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TD ondes no 4 Ondes acoustiques

1—  Ordres de grandeur [*]

Un niveau acoustique de 60 dB correspond à une in-
tensité I = I0 ×106 = 10−6 W ·m−2.
Avec

I = 〈‖#»
Π‖〉 = 〈p2

1〉
µ0c

= p2
m

2µ0c
,

on en déduit pm =√
2µ0cI .

D’après l’équation d’état du gaz parfait, on a

µ0 = MP0

RT0
= 1,20 kg ·m−3

et

c =
√

γRT0

M
= 343 m · s−1 ,

d’où µ0c = 408 kg ·m−2 · s−1.

On en déduit pm = 2,9×10−2 Pa .

L’amplitude de la vitesse se déduit de vm = pm

µ0c
, soit

vm = 7,0×10−5 m · s−1 .

Pour un signal sinusoïdal de fréquence f , on a v1 = ∂ξ

∂t
,

la vitesse vaut vm =ωξm = 2π f ξm, d’où ξm = 11 nm .
Pour une évolution adiabatique réversible d’un gaz
parfait, la température et la pression vérifient la loi de
Laplace P 1−γT γ = cte, soit en différentielle logarith-
mique

(1−γ)
dP

P
+γ

dT

T
= 0.

Les variations de pression et de température étant très
faibles, nous les assimilons aux différentielles ; d’où

∆T = γ−1

γ

T0

P0
∆P .

Comme en amplitude∆P = pm, on a ∆T = 2,4×10−5 K

On vérifie que pm ¿ P0 et ∆T ¿ T0, ainsi que vm ¿ c et
ξm ¿λ où la longueur d’onde est λ= c/ f = 0,34 m. On
est tout à fait dans le cadre de l’approximation acous-
tique.

2—  Linéarisation [*]

On considère une onde acoustique décrite par le
champ des vitesses

#»v 1 = v1(x, t ) #»e x =U1 cos(ωt −kx) .

1. C’est une onde plane progressive harmonique
(OPPH) dans le sens des x croissants.

2. L’accélération d’une particule de fluide s’écrit

#»a = D #»v

Dt
= ∂#»v

∂t
+ ( #»v · #      »

grad) #»v .

3. Le terme local a pour ordre de grandeur

∂v1

∂t
≈ωU1 .

4. On a
∂v1

∂x
= kV1 sin(ωt−kx) ≈ kU1 en ordre de gran-

deur, donc le terme convectif a pour ordre de grandeur

‖( #»v · #      »

grad) #»v ‖ ≈ kU 2
1 .

5. On peut écrire

‖( #»v · #      »

grad) #»v ‖
∂v1

∂t

≈ ωU1

kU 2
1

= c

U1
¿ 1

dans le cadre de l’approximation acoustique (|v1|¿ c).

On peut alors écrire #»a ≈ ∂#»v 1

∂t
(linéarisation).

3—  Onde sonore dans un gaz [*]

1. Le déplacement de la tranche de fluide est, en pra-
tique, très inférieur à la longueur d’onde d’une onde
sonore harmonique se propageant dans le tuyau : |ξ|¿
λ. On a donc

∣∣∣∣ ∂ξ∂x

∣∣∣∣≈ ∣∣∣∣ ξx
∣∣∣∣¿ 1.

2. La masse de la tranche de fluide au repos est dm =
µ0S dx. La conservation de sa masse s’écrit :

µ0S dx =µS [dx +ξ(x +dx, t )−ξ(x, t )]

≈µS

[
dx + ∂ξ

∂x
dx

]
avec µ=µ0 +µ1, soit :

µ0 = (µ0 +µ1)

[
1+ ∂ξ

∂x

]
≈µ0 +µ1 +µ0

∂ξ

∂x

en négligeant le terme du second ordre. On a donc :

µ1 =−µ0
∂ξ

∂x
.

3. Appliquons le principe de la dynamique à la tranche
de masse dm =µ0S dx :

µ0S dx
∂2ξ

∂t 2 = [P (x)−P (x +dx, t )]S

au premier ordre, soit avec P (x, t ) = P0 +p(x, t ) :

µ0
∂2ξ

∂t 2 =−∂p

∂x
.
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4. Pour le fluide au repos, l’équation d’état s’écrit

P0 = RT0

M
µ0 .

Pour le fluide perturbé, elle s’écrit

P0 +p(x, t ) = RT0

M
(µ0 +µ1(x, t )) ,

d’où :

p = RT0

M
µ1 .

On a donc :

µ
∂2ξ

∂t 2 =−RT0

M

∂µ1

∂x
=µ0

RT0

M

∂2ξ

∂x2

d’où :

∂2ξ

∂x2 − 1

cT

∂2ξ

∂t 2 = 0 avec cT =
√

RT0

M
.

5. Un gaz parfait subissant une évolution adiabatique
réversible obéit à la loi de Laplace Pµ−γ = cte.

On a donc :

P0µ
−γ
0 = (P0 +p)(µ0 +µ1)−γ

= P0µ
−γ
0

(
1+ p

P0

)(
1+ µ1

µ0

)−γ
soit :

1 =
(
1+ p

P0

)(
1+ µ1

µ0

)−γ
≈

(
1+ p

P0

)(
1−γ

µ1

µ0

)
.

En se limitant au premier ordre, on a donc :

p =−γP0

µ0
µ1 =−γRT0

M
µ1 .

On en déduit donc comme précédemment

∂2ξ

∂x2 − 1

cT

∂2ξ

∂t 2 = 0 avec c =
√

γRT0

M
.

6. On calcule cT = 290 m · s−1 et c = 343 m · s−1.

La seconde valeur est en accord avec l’expérience, et
c’est l’hypothèse d’adiabaticité qui est à retenir.

5—  Isotherme ou adiabatique? [**]

1. L’équation d’Euler et l’équation de conservation de
la masse ne dépendent pas de la nature de l’évolution
du fluide ; elles sont inchangées :

µ0
∂#»v 1

∂t
=−#      »

grad p1 et
∂µ1

∂t
+µ0 div #»v 1 = 0.

L’évolution du fluide n’étant plus adiabatique, il est évi-
demment exclus d’utiliser la relation traduisant l’adia-
baticité de cette évolution. Il faut utiliser le coefficient
de compressibilité isotherme :

χT =− 1

V

(
∂V

∂P

)
T
= 1

µ

(
∂µ

∂P

)
T

.

En suivant le même raisonnement qu’en cours, on éta-
blit la relation linéarisée :

µ1 =µ0χT p1 .

2. On établit l’équation d’onde vérifiée par la surpres-
sion de la même façon qu’en cours :

∂2p1

∂t 2 − 1

µ0χT
∆p1 = 0.

La célérité des ondes acoustiques vaut alors :

cT = 1p
µ0χT

.

Dans le cas du gaz parfait, le coefficient de compressi-
bilité isotherme à la température T0 vaut :

χT =− 1

V

∂

∂P

(
nRT0

P

)
P0

= nRT0

V P 2
0

= 1

P0
.

On a donc :

µ0χT = µ0

P0
= M

RT0

en utilisant l’équation d’état
P0

µ
= RT0

M
.

On en déduit l’expression de la célérité :

cT =
√

RT0

M
.

L’expression de la célérité peut être établie plus directe-
ment dans le cas du gaz parfait. L’équation d’état du gaz

parfait permet d’écrire µ0 = M

RT0
P0 en l’absence d’onde

sonore. En présence de l’onde, la température restant
égale à T0, on obtient :

µ0 +µ1 = M

RT0
(P0 +p1)

d’où :

µ1 = M

RT0
p1 .

Les équations d’Euler et de la conservation de la masse
permettent d’écrire :

div(
#      »

grad p1) =∆p1 =−∂(µ0 div #»v 1)

∂t
= ∂2µ1

∂t 2

d’où

∆p1 = M

RT0

∂2p1

∂t 2 = 1

c2
T

∂2p1

∂t 2 .

On retrouve l’expression de la célérité cT =
√

RT0

M
.

3. On calcule cT = 293 m · s−1. Cette valeur n’est pas en
accord avec les résultats expérimentaux.
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4.a) Il s’agit de la longueur d’onde λ= c

f
.

4.b) Pendant une période T = 1/ f , la diffusion ther-
mique se fait sur une longueur caractéristique

Lth ≈
√

DthT =
√

Dth

f
.

L’évolution peut être considérée comme adiabatique
si on peut négliger la diffusion thermique, c’est-à-dire
si, pendant une période, elle se fait sur une longueur
Lth ¿λ. Il faut donc√

Dth

f
¿ c

f
soit f ¿ c2

Dth
.

Pour l’air, il faut f ¿ 6×109 Hz = 6 GHz. Cette condi-
tion est largement vérifiée dans le domaine des ondes
acoustiques.

6—  Onde dans un tuyau élastique [**]

1. Considérons la tranche de fluide comprise entre les
abscisses x et les abscisses x+dx. Nous allons effectuer
un bilan de masse sur ce système.

La masse de fluide vaut dm(x, t ) = µ(x, t )S(x, t )dx.
Pendant dt , elle varie de

d2m = dm(x, t +dt )−dm(x, t ) = ∂(dm(x, t ))

∂t
dt

=
[
µ(x, t )

∂S(x, t )

∂t
+S(x, t )

∂µ(x, t )

∂t

]
dxdt .

La masse échangée à travers les frontières pendant dt
vaut (on compte positivement la masse reçue par le
système)

δ2méch =µ(x, t )S(x, t )v(x, t )dt

−µ(x +dx, t )S(x +dx, t )v(x +dx, t )dt

=−∂(µSv)

∂x
dxdt .

Le bilan de masse s’écrit d2m = δ2méch, soit après sim-
plification par dxdt :

∂(µS)

∂t
=−∂(µSv)

∂x
.

Comme S(x, t ) = S0 + S1(x, t ), µ(x, t ) = µ0 +µ1(x, t ) et
v(x, t ) = v1(x, t ), en notant avec l’indice 1 les grandeurs
infiniment petites d’ordre 1, le bilan s’écrit

µ
∂S1

∂t
+S

∂µ1

∂t
=−µS

∂v

∂x
−µv

∂S

∂x
−Sv

∂µ

∂x
,

soit en explicitant chaque grandeur

(µ0 +µ1)
∂S1

∂t
+ (S0 +S1)

∂µ1

∂t

=−(µ0 +µ1)(S0 +S1)
∂v1

∂x
− (µ0 +µ1)v1

∂S1

∂x

− (S0 +S1)v1
∂µ1

∂x
.

En se limitant au premier ordre vis-à-vis des termes
d’indice 1, on obtient

µ0
∂S1

∂t
+S0

∂µ1

∂t
=−µ0S0

∂v1

∂x
.

2. La relation traduisant l’adiabaticité de l’évolution
du fluide s’écrit

∂µ1

∂t
=µ0χS

∂p1

∂t
.

La section du tuyau dépend de la pression P . En l’ab-
sence d’onde, elle vaut S(P0) = S0. En présence de
l’onde sonore, elle vaut

S(P ) = S(P0 +p1) = S(P0)+p1

(
dS

dP

)
P0

= S0 +p1S(P0)D = S0 +p1S0D

d’après la définition de D . On en déduit

dS

dt
= dS1

dt
= S0D

∂p1

∂t
.

Le bilan de masse s’écrit alors

µ0S0D
∂p1

∂t
+S0µ0χS

∂p1

∂t
=−µ0S0

∂v1

∂x
,

soit (D +χS)
∂p1

∂t
=−∂v1

∂x
.

L’équation d’Euler linéarisée s’écrit

µ0
∂v1

∂t
=−∂p1

∂x
.

En utilisant le théorème de Schwarz entre cette équa-
tion et le bilan de masse, on obtient

∂2v1

∂x∂t
=− 1

µ0

∂2p1

∂x2 =−(D +χS)
∂2p1

∂t 2 .

La surpression vérifie donc l’équation de d’Alembert

∂2p1

∂t 2 − 1

µ0(D +χS)

∂2p1

∂x2 = 0 .

La célérité des ondes vaut

c = 1√
µ0(D +χS)

.

3. On calcule pour le tuyau métallique

cm = 1390 m · s−1

et pour le tuyau souple

cel = 5 m · s−1 .

La célérité est considérablement réduite dans un tuyau
souple.
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8—  Clarinette [**]

1. Les extrémités imposent des conditions aux limites
de type « nœud » de surpression (extrémité fermée) ou
« ventre » de surpression (extrémité ouverte).

Elles justifient donc de chercher une solution de
l’équation de d’Alembert sous forme d’une onde sta-
tionnaire.

2. ’Equation de la dynamique linéarisée en projection
selon Ox :

µ0
∂v1

∂t
=−∂p1

∂x
= p10k cos(ωt )sin(kx)

d’où

v1(x, t ) = p10k

µ0ω
sin(ωt )sin(kx)

soit comme ω= kc

v1(x, t ) = p10

µ0c
sin(ωt )sin(kx) .

3. Les conditions aux limites sont :

p1(L, t ) = 0 et v1(0, t ) = 0.

La paroi en x = 0 impose v1 = 0, car la vitesse est nor-
male à la paroi (condition de cinématique des fluides).

La pression atmosphérique extérieure impose P (L, t ) =
P0 soit p1(L, t ) = 0.

4. La condition v1(0, t ) = 0 est déjà vérifiée par le
champ des vitesses obtenu.

En x = L, on doit avoir

p1(L, t ) = P10 cos(ωt )cos(kL) = 0 ∀t

Cette condition impose cos(kL) = 0, soit

knL = π

2
+nπ .

Avec ωn = knc, on obtient les pulsations propres

ωn = cπ

2L
+ (n −1)

cπ

L
avec n ∈ N∗ .

Le fondamental a pour pulsation

ω1 = cπ

2L
.

Le fondamental a pour pulsation ω1 = cπ

2L
, soit la fré-

quence

f1 = cπ

4L
.

On remarque que

ωn = [2(n −1)+1]
cπ

2L
.

On peut donc écrire

fp = (2p +1) f1 avec p ∈ N .

Le son ne comporte que les harmoniques de rang im-
pair.

5. La fréquence du fondamental pour une flûte est
donc

f1,fl = c

2L
.

Pour une clarinette, elle vaut

f1,cl =
c

4L
= f1,fl

2
.

À longueur de tuyau égale, le son émis par une clari-
nette est plus grave (une octave plus grave) que le son
émis par une flûte.

6. Avec L = 65 cm et c = 340 m · s−1, la fréquence du
fondamental est f1 = 130,8 Hz.

Si on ouvre le trou central, on force un nœud de pres-
sion à se former aux environs du milieu du tuyau. Dans
la pratique, cela force l’émission de l’harmonique sui-
vant, c’est-à-dire f3 = 3 f1 = 392,3 Hz.

7. Le fondamental f1 = 130,8 Hz correspond à un do3.

Le troisième harmonique f3 = 392,3 Hz correspond au
sol4, situé à un intervalle de douzième (une octave plus
une quinte) du fondamental.

Le timbre est la « couleur » du son, défini en première
approximation par les amplitudes des harmoniques
qui le constituent.

9—  Bruit d’explosion [**]

1. La vitesse du son dans un gaz parfait est donnée par

c0 =
√

γRT0

M
.

Le temps mis pour parcourir la distance D vaut donc

τh = D

c0
= D

√
M

γRT0
.

2. La célérité du son est donnée ici par

c(z) =
√

γRT (z)

M
=

√
γR(T0 −B z)

M
=

√
γRT0

M

√
1− B z

T0

soit

c(z) = c0

√
1− B

T0
z .

La durée mise pour parcourir une distance dz vaut
donc

dt = dz

c(z)
= 1

c0

(
1− B

T0
z

)−1/2

dz .

La durée mise pour aller de z = 0 à z = D vaut donc

τv = 1

c0

ˆ D

0

(
1− B

T0
z

)−1/2

dz

=− T0

Bc0

ˆ 1− BD
T0

1
u−1/2 du =−2T0

Bc0

p
u

∣∣∣1− BD
T0

1

=−2T0

Bc0

(√
1− BD

T0
−1

)
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soit

τv = 2T0

Bc0

(
1−

√
1− BD

T0

)
.

3. Avec les valeurs numériques données, on a
B

T0
≈ 10−5 m−1.

Nous allons donc faire l’hypothèse (dont il faudra véri-

fier la validité a posteriori) que
BD

T0
¿ 1, soit

1−
√

1− BD

T0
≈ 1− BD

2T0
+ 3

8

(
BD

T0

)2

.

On a donc

τh −τv = D

c0
− 2T0

Bc0

[
1−1+ BD

2T0
− 3

8

(
BD

T0

)2]
= D

c0
− D

c0
+ 2T0

Bc0

3

8

B 2D2

T02

= 3

4

BD2

c0T0
= 3

4
τh

BD

T0
.

On en déduit l’écart relatif

τh −τv

τh
= 3BD

4T0
.

On en déduit que
τh −τv

τh
> 0,01 pour

D > 0,04

3

T0

B
soit D > 7,7×102 m .

ä On vérifie
BD

T0
= 1,3×10−2 ¿1, l’approximation

faite pour utiliser un développement limité est
donc justifiée.

12—  Fréquences propres d’une sphère rigide [***]

On considère

p(r, t ) = A

r
ei(ωt−kr )+B

r
ei(ωt+kr ) .

1. Le premier terme correspond à une onde divergente
(après passage au centre de la sphère) ; le second à une
onde convergente (après réflexion sur la paroi de la
sphère).

L’équation d’Euler conduit à

µ0
∂#»v

∂t
=−

∂p

∂r
#»e r =−A

(
− 1

r 2 − ik

r

)
ei(ωt−kr ) #»e r

−B

(
− 1

r 2 + ik

r

)
ei(ωt+kr ) #»e r

=
[

A

r 2 (1+ ikr )ei(ωt−kr )+ B

r 2 (1− ikr )ei(ωt+kr )
]

#»e r

d’où

v = 1

iωµ0r 2

[
A(1+ ikr )ei(ωt−kr )

+B(1− ikr )ei(ωt+kr )
]

#»e r

soit

v = 1

µ0ωr 2

[
A(kr − i)ei(ωt−kr )

−B(kr + i)ei(ωt+kr )
]

#»e r .

2. On doit avoir
lim
r→0

Dv = 0.

Le débit volumique est donné par

Dv = 4πr 2v(r, t ) .

On a donc en notation complexe

lim
r→0

Dv =
4π

µ0ω

[−iA eiωt −iB eiωt ]
=− 4πi

µ0ω

[
A+B

]
eiωt = 0,

d’où B =−A.

Le champ des vitesses s’écrit alors

#»v = A

µ0ωr 2

[
(kr − i)ei(ωt−kr )+(kr + i)ei(ωt+kr )

]
#»e r

La composante radiale de la vitesse doit être nulle sur
la paroi : v(R, t ) = 0, ∀t , soit après simplification

A(kR − i)eikR +A(kR + i)eikR = 0.

Comme A 6= 0, on en déduit

(kR − i)e−ikR +(kR + i)eikR = 0,

soit
kR

(
eikR +e−ikR

)
+ i

(
eikR −e−ikR

)
= 0,

qui s’écrit
kRcos(kR)− sin(kR) = 0.

Les modes propres vérifient donc

tan(kR) = kR .

Avec la relation de dispersion ω = 2π f = kc, on en dé-
duit la relation vérifiée par les fréquences propres :

tan

(
2π f R

c

)
= 2π f R

c
.

3. La plus basse de ces fréquences est donc la plus pe-
tite racine positive de tan x = x.

Une résolution numérique conduit à x ≈ 4,5. Avec c =
340 m · s−1, on calcule f = 4,5c

2πR
, soit f = 4,9 kHz.
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13—  Sphère pulsante et impédance de rayonne-
ment [***]

1. L’équation de d’Alembert s’écrit

∂2P1

∂t 2 − c2∆P1 = 0

soit dans le cas d’un champ radial

∂2P1

∂t 2 − c2

r

∂2(P1)

∂r 2 .

En posant F (r, t ) = r P(r, t ), on a

∂2F

∂t 2 − c2 ∂
2F

∂r 2 = 0.

La solution générale de l’équation de d’Alembert uni-
dimensionnelle est

F (r, t ) = A f
(
t − r

c

)
+B g

(
t + r

c

)
,

d’où

P1(r, t ) = A

r
f
(
t − r

c

)
+ B

r
g

(
t + r

c

)
.

Le premier terme représente une onde divergente, le
second une onde convergente.

La source des ondes étant à l’origine O, il est naturel
de ne considérer que des ondes qui s’éloignent de la
source, c’est-à-dire divergente :

P1(r, t ) = 1

r
f
(
t − r

c

)
.

2. Dans le cas d’une sinusoïdale de la forme

P1(r, t ) = A

r
cos(ωt −kr −α) ,

l’équation de d’Alembert conduit à la relation de dis-
persion

k = ω

c
.

L’équation de la dynamique linéarisée s’écrit

ρ0
∂v1(r, t )

∂t
= ∂P1

∂r
= A

r 2 cos(ωt −kr −α)

− k A

r
sin(ωt −krα)

d’où

ρ0v1(r, t ) = A

ωr 2 sin(ωt −kr −α)+ k A

ωr
cos(ωt −kr −α) .

Avec la relation de dispersion, on obtient

v1(r, t )
1

ρ0cr
cos(ωt −kr −α)+ A

ρ0kcr 2 sin(ωt −kr −α) .

Le champ vectoriel est #»v 1(M , t ) = v1(r, t ) #»e r .

Dans la zone de rayonnement, on a kr À 1. Le champ
des vitesses devient alors

v1(r, t ) = A

ρ0cr 2 cos(ωt −kr −α) .

L’onde a une structure locale d’onde plane, et on a

p f g d f r acP1(r, t )v1(r, t ) = ρ0c .

3. À la surface de la sphère, on est en r ¿ λ, dans la
zone de champ proche. Le champ des vitesses s’écrit
alors

v1(r, t ) = A

ρ0kcr 2 sin(ωt −kr −α) .

La vitesse sur la surface de la sphère est égale à la vi-
tesse radiale des points de la surface de la sphère, soit

v1(a(t ), t ) = da

dt
.

Au premier ordre, a(t ) = a0 ≈ a0 car a1 ¿ a0. La vitesse
à la surface de la sphère est

da

dt
=−a1ωsin(ωt ) ,

d’où

−a1ωsin(ωt ) = A

ρ0kca2
1

sin(ωt −ka0 −α) .

Comme ka0 ¿ 1 (car a0 ¿λ), on peut écrire

−a1ωsin(ωt ) = A

ρ0kca2
1

sin(ωt −α) ∀t .

La dépendance temporelle implique α= 0 .

On a alors

A =−ρ0ω
2a1a2

0 .

4. Le vecteur densité de courant énergétique est

#»
Π(M , t ) =Π(r, t ) #»e r = P1(r, t )v1(r, t ) #»e r .

En moyenne temporelle, il ne reste que le terme de
champ lointain pour lequel v1 = P1/(ρ0c), d’où

〈Π(r, t )〉 = 〈P 2
1〉

ρ0c
.

Avec P1(r, t ) = A

r
cos(ωt −kr ), on obtient

〈Π(r, t )〉 = A2

2ρ0cr 2 .

La puissance rayonnée dans tout l’espace est

P= 4πr 2〈Π(r, t )〉
soit avec l’expression de A établie

P= 2ρ0a2
1a4

0ω
4

c
.
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5. En notation complexe, on a

P 1(r, t ) = A

r
ei(ωt−kr )

et

v1(r, t ) = A

ρ0cr
ei(ωt−kr )+ A

ρ0ckr 2 ei(ωt−kr−π/2)

= A

ρ0cr
ei(ωt−kr )− iA

ρ0ckr 2 ei(ωt−kr )

= A

ρ0ca0

(
1− i

ka0

)
ei(ωt−kr )

On a alors après simplification

P 1(r, t )

v1(r, t )
=

1
r

1
ρ0cr − i

ρ0ckr 2

soit avec ω= kc

P 1(r, t )

v1(r, t )
= ρ0c

1− ic
ωr

.

6. En r = a0, le rapport précédent vaut

Z ray =
ρ0c

1− i
ka0

= ρ0c
1+ i

ka0

1+ A
(ka0)2

= ρ0c
(ka0)2 + ika0

1+ (ka0)2 .

Comme ka0 ¿ 1, on peut approximer 1

Z ray ≈ ρ0c
[
(ka0)2 + ika0

]

soit avec la relation de dispersion

Z ray ≈ ρ0c

[(ωa0

c

)2
+ j

ωa0

c

]
.

7. L’impédance acoustique pour une onde incidente
dans le tuyau est Z = ρ0c. Comme ka0 ¿ 1, on a

Z À
∣∣∣Z ray

∣∣∣ .

La sortie du tuyau peut donc être considérée comme
une interface entre un milieu d’impédance élevée vers
un milieu d’impédance très faible.

En reprenant les résultats établis en cours dans le cas
Z2 ¿ Z1, les coefficients de réflexion en amplitudes
sont alors

rp = Z2 −Z1

Z2 +Z1
≈−1 et rv = Z1 −Z2

Z1 +Z1
≈+1.

L’onde de pression change de signe à la réflexion; la su-
perposition de l’onde incidente et de l’onde réfléchie
peut alors être considérée comme nulle à la sortie du
tuyau, où l’on a alors un nœud de pression.

La vitesse réfléchie est quasiment égale à la vitesse in-
cidente : on a alors un ventre de vitesse à la sortie du
tuyau.

1. On garde l’ordre le plus bas non nul d’une part pour la partie réelle, d’autre part pour la partie imaginaire.
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