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Ondes acoustiques

[*]

Un niveau acoustique de 60 dB correspond a une in-

1 — Ordres de grandeur

tensité I = Ip x 105 =106 W-m™2.
Avec
<p ) pE
= (i = P
HocC 2,uoc

on en déduit py, = \/2upcl.
D’apres I'équation d’état du gaz parfait, on a

MP,

=—2=120kg-m"
Mo = RT, g
et
RT,
=/ L0 =343 mes 7,
M

d’ott goc =408kg-m=2-s71,

On en déduit | py, =2,9x 1072 Pa .

Lamplitude de la vitesse se déduit de vy, = P_m, soit

HoC

Um=7,0x10"°m-s7! .

Pour un signal sinusoidal de fréquence f,ona v; = 3
la vitesse vaut vy = wéy =21 f&y, d'olt | =11nm |.
Pour une évolution adiabatique réversible d'un gaz
parfait, la température et la pression vérifient la loi de
Laplace PI"YTY = cte, soit en différentielle logarith-
mique

a )dP N dr 0

PVt =

Les variations de pression et de température étant trés
faibles, nous les assimilons aux différentielles; d’ ot
y-1To

—AP.
Y Po

AT =

Comme en amplitude AP = py,ona AT =2,4x10"°K

On vérifie que py, < Py et AT <« Ty, ainsi que vy < cet
¢m < A oulalongueur d'onde est A = ¢/ f =0,34 m. On
est tout a fait dans le cadre de 'approximation acous-
tique.

[*]
On considere une onde acoustique décrite par le
champ des vitesses

2 — Linéarisation

V1i=v1(x,1) €=U cos(wt—kx).

1. Cest une onde plane progressive harmonique
(OPPH) dans le sens des x croissants.

2. Laccélération d'une particule de fluide s’écrit

Z—E—a—vﬂv rad) U
Dt 0t 8 ’

3. Le terme local a pour ordre de grandeur

—=wU .
ot !

0
4. Ona 6_111 = kV)sin(wt—kx) = kU, en ordre de gran-
X

deur, donc le terme convectif a pour ordre de grandeur
—
I(V - grad) V|l = kU? .

5. On peut écrire

I(V-grad) 7l oU; ¢
= — <1
on kUlz U,
ot

dans le cadre de I'approximation acoustique (|v1| < ¢).
—

. ovy ., . .
On peut alors écrire @ = TS (linéarisation).

[*]
1. Le déplacement de la tranche de fluide est, en pra-

tique, tres inférieur a la longueur d’onde d’'une onde
sonore harmonique se propageant dans le tuyau: |{| <

A.On adonc % e i «< 1.
0x

x
2. La masse de la tranche de fluide au repos est dm =
toSdx. La conservation de sa masse s’écrit :

3 — Onde sonore dans un gaz

HoSdx =uS[dx+¢é(x+dx, 1) —E(x, )]
0¢
=uS|dx+—-—=d
i 0x *
avec U = oy + 1, Soit:
= (o + )1+ang +u+ ]
Ho = (Ho + H1 ax | = HoT LT o

en négligeant le terme du second ordre. On a donc:

0¢

H1 Z—Moax

3. Appliquonsle principe de la dynamique a la tranche
de masse dm = ppSdx:

62
,uOdea > =[P(x)—P(x+dx, ]S
au premier ordre, soit avec P(x, t) = Py + p(x, 1) :
0%¢ 0
Ho 2P

o~
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4. Pour le fluide au repos, 'équation d’état s’écrit

p_RTO
0= M#0~

Pour le fluide perturbé, elle s’écrit

RTy
Py+p(x, )= V(ﬂo +u1(x, 1),

d’ou
_RT,
P=—r M-
Onadonc:
0’¢  RTp0w _ RT, 0%
32 ="M ox M ox2
d’ou
0%¢ 1 0% 0 RT,
——-——=5=0 avec cr=\/—.
0x2  cr 012 T M

5. Un gaz parfait subissant une évolution adiabatique
réversible obéit a la loi de Laplace Pu~" = cte.

Onadonc:

Po,ugy =(Po+p)(po+p) "

-y
= Pop,” (1 + Pﬁo) (1 + %)

soit :

1=

-y
1+£)(1+&) :(1+£)(1—y&).
Py Ho Py Ho

En se limitant au premier ordre, on a donc:

YPo _ YRIy
Mo M

M1

On en déduit donc comme précédemment

0%¢ 1 0% 0 avec c [YRT,
—_— = V =1/ —.
0x2 c7 0t? M

1

6. Oncalcule c; =290 m-s~tetc=343m-s™ L.

La seconde valeur est en accord avec I'expérience, et
c’est 'hypothese d’adiabaticité qui est a retenir.

4 — Trompette [*]

On consideére un instrument de musique de type trom-
pette, modélisé par un tuyau de longueur L et de dia-
metre d.

1. Lextrémité x = L est ouverte sur I'atmosphére qui
impose
P(L,t)=Po+p1(L, 1) =Py;VI

d’otu p;(L,t) =0.
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2. On cherche la solution de I'équation de d’Alembert
sous forme d’'une onde stationnaire

p1(x,t) = Acos(kx + ¢) cos(wt).

Ona
p1(L,t) = Acos(kL+ ¢)cos(wt) =0
soit
cos(kL+¢)=0
d’on1

b2
kL+¢@= E+n7r.

Onadonccp:g+nn—kL.

La condition en p; (0, t) = pg cos(w?) s’écrit
Acosg = po
soit
po = Acos (kL - g - rm) = Asin(k, L — nn)
=(-1)"Asin(kL).

Lamplitude de 'onde de surpression est donc

A= (D" sin’zZL) '
d’ou
pi(x, 1) =(=D" sin’z(l)cL) cos (kx + g +nmw— kL) cos(wt)
= (—1)"Sinr:—0km sin (k(L - x) — nm) cos(w?)
soit
Po

p1(x, 1) = sin[k(L — x)] cos(w?) .

sin(kL)

On observe des résonances pour sin(kL) = 0 soit kL =
nn. Comme w = kc, les fréquences de résonances f =
w/(2m) sont

c
=n avec =— .
fn f1 Vi f1 Y

» Cette situation est similaire a la corde de Melde.
3. La fréquence du fondamentale est fj = 250 Hz. La

longueur correspondante est

¢ 340
2fi 2x250

soit L =68 cm.

Le modele linéaire semble cohérent car les autres fré-
quences sont bien des multiples du fondamental (n = 2
etn=4).

2/8



TD ondesn° 4

Ondes acoustiques

» Enrevanche, la longueur réelle d'une trompette est
d’environ 1,50 m. Les données de 1'exercice sont
discutables...

—

4. Le vecteur densité de courant énergétique II est
égala pi(x,1) V1(x, t) (formule admise).
Comme p;(L,f)=0o0na

O =p (LTI 1)=0.

Aucune puissance sonore ne devrait sortir de la trom-
pette! Lhypothese p; (L, ) = 0 est trop simplifiée.

[**]

1. L'équation d’Euler et I'équation de conservation de
la masse ne dépendent pas de la nature de I'évolution
du fluide; elles sont inchangées :

5 — Isotherme ou adiabatique?

ov — 0 N
,uo% =—gradp; et %+yodiv v =0.

L'évolution du fluide n’étant plus adiabatique, il est évi-
demment exclus d’utiliser la relation traduisant 1’adia-
baticité de cette évolution. Il faut utiliser le coefficient
de compressibilité isotherme :

1 (0oV 1(0u

V\oP T 1% opP T
En suivant le méme raisonnement qu’en cours, on éta-
blit la relation linéarisée :

H1=HMHoXTP1-

2. On établit I'équation d’onde vérifiée par la surpres-
sion de la méme facon qu’en cours :

62p1 _ 1
012 poxr

Apl =0.

La célérité des ondes acoustiques vaut alors :
1
VEOXT

Dans le cas du gaz parfait, le coefficient de compressi-
bilité isotherme a la température T, vaut :

cr =

_ 10 (HRT()) _HRTQ_ 1
M="Ver TP Jp  VEZ PRy
On adonc:
HoXT = b L
AT~ Py T RTy
P, RT,
en utilisant I’équation d’état 2200
u M

On en déduit I'expression de la célérité :

RT,
cr=1/—.
T=Vm
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Lexpression de la célérité peut étre établie plus directe-
ment dans le cas du gaz parfait. Léquation d’état du gaz
parfait permet d’écrire g = EPO en l'absence d’onde

0
sonore. En présence de l'onde, la température restant
égale a Ty, on obtient :

+ —M(P+ )
Ho ﬂl_RTo 0t p1

B M
,Ul—RTOPL

Les équations d’Euler et de la conservation de la masse
permettent d’écrire :

uodivy) 0%
ot © o2

le(@pl) = Apl =-

RT,

On retrouve l'expression de la célérité ct =

3. On calcule c7 =293 m-s~!. Cette valeur n’est pas en
accord avec les résultats expérimentaux.

¢
7

4.b) Pendant une période T = 1/f, la diffusion ther-
mique se fait sur une longueur caractéristique

4.a) Il s’agit delalongueur d’onde A =

D
Lin= VDT = 7
L'évolution peut étre considérée comme adiabatique
si on peut négliger la diffusion thermique, c’est-a-dire
si, pendant une période, elle se fait sur une longueur
Ly < A. 1l faut donc

D c c?
Zh 2 soit f<—.
rf D

Pour l'air, il faut f < 6 x 10° Hz = 6 GHz. Cette condi-
tion est largement vérifiée dans le domaine des ondes
acoustiques.
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[**]

1. Considérons la tranche de fluide comprise entre les
abscisses x et les abscisses x+dx. Nous allons effectuer
un bilan de masse sur ce systeme.

6 — Onde dans un tuyau élastique

La masse de fluide vaut dm(x, ) = u(x, )S(x, ) dx.
Pendant dt, elle varie de

odm(x, 1) 4

ot
ou(x, 1)

d’m= dm(x, t+dt)—dm(x, t) =

9S(x, 1) dxdr

+S(x, 1)

= | ulx, 1)

La masse échangée a travers les frontiéres pendant d¢
vaut (on compte positivement la masse recue par le
systeme)

52 Megch = W(x, 1)S(x, t)v(x, 1) dt
—p(x+dx, 0)S(x+dx, )v(x+dx, t)dt
o(uSv)

=— dxdt.
0x o

Le bilan de masse s'écrit d>m = 62 mgcn, Soit apres sim-
plification par dxdz :

ous) _ o(uSv)

ot 0x
Comme S(x, 1) = So + S1(x, 1), p(x,£) = po + p1(x, £) et
v(x, t) = v1(x, 1), en notant avec I'indice 1 les grandeurs
infiniment petites d’ordre 1, le bilan s’écrit

0S; oy ov 0S ou
i SR ek = uv=——sp-E,
For 7% T M Mex Vax

soit en explicitant chaque grandeur

o+ 1S 4 (504 517 2H
Mo+ Ha Y 0 1 Y

= —(to + 1) (So + 51)% — (Mo +H1)U1%
0x 0x
- (S() + Sl)vl% .
0x
En se limitant au premier ordre vis-a-vis des termes
d’indice 1, on obtient

0S; I ovy

— +Sp—— = —pSo— .
Hoat Oat Ho Oax

2. La relation traduisant 1’adiabaticité de I’évolution
du fluide s’écrit

o op
ot =HoXs o1

La section du tuyau dépend de la pression P. En 'ab-
sence d’onde, elle vaut S(Py) = So. En présence de
I'onde sonore, elle vaut

ds
S(P)=S(Po+ p1) =S(Po) + p1 (d_P)PO

=So+ pIS(P())D =So+ plsoD
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d’apres la définition de D. On en déduit

ds _ dSl _ D6p1
dr  dr "ot
Le bilan de masse s’écrit alors
op1 op1 o
SoD——+ S — =—UpSp—,
Hoo0 oL oMoXs oL Ho Oax
. apl oy
t(D+ys)—— = ———.
SOIt(D+x8) 5, =5
L'équation d’Euler linéarisée s’écrit
01/1 _ 6;91
Hogr = ox

En utilisant le théoreme de Schwarz entre cette équa-
tion et le bilan de masse, on obtient
62 4] 1 62 1 62 1
L N R DLy
0x0t Ho Ox ot

La surpression vérifie donc I'’équation de d’Alembert

0°p1 —0
to(D + xs) 0x? )

62}91 1
o0t?

La célérité des ondes vaut

1

VoD +yxs) '

3. On calcule pour le tuyau métallique

cm=1390m-s”!
et pour le tuyau souple
Cel=5m- s71.

La célérité est considérablement réduite dans un tuyau
souple.

[**]
1. Les extrémités imposent des conditions aux limites

de type «nceud » de vitesse (extrémité fermée) ou
«nceud » de surpression (extrémité ouverte).

8 — Clarinette

Elles justifient donc de chercher une solution de
I'équation de d’Alembert sous forme d’'une onde sta-
tionnaire.

2. Equation de la dynamique linéarisée en projection
selon Ox :

ovi _ dp1 _ .
'UOE =" x prokcos(wt)sin(kx)
d’ ol ‘
vi(x,0) = P1o sin(wt) sin(kx)
How

soit comme w = kc

vi(x,t) = £ sin(w?) sin(kx) .
HoC
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3. La paroi en x = 0 impose v; = 0, car la vitesse
est normale a la paroi (condition de cinématique des
fluides).

La pression atmosphérique extérieure impose P(L, t) =
Py soit p1(L, 1) =0.
Les conditions aux limites sont donc :

prL,D=0 et vi(0,0)=0.

4. La condition v1(0,7) = 0 est déja vérifiée par le
champ des vitesses obtenu.
En x = L, on doit avoir

p1(L,t) = Pygpcos(wt)cos(kL) =0 Vit
Cette condition impose cos(kL) = 0, soit
/4
kn,L= E +nmw.

Avec w,, = kyc, on obtient les pulsations propres

cT cT N
w,=—+((m—-1)— avec neN" .
2L L

Le fondamental a pour pulsation

cn
w1 =—.
2L
) o, ,
Le fondamental a pour pulsation w; = TR soit la fré-

quence

CTt
h=77

On remarque que
wn=2(n—1)+1]—
" 2L’
On peut donc écrire

fr=0@p+1)fi avec peN.

Le son ne comporte que les harmoniques de rang im-
pair.
5. La fréquence du fondamental pour une flGte est

donc
c

fl,ﬂ=i-

Pour une clarinette, elle vaut

fl,cl: - =

c _ha
4L 2 -

A longueur de tuyau égale, le son émis par une clari-
nette est plus grave (une octave plus grave) que le son
émis par une flte.

6. Avec L = 65cm et ¢ = 340 m-s~!, la fréquence du
fondamental est f; = 130,8 Hz.

Allure de 'onde de surpression dans le tyau :

CPGE PSI 2025-2026
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Si on ouvre le trou central, on force un nceud de pres-
sion a se former aux environs du milieu du tuyau.
Dans la pratique, cela force 1'émission de I’harmo-
nique suivant, c’est-a-dire f3 = 3f; = 392,3 Hz. Allure
de I'onde de surpression dans le tyau :

7. Le fondamental f; = 130,8 Hz correspond a un dos.
Le troisieme harmonique f; = 392,3 Hz correspond au
soly, situé a un intervalle de douziéme (une octave plus
une quinte) du fondamental.

Le timbre est la « couleur » du son, défini en premiere
approximation par les amplitudes des harmoniques
qui le constituent.

[**]

1. Lavitesse du son dans un gaz parfait est donnée par

YRTy
o=\ "—.
M

Le temps mis pour parcourir la distance D vaut donc

D M
Th=— =D .
Co )/RTO

2. La célérité du son est donnée ici par

c(2) = YRT(z)  |YR(Ip—Bz)  [YRTj 1_%
- M M VM To
c(z) = ¢ l—Ez
=g %

La durée mise pour parcourir une distance dz vaut

donc o
d 1 B \~
dt=—z=—(1——z) dz.
c(z) ¢ To

La durée mise pour aller de z=0a z = D vaut donc

9 — Bruit d’explosion

T =i D(I—Ez)mdz
Yoo To
:_i I_BT([’)u—uzdu:_ﬂﬁ,l‘%)
Bey /4 Bcy 1
__2h /1_@_1)
BC() To
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soit

ZTO BD

T = 1—4/1—-—

BC() T()
3. Avec les valeurs numériques données, on a
B
—=~107°m™L.
T

Nous allons donc faire ’hypothese (dont il faudra véri-

fier la validité a posteriori) que T < 1, soit

0
s BD . BD 3(BD)2
To ~ 2To 8\ Ty )~
On adonc
D 2T, BD 3(BD)2]
Th—Ty=——-—— 11— — ===
cg Bcy 2Ty 8\ Ty
D D 2T03B2D2
C() Co BC()8 T()2
3BD?> 3 BD
== —Tp—.
4C()T() 4 T()
On en déduit I'écart relatif
Th—Ty _ 3BD
Th - 4Ty
L. Th— Ty
On en déduit que —— > 0,01 pour

0,04 Ty

soit | D>7,7 x 10° m

BD
» On vérifie T - 1,3x 1072 <1, l'approximation
0
faite pour utiliser un développement limité est

donc justifiée.

12 — Fréquences propres d’une sphére rigide [***]

On considere

(wt kr)+§ 1(wt+kr)
r

pr,1) =

1. Le premier terme correspond a une onde divergente
(apres passage au centre de la sphere) ; le second a une
onde convergente (aprés réflexion sur la paroi de la
sphere).

L'équation d’Euler conduit a

0T Opa 1 ik) ;
g =—Al-—_-—= el(wt—kr) ?
K5y ar  or "~ —( r2or ) :
1K) iwevkn 2
—E(—ﬁ + — " ) er

A . B .
= [:2(1 +ikr) e @+ = (1 - ikr) e @) €
r r
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d’ou
v=— [AQ +ikr) @
iwp
+§(1 _ lkr) ei(a)t+kr) _6’
soit
1 .
v= > | Aler =) e/ @=kD
Howr

—B(kr+1) e @k g

2. On doit avoir
lim D, =0.
r—0

Le débit volumique est donné par
Dy = axr?® v(r, 1).

On a donc en notation complexe

limD,

1D 4_[ lAelwt iEeiwt]
r—

How
4mi iwt
=—— [A+ B] =0,
How
d'ou B=-A.

Le champ des vitesses s’écrit alors

A
_ (kr —i)e i(wt— kr)+(kr+l)el(wt+kr)

 powr?

|El

La composante radiale de la vitesse doit étre nulle sur
la paroi: v(R, ) =0, Vt, soit apres simplification

A(kR-1) e*R + A(kR+1)e*R = 0.
Comme A # 0, on en déduit

(kR—i)e *R 4 (kR +i)ei*R =0,

soit
kR (elkR +e

qui s’écrit

—iIcR) +i (eikR _ e—ikR) =0,
kRcos(kR) —sin(kR) =
Les modes propres vérifient donc

tan(kR) =

Avec la relation de dispersion w =27 f = kc, on en dé-
duit la relation vérifiée par les fréquences propres :

tan [ 215 -

Cc

2nfR
—

3. Laplus basse de ces fréquences est donc la plus pe-
tite racine positive de tan x = x.

Une résolution numérique conduit a x = 4,5. Avec ¢ =

4,5¢ .
340 m-s~!, on calcule f=——=,soit f =4,9 kHz.
2nR
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13 — Sphére pulsante et impédance de rayonne-
ment [¥¥¥]

1. L'équation de d’Alembert s’écrit

—-—Cc“AP; =0
or? !
soit dans le cas d'un champ radial
0°Py ¢ 0*(P)
o> r or?

En posant F(r,t) =rP(r,t),ona

0°F

0°F
o7 ST

W—O.

La solution générale de I'équation de d’Alembert uni-
dimensionnelle est

F(r, 1) =Af(t—£)+Bg(t+£),

d’olt

Py (r, t):éf(t—£)+§g(t+£).

Le premier terme représente une onde divergente, le
second une onde convergente.

La source des ondes étant a 'origine O, il est naturel
de ne considérer que des ondes qui s’éloignent de la
source, c’est-a-dire divergente :

1 r
P(r 1) = ;f(t—z) :
2. Dans le cas d’'une sinusoidale de la forme
A
Pi(r,t) = —cos(wt—kr—a),
r

I’équation de d’Alembert conduit a la relation de dis-
persion

k==
C

L'équation de la dynamique linéarisée s’écrit

ovy(r,t) B @

pOT P :ﬁcos(wt—kr—a)
kA |
— —sin(wt-kra)
-
d’ou

A kA
pov1(r, 1) = — sin(w? - kr—a)+ —cos(wt—kr—a).
wr wr

Avec la relation de dispersion, on obtient

v1(r, 1) cos(wt—kr—a)+

pocr cr?

Le champ vectoriel est U1 (M, t) = v1(r, 1) €.

CPGE PSI 2025-2026
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Dans la zone de rayonnement, on a kr > 1. Le champ
des vitesses devient alors

cos(wt—kr—a) .

A
n(rnt) = 3
pocr

Londe a une structure locale d’onde plane, et on a
pfgdfracPi(r,t)vy(r,t) = poc.

3. A la surface de la sphere, on est en r < A, dans la
zone de champ proche. Le champ des vitesses s’écrit
alors

vt = sin(wt—kr—a).

A
pokcr?
La vitesse sur la surface de la sphére est égale a la vi-
tesse radiale des points de la surface de la sphere, soit

(a(1) t)—%
vilali), )= dt'

Au premier ordre, a(t) = ap = ap car a; < dy. La vitesse
ala surface de la sphere est

da n@)
— = —qqwsin(wi),
dr !
d’olt
—mqowsin(wt) = 5 sin(wt—kag—a).
pokcay

Comme kay <« 1 (car ap < 1), on peut écrire

—ajwsin(wt) = sinlwt—a) Vt.

2
porcay

La dépendance temporelle implique | a =0 .
On a alors
A=—pow’a ag .

4. Le vecteur densité de courant énergétique est
(M, 1) =1(r, 0 € = P (1, D v1 (1, ) €.

En moyenne temporelle, il ne reste que le terme de
champ lointain pour lequel v; = P;/(pgc), d’ou
(P?)

{I(r, 1)) = ——.
PoC

Avec Py (r, ¢t) = ? cos(wt— kr), on obtient
A2
(I(r, ) = W.
La puissance rayonnée dans tout I'espace est
P = 4anr*(1(r, 1))

soit avec I'expression de A établie

2p0a? ajw*
p=—>1D |
c
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5. En notation complexe, on a

A wi
Py 1) = 2 ek

et
A A (i—kr—
El(r» 1= el(wt kr)+ 2el(wl‘ kr—m/2)
pocr pockr
_ A ei(wt—kr)_ iA ei(wt—kr)
pocr pockr?

On a alors apres simplification

1
Bl(r,t)_ T

v (r,t) Ll _ __i
—1( ) pocr — pockr?

soit avec w = kc

P,(r,1)  poc

- ic
vy 1-2¢

6. En r = ay, le rapport précédent vaut

— A (I_L)ei(wt—kr)
Pocao kag

1+ 25

PoC kao (kag)® +ikag

Ly = — = PoC = poC

—ray i A 2
1- 2o 1+ oy 1+ (kap)

Comme kag < 1, on peut approximer !

Zray = pPoC [(ka0)2 + ikao]

soit avec la relation de dispersion

wap\2 way
(S s

Zyay = POC -

7. Limpédance acoustique pour une onde incidente
dans le tuyau est Z = pgc. Comme kap < 1, on a

Z>>‘Z .

Zray

La sortie du tuyau peut donc étre considérée comme
une interface entre un milieu d'impédance élevée vers
un milieu d'impédance tres faible.

En reprenant les résultats établis en cours dans le cas
Zy <« 73, les coefficients de réflexion en amplitudes
sont alors

-7

VAR
=" ~
Zg-l—Zl

— = +1.
VAR VA

=~-1 et ry=

Londe de pression change de signe a la réflexion; la su-
perposition de 'onde incidente et de 'onde réfléchie
peut alors étre considérée comme nulle a la sortie du
tuyau, ou1!’on a alors un nceud de pression.

La vitesse réfléchie est quasiment égale a la vitesse in-
cidente : on a alors un ventre de vitesse a la sortie du
tuyau.

1. On garde I'ordre le plus bas non nul d’'une part pour la partie réelle, d’autre part pour la partie imaginaire.
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