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TD ondes no 5 Dispersion & absorption

1—  Pavillon acoustique [**]

On considère un tuyau de révolution d’axe Ox, de sec-
tion S(x).

S(x) x

Au repos, la pression vaut P0 et la masse volumique µ0.
On désigne par u(x, t ) le déplacement élémentaire de
la section d’abscisse x, v(x, t ) la vitesse de déplacement
de cette section selon Ox et p(x, t ) = P (x, t )−P0 la sur-
pression à l’abscisse x.
Les grandeurs u, p et v sont considérées comme des in-
finiment petits dans le cadre de l’approximation acous-
tique.

1. On considère une tranche de fluide située, au repos,
entre les plans d’abscisses x et x +dx. Déterminer sa
variation relative de volume lorsqu’elle est perturbée.

2. Montrer que l’on a

∂p

∂x
=−µ0

∂v

∂t
et p =− 1

χSS

∂(Su)

∂x
.

3. En déduire deux équations aux dérivées partielles
du second ordre, reliant S, v , x et t pour l’une, S, p, x et

t pour l’autre. On posera c2 = 1

µ0χS
.

4. Le modèle utilisé est tel que S(x) = S0 e2mx , où S0

est la section en x = 0 et m un réel positif. Simplifier les
deux équations différentielles précédentes et montrer
qu’elles sont du même type.

5. On cherche à propager dans le tuyau une onde si-
nusoïdale décrite par la notation complexe

v =V0 ej(ωt−kx) .

Établir la relation à laquelle satisfait k en fonction de ω,
c, m et j.

6. Montrer l’existence d’une pulsation de coupure ωc

séparant un domaine de pulsation où la propagation
est impossible.

Calculer ωc pour c = 343 m · s−1 et m = 1 m−1.

7. Exprimer alors v(x, t ). Caractériser cette onde.

8. Exprimer les vitesses de phase vφ et de groupe vg, et
donner une relation entre elles. Les tracer sur un même
graphe en fonction de ω.

2—  Cornet acoustique [*]

Pour amplifier le son perçu par l’oreille, on peut pla-
cer à son extrémité un cornet acoustique limité par une
surface de révolution d’axe Ox et de section variable
S(x) = S0 exp(−σx), où σ et S0 sont des constantes. Au
repos, la pression p0 et la masse volumique µ0 sont
uniformes. On note χs le coefficient de compressibi-
lité isentropique de l’air et c = 1/

p
µ0χs . L’onde so-

nore est décrite par les champs p1(x, t ) et µ1(x, t ) et le
champ des vitesses #»v 1 pour lequel on fait l’approxima-
tion de l’écoulement quasi unidimensionnel en posant
#»v 1 = v1(x, t ) #»e x . On traite le problème dans l’approxi-
mation acoustique.

1. En faisant un bilan de masse pour le système ou-
vert (V ) compris entre les abscisses x et x +dx, établir
l’équation

∂µ1

∂t
=−µ0

∂v1

∂x
+µ0σv1 .

À l’aide de l’équation d’Euler et de l’équation tradui-
sant l’évolution thermodynamique du fluide, établir
deux autres équations reliant les champs p1, µ1 et v1.

2. En déduire que la relation de dispersion pour des
ondes proportionnelles à exp[i(ωt −kx)] s’écrit

k2 − iσk −ω2/c2 = 0.

Discuter la nature des ondes suivants les valeurs de la
pulsation. Vérifier l’effet amplificateur du cornet.

3—  Équation des télégraphistes [**]

On modélise un câble coaxial par une ligne à
constantes réparties. Le schéma ci-dessous représente
une longueur dx du câble, où r dx est une résistance,
λdx une inductance, g dx une conductance et γdx une
capacité.
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1. Montrer que la tension u(x, t ) vérifie l’équation
d’onde

∂2u

∂x2 = γλ
∂2u

∂t 2 + (rγ+λg )
∂u

∂t
+ r g u(x, t ) .

2. Dans quel cas retrouve-t-on l’équation de d’Alem-
bert? Exprimer alors la célérité c.
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3. Dans le cas général, on cherche une solution de
l’équation établie à la question 1 en régime harmo-
nique de la forme u(x, t ) = u0 ej(ωt−kx), où j2 = −1 et
k est a priori complexe. Établir la relation de disper-
sion entre ω et k. Montrer qu’elle peut se mettre sous
la forme

k2 = ω2

c2

(
1− ja

)(
1− jb

)
où a et b sont des grandeurs que l’on exprimera en
fonction de r , g , λ, γ et ω.

4. On se place dans la condition dite de Heaviside :
rγ= gλ. La propagation est-elle dispersive? Y a-t-il ab-
sorption? Si oui, préciser la distance caractéristique.

4—  Corde vibrante verticale [**]

x

z

#»gL

B

A

Mz

On étudie une corde AB
de longueur L, parfaite-
ment flexible et sans frot-
tements internes, de sec-
tion négligeable, homo-
gène de masse totale mT

et de densité linéique uni-
forme µ.
La corde est verticale ; l’axe des z est orienté vers le bas
et l’origine est à l’extrémité B . L’axe Ox est dans un plan
horizontal. La position d’un point M de la corde est re-
pérée par sa cote z dans un référentiel galiléen lié à B .

1. La corde est en équilibre.

Montrer que la tension de la corde au point M est don-
née par T (z) =µg (L− z).

2. La corde vibre. En appliquant le principe fonda-
mental de la dynamique à l’élément dz de corde à
la cote z, montrer que l’élongation vérifie l’équation
d’onde :

∂2x

∂t 2 = g (L− z)
∂2x

∂z2 − g
∂x

∂z
.

3. Que devient l’équation d’onde si l’on tient compte
de la force de frottement visqueux

d
#»

f =−α∂x

∂t
dz #»e x

agissant sur l’élément de corde dz, α > 0 étant la
constante de frottement?

4. On cherche une solution à l’équation d’onde au
voisinage du point de fixation (z ¿ L). Montrer
qu’une onde sinusoïdale de pulsation ω et d’ampli-
tude complexe x(z, t ) = x0 exp[i(ωt −kz)], où k est une
constante réelle, ne peut se propager que pour une cer-
taine valeur α0 de la constante de frottement, que l’on
exprimera en fonction de µ, g et L.

5. Donner, pour α=α0, les expressions de la vitesse de
phase vφ et de la vitesse de groupe vg de l’onde. Y a-t-il
dispersion?

6. On néglige maintenant le terme de frottement et
on cherche une solution à l’équation d’onde dans la
région z ¿ L sous la forme x(z, t ) = a exp

[
i(ωt −kz)

]
avec k = k1 + ik2 complexe (k1 et k2 étant réels). Ex-
primer k2. En déduire que l’amplitude de l’onde aug-
mente pendant la propagation. Le résultat est-il cohé-
rent avec celui de la question 4 ?

7. Établir alors et représenter graphiquement la rela-

tion de dispersion. Poser ω2
0 = g

4L
et montrer que la

corde se comporte comme un filtre passe-haut.

8. Déterminer la relation entre la vitesse de phase et la
vitesse de groupe.

5—  Chaîne infinie de pendules couplés
[***]

On considère une chaîne infinie de pendules pesants
couplés par un fil de torsion.

Chaque pendule est une barre homogène de lon-
gueur L, de masse m, fixée à l’axe de rotation Ox au
point On d’abscisse xn = nd .
Il oscille dans le plan yOn z perpendiculaire à l’axe de
rotation, et son moment d’inertie par rapport à l’axe de
rotation est J = 1

3 mL2.
Sa position angulaire par rapport à la verticale est re-
pérée par l’angle θn(t ). Le fil de torsion, de constante
C , exerce entre deux pendules successifs un couple de
rappel proportionnel à l’écart angulaire entre ces pen-
dules.
Les effets des phénomènes dissipatifs sur le pendule
(n) sont modélisés par un couple de frottement fluide

d’expression Γ=−αdθn

dt
.

1. Établir une équation différentielle reliant θn(t ) à
θn−1(t ) et θn+1(t ).

2. On se place dans le cas d’oscillations de faible am-
plitude (θn ¿ 1). On suppose que la distance d entre
deux pendules successifs est très faible devant les lon-
gueurs d’onde étudiées, ce qui permet de construire
une fonction θ(x, t ) de classe C2 telle que

θ(x = nd , t ) = θn(t ) .

Montrer que l’équation précédente se ramène à une
équation aux dérivées partielles linéaire vérifiée par
θ(x, t ).
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3. On cherche une solution en régime harmonique
sous la forme

θ(x, t ) = θ0 ei(ωt−kx) .

Établir la relation de dispersion k(ω).

4. On se place dans le cas où α= 0.

4.a) Que devient la relation de dispersion?

4.b) Selon les valeurs de la pulsation ω, déterminer s’il
y a propagation. Préciser si la propagation est alors dis-
persive.

5. On se place dans le cas α 6= 0 et on considère la pul-
sation ω « grande » (devant quoi ?).

5.a) Comment se simplifie la relation de dispersion?

5.b) Y a-t-il propagation? Si oui, est-elle dispersive?

5.c) Y a-t-il absorption?

5.d) Que peut-on dire si l’amortissement est négli-
geable (α= 0)?

6—  Tuyau d’orgue [**]

On modélise un tuyau d’orgue par un cylindre d’axe
#»e x , de longueur L et de section carrée de coté D ¿ L
fermé à ses extrémités x = 0 et x = L.

1. Rappeler l’équation aux dérivées partielles vérifiées
par la surpression acoustique p1(x, y, z, t , ).

2. On étudie la propagation d’un son monochroma-
tique dans le tuyau, assimilé au domaine

{0⩽ x ⩽ L,0⩽ y ⩽D,0⩽ z ⩽D} .

On cherche une solution de l’équation de d’Alembert
de la forme

p1(x, y, z, t ) = pm cos(kx x)cos(ky y)cos(kz z)cos(ωt ) .

Quelle relation doivent vérifier kx , ky , kz , ω et la célé-
rité c du son dans l’air?

3. Exprimer les composantes du vecteur vitesse #»v 1 as-
socié. Déduire des conditions aux limites les expres-
sions de kx , ky et kz en fonction de D , L et de trois en-
tiers n1, n2 et n3.

4. En déduire les expressions des fréquences que peut
émettre le tuyau en fonction de L, D , c, n1, n2 et n3.

5. Le tuyau est harmonieux s’il n’émet que les mul-
tiples de la fréquence fondamentale.

Quelle est la fréquence minimale fm d’un son non har-
monieux?

Calculer fm pour D = 1 cm et c = 340 m · s−1. Commen-
ter.

7—  Dispersion dans une chaîne infinie
d’atomes [***]

On considère une chaîne infinie linéaire d’atomes
ponctuels de masse m, liés par des ressorts de rai-
deur K . La chaîne est portée par l’axe OX . À l’équilibre,
les atomes occupent les positions X = na, avec n ∈ Z,
où a est la longueur à vide des ressorts.

m m m m

K K K

xn

X

Xn = na

a

1. Établir les équations différentielles régissant la po-
sition xn de l’atome de rang n par rapport à sa position
d’équilibre.

2. On cherche des solutions sous la forme

xn = A ei(ωt−k Xn ) ,

où A est une constante réelle. Déterminer la relation de
dispersion.

3. Montrer que la chaîne se comporte comme un filtre
passe-bas dont on calculera la pulsation de coupure
ωc. Tracer le graphe ω(k).

4. Que devient la relation de dispersion quand
ω¿ωc ? Commenter. Déterminer alors la vitesse de
phase et la vitesse de groupe de l’onde.

8—  Propagation d’un signal électrique
dans un axone [**]

L’axone, ou fibre nerveuse, est le prolongement du
neurone qui conduit les signaux électriques émis par
le centre du neurone (potentiel d’action) vers les sy-
napses. Les axones les plus simples sont formés d’une
membrane lipidique enfermant un liquide physiolo-
gique riche en ions (l’axoplasme) et baignant dans un
liquide cellulaire également riche en ions. Les proprié-
tés conductrices de l’axone sont déterminées par :

— la résistance linéique de l’axoplasme (ra =
6,4×109 Ω ·m−1) s’opposant au passage du courant
le long de l’axone;

— la conductance linéique de la membrane (gm =
63 mS ·m−1) déterminant la fuite du courant ;

— la capacité linéique de la membrane (cm =
0,32 µF ·m−1) capable d’emmagasiner des charges
électriques à l’intérieur et à l’extérieur de la mem-
brane.

Chaque longueur élémentaire de longueur dx de la
fibre nerveuse est modélisée part une cellule représen-
tée ci-dessous.
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1. Déterminer les équations aux dérivées partielles vé-
rifiées par u(x, t ) et i (x, t ), puis celle vérifiée par u(x, t )
seulement. On envisage dans la suite une solution sous
forme d’onde plane pseudo-progressive harmonique
u(x, t ) = u0 ej(ωt−kx).

2. Établir l’équation différentielle vérifiée par u(x, t ).
Montrer que si ω est très inférieure à une pulsation ωc

que l’on exprimera en fonction de cm et gm, l’équation
différentielle vérifiée par u(x, t ) se simplifie en

∂u

∂t
(x, t ) = 1

racm

∂2u

∂x2 (x, t ) .

On supposera cette condition vérifiée par la suite.

3. Quel est le phénomène décrit par cette équation?
Citer d’autres exemples analogues.

4. Déterminer la relation de dispersion entre ω et k.
Montrer que le milieu est dispersif et absorbant. Que
valent les vitesses de phase et de groupe? Quelle rela-
tion lie ces deux grandeurs?

5. Mettre en évidence une distance caractéristique
d’atténuation. Comment dépend-elle de la fréquence?

9—  Influence de la viscosité de l’air sur les
ondes acoustiques [***]

On étudie la propagation du son dans un fluide de
masse volumique µ0 au repos et de compressibilité
isentropique χS . On prend en compte les effets de la
viscosité du fluide en ajoutant la force volumique

#»

f v = 4

3
η
∂2v

∂x2
#»e x ,

où η est la viscosité du fluide.

1. Préciser l’unité de η.

2. On rappelle l’équation d’Euler :

µ

(
∂#»v

∂t
+ ( #»v · #      »

grad) #»v

)
=−#      »

gradP + #»

f v .

Que devient-elle dans le cadre de l’acoustique linéaire?

3. Rappeler les deux autres équations de l’acoustique
linéaire.

4. En déduire l’équation de propagation vérifiée par
v(x, t ) ou par p(x, t ).

On posera c = 1p
µ0χS

.

On cherche une solution de l’équation de propagation
sous la forme d’une onde pseudo-progressive harmo-
nique de nombre d’onde complexe k.

5. Rappeler l’expression générale d’une telle onde.

6. Montrer que la relation de dispersion s’écrit

k2 = ω2/c2

1+ iα

où on exprimera α en fonction des données.

7. On étudie la propagation du son dans l’air à 300 K
sous 1 bar pour une fréquence f = 1 kHz.

On donne M = 29 g ·mol−1 et η = 2×10−5 SI. L’air est
assimilé à un gaz parfait diatomique (γ= 1,40).

Justifier que l’on peut linéariser l’expression de k.

8. En déduire l’expression de k = k ′+ ik ′′. Interpréter
k ′, et k ′′ en faisant intervenir une distance caractéris-
tique δ.

9. Calculer les longueurs caractéristiques sur les-
quelles le son dans l’air est amorti à 20 Hz et à 20 kHz.
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