(Py) + p1 (@)
Py

= So + plS(Po)D = S() + plsoD

d’apreés la définition de D. On en déduit

ds _ d51 _ 6p1
dr  dr "ot
Le bilan de masse s’écrit alors
Opl 0p1 6v1
SoD—+ S — = —UpSp—,
Hoo0 o1 oMoXs a1 Ho Oax
. apl oy
t(D+ys)—— = ———.
SOIt(D+x8) 5, =5
Léquation d’Euler linéarisée s’écrit
oy 0py
Mo = ox

En utilisant le théoreme de Schwarz entre cette équa-
tion et le bilan de masse, on obtient
02 4] 1 02 1 02 1
Ry
0x0t Ho Ox ot

La surpression vérifie donc I'’équation de d’Alembert

02;91 _ 1
012

0°p1
=0
to(D + xs) 0x?

La célérité des ondes vaut

1

VoD +xs) |

3. On calcule pour le tuyau métallique

C=

cm=1390m-s~!
et pour le tuyau souple
1

Col=5m-s"

La célérité est considérablement réduite dans un tuyau
souple.
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[**]
1. Les extrémités imposent des conditions aux limites

de type « nceud » de surpression (extrémité fermée) ou
«ventre » de surpression (extrémité ouverte).

8 — Clarinette

Elles justifient donc de chercher une solution de
I’équation de d’Alembert sous forme d’'une onde sta-
tionnaire.

2. ’Equation de la dynamique linéarisée en projection
selon Ox :

,ugaa—vtl = —% = prokcos(wt) sin(kx)
d’ou ¢
vi(x, )= P10 sin(wt) sin(kx)
How

soit comme w = k¢

vi(x, 1) = D sin(wt) sin(kx) |.
HoC

3. Les conditions aux limites sont :

pL=0 et v (0,1)=0.

La paroi en x = 0 impose v; = 0, car la vitesse est nor-
male a la paroi (condition de cinématique des fluides).
La pression atmosphérique extérieure impose P(L, t) =
Py soit p1(L, 1) =0.

4. La condition v;(0,7) = 0 est déja vérifiée par le
champ des vitesses obtenu.

En x = L, on doit avoir

p1(L, t) = Pygcos(wt)cos(kL) =0 Vit
Cette condition impose cos(kL) = 0, soit
b2
k,L= 5 + ni.

Avec w,, = k,c, on obtient les pulsations propres

cTT cTT .
wp,=—+((Mm—-1)— avec neN" .
2L
Le fondamental a pour pulsation
lo7/4

W =—.
Y

. 24 . P
Le fondamental a pour pulsation w; = oL soit la fré-

quence
cr

fl:ﬂ'

On remarque que
w,=1201-1)+1]Z.
2L
On peut donc écrire

fr=Rp+Dfi

Le son ne comporte que les harmoniques de rang im-
pair.

avec peN.
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5. La fréquence du fondamental pour une flate est

donc
c

fia= Y
Pour une clarinette, elle vaut

¢ _hia
ha=7=5

A longueur de tuyau égale, le son émis par une clari-
nette est plus grave (une octave plus grave) que le son
émis par une flate.

6. Avec L = 65cm et ¢ = 340 m-s}, la fréquence du
fondamental est f; = 130,8 Hz.

Si on ouvre le trou central, on force un nceud de pres-
sion a se former aux environs du milieu du tuyau. Dans
la pratique, cela force I'émission de I'harmonique sui-
vant, c’est-a-dire f3 =3 f; =392,3 Hz.

7. Le fondamental f; = 130,8 Hz correspond a un dos.
Le troisieme harmonique f3 = 392,3 Hz correspond au
soly, situé a un intervalle de douziéme (une octave plus
une quinte) du fondamental.

Le timbre est la « couleur » du son, défini en premiere
approximation par les amplitudes des harmoniques
qui le constituent.

[**]

1. Lavitesse du son dans un gaz parfait est donnée par

9 — Bruit d’explosion

YRTy
Co = .
M

Le temps mis pour parcourir la distance D vaut donc

D M
Th=—=D .
Co YRTy

2. La célérité du son est donnée ici par

c(2) = yRT(z)_ yR(TO—Bz)_ YRTy ] Bz
B M M VM To
soit
(2) 1 b
c(z)=c -—2z.
0 T,

La durée mise pour parcourir une distance dz vaut

donc s
d 1 B \~
dt:—zz—(l——z) dz.
clz) ¢ To

La durée mise pour aller de z=0a z = D vaut donc

T =i D(I—Ez)mdz
e Jo To
:_i I_BT([’)u—uzdu:_@ﬁ)l‘%)
Bey /4 Bcy 1
__2h /1_@_1)
BC() To
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soit

ZTO BD

T = 1—4/1—-—

BC() T()
3. Avec les valeurs numériques données, on a
B
—=~107°m™L.
T

Nous allons donc faire ’hypothese (dont il faudra véri-

fier la validité a posteriori) que T < 1, soit

0
s BD . BD 3(BD)2
To ~ 2To 8\ Ty )~
On adonc
D 2T, BD 3(BD)2]
Th—Ty=——-—— 11— — ===
cg Bcy 2Ty 8\ Ty
D D 2T03B2D2
C() Co BC()8 T()2
3BD?> 3 BD
== —Tp—.
4C()T() 4 T()
On en déduit I'écart relatif
Th—Ty _ 3BD
Th - 4Ty
L. Th— Ty
On en déduit que —— > 0,01 pour

0,04 Ty

soit | D>7,7 x 10° m

BD
» On vérifie T - 1,3x 1072 <1, l'approximation
0
faite pour utiliser un développement limité est

donc justifiée.

12 — Fréquences propres d’une sphére rigide [***]

On considere

(wt kr)+§ 1(wt+kr)
r

pr,1) =

1. Le premier terme correspond a une onde divergente
(apres passage au centre de la sphere) ; le second a une
onde convergente (aprés réflexion sur la paroi de la
sphere).

L'équation d’Euler conduit a

0T Opa 1 ik) ;
g =—Al-—_-—= el(wt—kr) ?
K5y ar  or "~ —( r2or ) :
1K) iwevkn 2
—E(—ﬁ + — " ) er

A . B .
= [:2(1 +ikr) e @+ = (1 - ikr) e @) €
r r
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d’ou
v=— [AQ +ikr) @
iwp
+§(1 _ lkr) ei(a)t+kr) _6’
soit
1 .
v= > | Aler =) e/ @=kD
Howr

—B(kr+1) e @k g

2. On doit avoir
lim D, =0.
r—0

Le débit volumique est donné par
Dy = axr?® v(r, 1).

On a donc en notation complexe

limD,

1D 4_[ lAelwt iEeiwt]
r—

How
4mi iwt
=—— [A+ B] =0,
How
d'ou B=-A.

Le champ des vitesses s’écrit alors

A
_ (kr —i)e i(wt— kr)+(kr+l)el(wt+kr)

 powr?

|El

La composante radiale de la vitesse doit étre nulle sur
la paroi: v(R, ) =0, Vt, soit apres simplification

A(kR-1) e*R + A(kR+1)e*R = 0.
Comme A # 0, on en déduit

(kR—i)e *R 4 (kR +i)ei*R =0,

soit
kR (elkR +e

qui s’écrit

—iIcR) +i (eikR _ e—ikR) =0,
kRcos(kR) —sin(kR) =
Les modes propres vérifient donc

tan(kR) =

Avec la relation de dispersion w =27 f = kc, on en dé-
duit la relation vérifiée par les fréquences propres :

tan [ 215 -

Cc

2nfR
—

3. Laplus basse de ces fréquences est donc la plus pe-
tite racine positive de tan x = x.

Une résolution numérique conduit a x = 4,5. Avec ¢ =

4,5¢ .
340 m-s~!, on calcule f=——=,soit f =4,9 kHz.
2nR
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13 — Sphére pulsante et impédance de rayonne-
ment [¥¥¥]

1. L'équation de d’Alembert s’écrit

—-—Cc“AP; =0
or? !
soit dans le cas d'un champ radial
0°Py ¢ 0*(P)
o> r or?

En posant F(r,t) =rP(r,t),ona

0°F

0°F
o7 ST

W—O.

La solution générale de I'équation de d’Alembert uni-
dimensionnelle est

F(r, 1) =Af(t—£)+Bg(t+£),

d’olt

Py (r, t):éf(t—£)+§g(t+£).

Le premier terme représente une onde divergente, le
second une onde convergente.

La source des ondes étant a 'origine O, il est naturel
de ne considérer que des ondes qui s’éloignent de la
source, c’est-a-dire divergente :

1 r
P(r 1) = ;f(t—z) :
2. Dans le cas d’'une sinusoidale de la forme
A
Pi(r,t) = —cos(wt—kr—a),
r

I’équation de d’Alembert conduit a la relation de dis-
persion

k==
C

L'équation de la dynamique linéarisée s’écrit

ovy(r,t) B @

pOT P :ﬁcos(wt—kr—a)
kA |
— —sin(wt-kra)
-
d’ou

A kA
pov1(r, 1) = — sin(w? - kr—a)+ —cos(wt—kr—a).
wr wr

Avec la relation de dispersion, on obtient

v1(r, 1) cos(wt—kr—a)+

pocr cr?

Le champ vectoriel est U1 (M, t) = v1(r, 1) €.

CPGE PSI 2025-2026
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Dans la zone de rayonnement, on a kr > 1. Le champ
des vitesses devient alors

cos(wt—kr—a) .

A
n(rnt) = 3
pocr

Londe a une structure locale d’onde plane, et on a
pfgdfracPi(r,t)vy(r,t) = poc.

3. A la surface de la sphere, on est en r < A, dans la
zone de champ proche. Le champ des vitesses s’écrit
alors

vt = sin(wt—kr—a).

A
pokcr?
La vitesse sur la surface de la sphére est égale a la vi-
tesse radiale des points de la surface de la sphere, soit

(a(1) t)—%
vilali), )= dt'

Au premier ordre, a(t) = ap = ap car a; < dy. La vitesse
ala surface de la sphere est

da n@)
— = —qqwsin(wi),
dr !
d’olt
—mqowsin(wt) = 5 sin(wt—kag—a).
pokcay

Comme kay <« 1 (car ap < 1), on peut écrire

—ajwsin(wt) = sinlwt—a) Vt.

2
porcay

La dépendance temporelle implique | a =0 .
On a alors
A=—pow’a ag .

4. Le vecteur densité de courant énergétique est
(M, 1) =1(r, 0 € = P (1, D v1 (1, ) €.

En moyenne temporelle, il ne reste que le terme de
champ lointain pour lequel v; = P;/(pgc), d’ou
(P?)

{I(r, 1)) = ——.
PoC

Avec Py (r, ¢t) = ? cos(wt— kr), on obtient
A2
(I(r, ) = W.
La puissance rayonnée dans tout I'espace est
P = 4anr*(1(r, 1))

soit avec I'expression de A établie

2p0a? ajw*
p=—>1D |
c
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5. En notation complexe, on a

A wi
Py 1) = 2 ek

et
A A (i—kr—
El(r» 1= el(wt kr)+ 2el(wl‘ kr—m/2)
pocr pockr
_ A ei(wt—kr)_ iA ei(wt—kr)
pocr pockr?

On a alors apres simplification

1
Bl(r,t)_ T

v (r,t) Ll _ __i
—1( ) pocr — pockr?

soit avec w = kc

P,(r,1)  poc

- ic
vy 1-2¢

6. En r = ay, le rapport précédent vaut

— A (I_L)ei(wt—kr)
Pocao kag

1+ 25

PoC kao (kag)® +ikag

Ly = — = PoC = poC

—ray i A 2
1- 2o 1+ oy 1+ (kap)

Comme kag < 1, on peut approximer !

Zray = pPoC [(ka0)2 + ikao]

soit avec la relation de dispersion

wap\2 way
(S s

Zyay = POC -

7. Limpédance acoustique pour une onde incidente
dans le tuyau est Z = pgc. Comme kap < 1, on a

Z>>‘Z .

Zray

La sortie du tuyau peut donc étre considérée comme
une interface entre un milieu d'impédance élevée vers
un milieu d'impédance tres faible.

En reprenant les résultats établis en cours dans le cas
Zy <« 73, les coefficients de réflexion en amplitudes
sont alors

-7

VAR
=" ~
Zg-l—Zl

— = +1.
VAR VA

=~-1 et ry=

Londe de pression change de signe a la réflexion; la su-
perposition de 'onde incidente et de 'onde réfléchie
peut alors étre considérée comme nulle a la sortie du
tuyau, ou1!’on a alors un nceud de pression.

La vitesse réfléchie est quasiment égale a la vitesse in-
cidente : on a alors un ventre de vitesse a la sortie du
tuyau.

1. On garde I'ordre le plus bas non nul d’'une part pour la partie réelle, d’autre part pour la partie imaginaire.
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