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TD ondes no 5 Dispersion & absorption— solution

1—  Pavillon acoustique

1. En l’absence d’onde, le volume de la tranche consi-
dérée est

δV0 = S(x)dx .

En présence d’onde, la tranche est comprise entre les
plans d’abscisses

x +u(x, t ) et x +dx +u(x +dx, t ) .

La longueur de la tranche est donc

dℓ= dx +u(x +dx, t )−u(x, t ) = dx

(
1+ ∂u

∂x

)
.

La position de la tranche étant à l’abscisse x+u(x, t ), la
section à considérer au premier ordre est

S(x +u) = S(x)+u(x, t )
dS

dx
.

Le volume de la tranche perturbée est donc

δV = S(x +u)dℓ=
(
S(x)+u(x, t )

dS

dx

)(
1+ ∂u

∂x

)
dx .

La variation de volume vaut donc

d(δV ) = δV −δV0 =
(
u

dS

dx
+S

∂u

∂x
+u

∂u

∂x
S(x)

)
dx

La perturbation u(x, t ) étant un infiniment petit, le

terme u
∂u

∂x
S(x) est d’ordre deux. Au premier ordre, la

variation de volume s’écrit

d(δV ) =
(
u

dS

dx
+S

∂u

∂x

)
dx = d(Su)

dx
dx .

La variation relative de volume vaut donc

d(δV )

δV0
= 1

S(x),dx

d(Su)

dx
dx

soit
d(δV )

δV0
= 1

S

∂(Su)

∂x
.

On considère une tranche de fluide située, au repos,
entre les plans d’abscisses x et x +dx. Déterminer sa
variation relative de volume lorsqu’elle est perturbée.

2. L’équation de la dynamique linéarisée s’écrit

µ0
∂v

∂t
=−∂p

∂x

soit
∂p

∂x
=−µ0

∂v

∂t
.

Le coefficient de compressibilité isentropique est dé-
fini par

χS =− 1

V

(
∂V

∂P

)
S
=−δV

V

1

δP

où δV est la variation de volume entraînée par une va-
riation δP de pression.

La variation de pression est ici la surpression acous-
tique p(x, t ). On retrouve la variation relative de vo-
lume

δV

V
= 1

S

∂(Su)

∂x
.

On a donc

χS =−1

S

∂(Su)

∂x

1

p

d’où

p =− 1

χSS

∂(Su)

∂x
.

3. La vitesse est reliée au déplacement selon

v(x, t ) = ∂u(x, t )

∂t
.

D’après la question précédente, on a

∂p

∂t
=− 1

χSS

∂

∂t

(
∂(Su)

∂x

)
=− 1

χSS

∂

∂x

(
S
∂u

∂t

)
=− 1

χSS

∂(Sv)

∂x
.

De plus

∂2v

∂t 2 =− 1

µ0

∂2p

∂t∂x
= 1

µ0χS

∂

∂x

(
1

S

∂(Sv)

∂x

)
soit

∂2v

∂t 2 = c2 ∂

∂x

(
1

S

∂(Sv)

∂x

)
avec c = 1p

µ0χS
.

On a de plus

∂2p

∂t 2 =− 1

χSS

∂

∂x

(
S
∂2u

∂t 2

)
=− 1

χSS

∂

∂x

(
S
∂v

∂t

)
= 1

χSS

∂

∂x

(
− S

µ0

∂p

∂x

)
soit

∂2p

∂t 2 = c2

S

∂

∂x

(
S
∂p

∂x

)
.
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4. L’équation vérifiée par v(x, t ) dévient

∂2v

∂t 2 = c2 ∂

∂x

(
∂v

∂x
+ 1

S

dS

dx
v

)
= c2 ∂

∂x

(
∂v

∂x
+2mv

)
soit

∂2v

∂t 2 = c2 ∂
2v

∂x2 +2mc2 ∂v

∂x
.

L’équation vérifiée par p(x, t ) dévient

∂2p

∂t 2 = c2

S

dS

dx

∂p

∂x
+ c2 ∂

2p

∂x2

soit

∂2p

∂t 2 = c2 ∂
2p

∂x2 +2mc2 ∂p

∂x
.

On obtient la même équation.

5. Écrivons que v = V0 ej(ωt−kx) vérifie l’équation
d’onde :

−ω2 =−k2c2 −2mc2jk

soit

k2 +2jmk − ω2

c2 = 0 .

6. L’équation précédente est une équation du second
degré dont le discriminant réduit est

∆′ =−m2 + ω2

c2 = ω2 −ω2
c

c2 avec ωc = mc .

Si ω < ωc, on a ∆′ < 0 et la solution de la relation de
dispersion est

k =−jm ± j

√
ω2

c −ω2

c2 .

Le nombre d’onde est imaginaire pur : k ′ = 0; il n’y a
donc pas de propagation (on obtient une onde évanes-
cente).

Si ω>ωc, on a ∆′ > 0 et

k =−jm ±
√

ω2 −ω2
c

c2 .

Le nombre d’onde possède une partie réelle non nulle :
il y a propagation.

Le pavillon se comporte donc comme un filtre passe-
haut : il y a propagation si ω<ωc.

On calcule ωc = 343 rad · s−1.

7. En choisissant le signe de façon à avoir une onde
se propageant dans le sens des x croissants, on a k =
k ′+ jk ′′, avec

k ′ =
√

ω2 −ω2
c

c2 et k ′′ =−m .

On a alors

v(x, t ) =V0 e−mx exp

j

ωt −
√

ω2 −ω2
c

c2 x


soit pour l’onde réelle

v(x, t ) =V0 e−mx cos

ωt −
√

ω2 −ω2
c

c2 x


Il s’agit d’une onde se propageant selon les x crois-
sants, dont l’amplitude s’atténue sur une distance ca-
ractéristique δ=−1/m.

8. Se reporter au cours.

2—  Cornet acoustique

1. On considère la tranche comprise entre les abs-
cisses x et x +dx :

x x +dx

La masse de ce système est

δm(x, t ) =µ(x, t )S(x)dx .

Pendant dt , elle varie de

d(δm) = δm(x, t +dt )−δm(x, t ) = ∂µ1

∂t
S(x)dx dt .

La masse reçue par ce système pendant dt est

δ2mreçu =µ(x, t )v1(x, t )S(x)dt

−µ(x +dx, t )v1(x +dx, t )S(x +dx)dt

=−∂
(
µ(x, t )v1(x, t )S(x)

)
∂x

dx dt .

En se limitant au premier ordre, comme µ(x, t ) = µ0 +
µ1(x, t ), on a

δ2mreçu =−µ0
∂v1

∂x
S(x)dx dt −µ0v1

dS

dx
dx dt

=−µ0
∂v1

∂x
S(x)dx dt +µ0σv1S(x)dx dt

avec S(x) = S0 e−σx .

Le bilan d(δm) = δ2mreçu, conduit alors à

∂µ1

∂t
=−µ0

∂v1

∂x
+µ0σv1 .
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L’équation d’Euler linéarisée s’écrit

µ0
∂v1

∂t
=−∂p1

∂x
.

L’équation linéarisée traduisant l’adiabaticité de l’évo-
lution s’écrit

µ1 =µ0χS p1 .

2. La conservation de la matière s’écrit alors

µ0χS
∂p1

∂t
=−µ0

∂v1

∂x
+µ0σv1 .

Dérivons par rapport au temps :

µ0χS
∂2p1

∂t 2 =−µ0
∂2v1

∂t∂x
+µ0σ

∂v1

∂t
.

D’après l’équation d’Euler, on a donc

µ0χS
∂2p1

∂t 2 = ∂2p1

∂x2 −σ
∂p1

∂x
.

Avec c = 1/
p
µ0χS , on en déduit l’équation d’onde véri-

fiée par la surpression :

∂2p1

∂t 2 = c2 ∂
2p1

∂x2 −σc2 ∂p1

∂x
.

ä Ce n’est pas l’équation de d’Alembert ; cependant,
dans le cas d’un tuyau de section constante, ca-
ractérisé par σ = 0, on retrouve bien l’équation de
d’Alembert, le phénomène étant unidimensionnel.

En cherchant une solution proportionnelle à exp[i(ωt−
kx)], on obtient

−ω2 =−k2c2 + ikσc2 ,

d’où la relation de dispersion :

k2 − iσk −ω2/c2 = 0 .

Le discriminant de la relation de dispersion s’écrit

∆= (−iσ)2 + 4ω2

c2 = 4ω2

c2 −σ2 .

Il apparaît une pulsation caractéristique ωc = σc

2
.

1er cas : ω<ωc. On a ∆< 0, et

k = iσ± i
p−∆

2
.

Le module d’onde est imaginaire pur : il n’y a pas de
propagation possible (pas de partie réelle pour k) ; on
observe une onde évanescente.

2e cas : ω>ωc. On a ∆> 0, et

k = iσ±p
∆

2
= iσ

2
±

√
ω2 −ω2

c

c
.

La surpression s’écrit alors

p
1

(x, t ) = p
01

ei(ωt±
p

ω2−ω2
c

c x) e−i( iσ
2 x) .

On conserve la solution correspondant à une progres-
sion dans le sens des x croissants, soit

p
1

(x, t ) = p
01

ei(ωt−
p

ω2−ω2
c

c x) e
σ
2 x .

On a donc

p1(x, t ) = p10 e
σ
2 x cos

[
ω

(
t − x

vφ
+φ

)]
La partie imaginaire k ′′ = σ

2
> 0 se traduit pas une am-

plification de l’amplitude de l’onde acoustique (c’est
le rôle du cornet !). Cette amplification n’est pas due au
milieu de propagation, mais à la géométrie du système.

La partie réelle k ′ =
p

ω2−ω2
c

c traduit la propagation de

l’onde à la vitesse de phase vφ = c√
1− ω2

ω2
c

.

En conclusion :

— le cornet permet de transmettre les ondes de pulsa-

tion ω > ωc = σc

2
; il se comporte donc comme un

filtre passe-haut ;

— lorsque les ondes sont transmises, le cornet réalise
une amplification, d’autant plus important que σ

est grand (c’est-à-dire que la section du cornet di-
minue rapidement), mais la fréquence de coupure
fc est alors plus élevée;

— la propagation, quand elle se produit, est disper-
sive : c’est un amplificateur de piètre qualité mu-
sicale.

3—  Équation des télégraphistes

1. Loi des mailles :

u(x, t ) = u(x +dx, t )+ r i (x, t )dx +λ
∂i (x, t )

∂t
dx ,

soit

−∂u(x, t )

∂x
= r i (x, t )+λ

∂i (x, t )

∂
.

Loi des nœuds :

i (x, t ) = g u(x+dx, t )dx+γ
∂u(x +dx, t )

∂t
dx+i (x+dx, t )

soit

−∂i (x, t )

∂x
= g u(x, t )+γ

∂u(x, t )

∂t
.

On a donc

∂2u

∂x2 =−r
∂i

∂x
−λ

∂2i

∂x∂t
= r g u(x, t )+ rγ

∂u

∂t
−λ

∂2i

∂x∂t

= r g u(x, t )+ rγ
∂u

∂t
+λg

∂u

∂t
+λγ

∂2u

∂t 2

d’où

∂2u

∂x2 = γλ
∂2u

∂t 2 + (rγ+λg )
∂u

∂t
+ r g u(x, t ) .
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2. On retrouve l’équation de d’Alembert dans le cas où

— r = 0, la résistance des conducteurs est négligeable ;

— g = 0, la résistance de fuite de l’isolant est infinie.

On a alors

∂2u

∂x2 = γλ
∂2u

∂t 2 = 1

c2

∂2u

∂t 2 avec c = 1√
λγ

.

3. L’équation d’onde conduit à

−k2 =−ω2γλ+ jω(rγ+λg ) = r g

soit avec l’expression de c

k2 = ω2

c2 − jω(rγ+λg )− r g .

On peut écrire

k2 = ω2

c2

[
1− j

(rγ+λg )c2

ω
− r g c2

ω2

]
= ω2

c2

[
1− j

rγ+λg

ωλγ
− r g

ω2λγ

]
que l’on peut mettre sous la forme

k2 = ω2

c2

[
1− j

(
r

λω
+ g

γω

)
−

(
r

λω

g

γω

)]
.

L’expression proposée s’écrivant

k2 = ω2

c2

[
1− j(a +b)−ab

]
on identifie facilement

a = r

λω
et b = g

γω
.

4. La condition de Heaviside s’écrit

r

λ
= g

γ
,

et la relation de dispersion devient

k2 = ω2

c2

[
1−2j

r

λω
− r 2

λ2ω2

]
.

En notant k = kr + jki, on a

k2 = k2
r −k2

i +2jkrki .

Par identification avec la relation de dispersion :

k2
r −k2

i = ω2

c2

[
1− r 2

λ2ω2

]
et 2krki =−2

ω2

c2

r

λω
.

On identifie facilement

kr = ω

c

et
ki =−ω

c

r

λω
=− r

cλ
=− r

λ

√
γλ

soit

ki =−r

√
γ

λ
.

La vitesse de phase vaut vφ = ω

kr
= c : la propagation

n’est pas dispersive.

On a ki < 0 : il y a absorption de l’onde au cours de sa
propagation. L’onde peut s’écrire

u(x, t ) = u0 ekix cosj(ωt−krx) = u0 e−x/δ cosj(ωt−krx) .

L’absorption se fait sur une distance caractéristiqueδ=

− 1

ki
, soit δ=−1

r

√
λ

γ
.

4—  Corde vibrante verticale

1. Considérons l’élément de corde compris en l’abs-
cisse z et l’extrémité z = L, de masse m = λ(L − z). Il
est soumis :

— à son poids m #»g =λ(L− z)g #»e z ;

— à la tension
#»
T =−T (z) #»e z au point de jonction avec

la partie supérieure de la corde.

L’élément de corde étant au repos, la condition d’équi-
libre s’écrit, en projection sur #»e z :

λ(L− z)g −T (z) = 0, (1)

d’où
T (z) =λ(L− z)g .

2. On note α(z, t ) l’angle que fait la tangente à la corde
en z avec la verticale ; on considère des oscillations
de faible amplitude : |α| ¿ 1. La projection selon #»e z

du principe de la dynamique appliqué à l’élément de
corde précédent conduit à

0 =λg dz +T (z +dz, t )cosα(z +dz, t )−T (z)cosα(z, t )

'λg dz +T (z +dz, t )−T (z, t )

On retrouve l’équation(1) ; au premier ordre, la ten-
sion reste indépendante du temps et est donnée par
T (z) =λ(L− z)g .

La projection selon #»e x du principe de la dynamique
s’écrit :

λdz
∂2x

∂t 2 = T (z +dz)sinα(z +dz, t )−T (z)sinα(z, t )

' T (z +dz)α(z +dz, t )−T (z)α(z, t )

= ∂(T (z)α(z, t ))

∂z
dz .
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Comme α(z, t ) ' tanα(z, t ) = ∂x

∂z
, on a

λ
∂2x

∂t 2 = ∂

∂z

[
λ(L− z)g

∂x

∂z

]
=−λg

∂x

∂z
+λg (L− z)

∂2x

∂z2

L’équation d’onde s’écrit donc

∂2x

∂t 2 =−g
∂x

∂z
+ g (L− z)

∂2x

∂z2

3. En tenant compte du frottement visqueux, le prin-
cipe de la dynamique s’écrit, en projection sur #»e x :

λdz
∂2x

∂t 2 = T (z +dz)sinα(z +dz, t )−T (z)sinα(z, t )

−α
∂x

∂t
dz .

Dans le cas d’oscillations de faible amplitude, on ob-
tient :

∂2x

∂t 2 = g (L− z)
∂2x

∂z2 − g
∂x

∂z
− α

µ

∂x

∂t
.

4. Avec la solution proposée, l’équation d’onde s’écrit

−ω2x0 =−k2g (L− z)x0 + ikg x0 − iω
α

µ
x0

Elle admet une solution x0 6= 0 si :

ω2 −k2g (L− z)+ i

[
kg −ω

α

µ

]
= 0.

Le complexe ω2 −k2g (L − z)+ i

[
kg −ω

α

µ

]
est nul si et

seulement si sa partie imaginaire et sa partie réelle sont
nulles.

On a donc d’une part kg −ω
α

µ
= 0, d’où la valeur du

coefficient de frottement α0 = gµ
k

ω
.

D’autre part, on a ω2 −k2g (L− z) = 0, d’où

ω= k
√

g (L− z) ' k
√

g L

avec z ¿ L. On a donc α0 = gµ
k

k
√

g L
, soit

α0 =µ

√
g

L
.

5. Si α=α0, on a ω= k
√

g (L− z) ' k
√

g L, et la vitesse

de phase vφ = ω

k
est donnée par vφ =√

g L .

La vitesse de groupe vg = dω

dk
est alors donnée par

vg =
√

g L .

On a vφ = vg indépendant de la pulsation ω :

petitfondgrisil n’y a pas dispersion.

6. Avec la solution proposée, l’équation d’onde s’écrit

−ω2a = ikg a − g (L− z)k2a ' ikg a − g Lk2a

en négligeant les frottements et si z ¿ L. Le nombre
d’onde k doit donc vérifier l’équation

g Lk2 − ig k −ω2 = 0.

En posant k = k1 + ik2, on a donc

g L(k2
1 −k2

2 +2ik1k2)− ig (k1 + ik2)−ω2 = 0

soit :

g L(k2
1 −k2

2)+ g k2 −ω2 + ig k1 (2Lk2 −1) = 0. (2)

La partie imaginaire de l’équation (2) doit être nulle,

d’où k2 = 1

2L
.

La solution k1 = 0 est à rejeter car elle ne correspond
pas à une onde se propageant.

L’élongation s’écrit alors

x(z, t ) = x0 exp(i(ωt −k1z − ik2z))

= x0 exp(k2z)exp(i(ωt −k1z))

avec k2 > 0. L’amplitude de l’onde augmente comme
exp(k2z) pendant la propagation.

À la question 4, nous avons trouvé qu’une onde pro-
gressive (non amortie) pouvait exister avec des frotte-
ments, si le coefficient de frottement a la valeur α0.

Il est donc cohérent de trouver une augmentation de
l’amplitude en l’absence de frottement; ce terme d’am-
plification s’oppose exactement au terme de frotte-
ment lorsque α=α0.

7. La partie imaginaire de l’équation (2) étant nulle, on
obtient la relation de dispersion :

g L(k2
1 −k2

2)+ g k2 −ω2 = 0

avec k2 = 1

2L
, soit k2

1 +
1

4L2 − ω2

g L
= 0.

En posant ω2
0 =

g

4L
, on a 4Lk2

1 +1− ω2

ω2
0

= 0, d’où :

k1 = 1

2L

√
ω2

ω2
0

−1 .

Pour que k1 soit réel, il faut donc ω>ω0 : la corde se
comporte comme un filtre passe-haut.

Représentons le nombre d’onde k en fonction de la
pulsation ω :
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k

ω0 ω0

La courbe k(ω) est une branche d’hyperbole, admet-

tant pour asymptote la droite k = ω√
g L

.

8. On a k2
1 = ω2 −ω2

0

4L2ω2
0

= ω2 −ω2
0

g L
. En différenciant cette

relation, on obtient 2k1dk1 = 2ωdω

g L
, soit

ω

k1

dω

dk1
= g L.

On a donc vφvg = g L .

5—  Chaîne infinie de pendules couplés

1. Appliquons le théorème du moment cinétique en
On , projeté sur l’axe Ox, au pendule (n). Ce pendule est
soumis à son poids m #»g , qui s’applique en son centre
de gravité Gn , de moment

#         »
OnGn ∧m #»g =−L

2
mg sin(θn) #»e x .

Le couple de rappel exercé par le fil de torsion compris
entre On−1 et On est −C (θn −θn−1) #»e x ; le fil de torsion
compris entre On et On+1 exerce le couple de rappel
−C (θn −θn+1) #»e x . La projection selon #»e x du théorème
du moment cinétique s’écrit alors :

mL2

3

d2θn

dt 2 =C [θn+1 −2θn +θn−1]− mg L

2
sinθn

−α
dθn

dt
.

Dans le cas des oscillations de faible amplitude, on
peut linéariser sinθn ≈ θn et l’équation du mouvement
devient :

mL2

3

d2θn

dt 2 =C [θn+1 −2θn +θn−1]− mg L

2
θn −α

dθn

dt

2. On peut alors remplacer θn−1 et θn+1 dans l’équa-
tion précédente par leur développement de Taylor au
voisinage de x = nd :

θn+1(t ) = θ(x +d , t ) = θ(x, t )+d
∂θ

∂x
+ d 2

2

∂2θ

∂x2

= θn(t )+d
∂θ

∂x
+ d 2

2

∂2θ

∂x2

et :

θn−1(t ) = θ(x −d , t ) = θ(x, t )−d
∂θ

∂x
+ d 2

2

∂2θ

∂x2

= θn(t )−d
∂θ

∂x
+ d 2

2

∂2θ

∂x2 .

On a alors θn+1 − 2θn +θn−1 = d 2 ∂
2θ

∂x2 et l’équation de

récurrence s’écrit :

mL2

3

∂2θ

∂t 2 =C d 2 ∂
2θ

∂x2 − mg L

2
θ(x, t )−α

∂θ

∂t
. (3)

Nous obtenons une équation d’onde, qui n’est pas
l’équation de d’Alembert.

3. Écrivons que l’onde

θ(x, t ) = θ0 ei(ωt−kx)

est solution de l’équation d’onde précédente. Après
simplification par exp

(
i(ωt −kx)

)
, on obtient

−ω2 mL2

3
A =

[
−k2C d 2 − mg L

2
+ iωα

]
θ0 .

L’onde cherchée est solution si θ0 6= 0, soit si :

k2 = mL2

3C d 2 ω
2 − mg L

2C d 2 − i
ωα

C d 2 . (4)

Cette relation entre k et ω est appelée relation de dis-
persion.

4.a) Si α= 0, la relation de dispersion (4) devient :

k2 = mL2

3C d 2 ω
2 − mg L

2C d 2 = mL2

3C d 2

[
ω2 − 3g

2L

]
.

Elle est de la forme

k2 = ω2 −ω2
c

c2

avec

ωc =
√

3g

2L
et c =

√
3C d 2

mL2 .

4.b) Si ω>ωc , on a k2 > 0. Le nombre d’onde est réel :

k ′(ω) =
√

ω2 −ω2
c

c
=

√
mL2

3C d 2

[
ω2 − 3g

2L

]
.

Il y a propagation. La vitesse de phase vaut

vφ = ω

k ′ =
c√

1− ω2
c

ω2

=
√√√√ 3C d 2

mL2 − 3mg L
2ω2

.

La vitesse de phase dépend de la pulsation : la propa-
gation est dispersive. Comme k ′′ = 0, il n’y a pas ab-
sorption.
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TD ondes no 5 Dispersion & absorption— solution

Si ω<ωc , on a k2 < 0. Le nombre d’onde est imaginaire
pur :

k = ik ′′ =±i

√
ω2

c −ω2

c
,

soit

k ′′ =±
√

mL2

3C d 2

√
3g

2L
−ω2 .

Il y a donc absorption. Comme k ′ = 0, il n’y a pas pro-
pagation.

5. Si ω est élevé, on peut négliger le terme constant de-
vant le terme en ω2 de la partie réelle de k2 dans la re-
lation (4). Il faut donc

mL2

3C d 2 ω
2 À mg L

2C d2

soit

ωÀ
√

3g

2L
.

Cela revient à

ωÀ
√

g

L
.

La pulsation de l’onde doit être grande devant la pulsa-
tion propre de chaque pendule pesant.

5.a)

k2 = mL2

3C d 2 ω
2 − iα

C d 2 ω= mL2ω2

3C d 2

[
1− i

3α

mL2ω

]
.

Le terme sans dimension
3α

mL2ω
peut être considéré

comme un infiniment petit quand ω est grand, d’où la
linéarisation :

k =
√

mL2ω2

3C d 2

[
1− i

3α

mL2ω

] 1
2

≈
√

mL2ω2

3C d 2

[
1− i

3α

2mL2ω

]
.

La relation de dispersion s’écrit alors :

k(ω) =
√

mL2

3C d 2 ω− iα

√
3

4mL2C d 2 = k ′(ω)+ ik ′′(ω)

avec :

k ′(ω) =
√

mL2

3C d 2 ω et k ′′(ω) =−α
√

3

4mL2C d 2 .

5.b) Comme k ′ 6= 0, il y a propagation. La vitesse de
phase vaut

vφ = ω

k ′ =
√

3C d 2

mL2 .

Elle est indépendante de ω : la propagation n’est pas
dispersive.

5.c) On a k ′′(ω) < 0 (avec k ′(ω) > 0) : il y a absorption.
On remarque que l’absorption est d’autant plus impor-
tante que le coefficient α caractéristique du couple de
frottement est grand, ce qui était prévisible.

5.d) Si α= 0, on a k ′′ = 0 : on a un phénomène de pro-
pagation non dispersif, sans absorption. La relation de
dispersion s’écrit alors

k2 = mL2

3C d 2 ω
2 .

Considérer ω grand revient à négliger le terme dû à la
pesanteur. L’équation d’onde est alors donnée par

mL2

3

∂2θ

∂t 2 =C d 2 ∂
2θ

∂x2 .

On retrouve l’équation de d’Alembert, qui décrit bien
un phénomène non dispersif, sans absorption.

6—  Tuyau d’orgue

Commentaire préliminaire : l’onde sonore obéit à
l’équation de d’Alembert. Nous cherchons ici une so-
lution sous forme d’onde stationnaire. Le milieu étant
borné, seuls des modes propres peuvent exister.

1. On écrit que p1(x, y, z, t ) vérifie l’équation de
d’Alembert

∂2p1

∂x2 + ∂2p1

∂y2 + ∂2p1

∂z2 − 1

c2

∂2p1

∂t 2 = 0

soit

−k2
x −k2

y −k2
z +

ω2

c2 = 0

On a donc k2
x +k2

y +k2
z =

ω2

c2 .

2. ä On ne peut pas utiliser la relation p1 =µ0cv1 fai-
sant intervenir l’impédance acoustique Za = µ0c,
car cette dernière n’est valable que pour une onde
progressive ; nous avons ici une onde stationnaire.

L’équation d’Euler linéarisée s’écrit

µ0
∂#»v 1

∂t
=−#      »

grad p1 .

La projection sur les trois axes donne

µ0
∂v1x

∂t
=−kx pm sin(kx x)cos(ky y)cos(kz z)cos(ωt )

µ0
∂v1y

∂t
=−ky pm cos(kx x)sin(ky y)cos(kz z)cos(ωt )

µ0
∂v1z

∂t
=−kz pm cos(kx x)cos(ky y)sin(kz z)cos(ωt )

En intégrant par rapport au temps, on en déduit
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TD ondes no 5 Dispersion & absorption— solution

v1x = pmkx

µ0ω
sin(kx x)cos(ky y)cos(kz z)sin(ωt )

v1y =
pmky

µ0ω
cos(kx x)sin(ky y)cos(kz z)sin(ωt )

v1z = pmkz

µ0ω
cos(kx x)cos(ky y)sin(kz z)sin(ωt )

La vitesse normale aux parois étant nulle sur chaque
paroi, les conditions aux limites s’écrivent

v1x = 0 en x = 0 et x = L

v1y = 0 en y = 0 et y = D

v1z = 0 en z = 0 et z = D

Les conditions en x = 0, y = 0 et z = 0 sont vérifiées.

La condition en x = L s’écrit sin(kx L) = 0, soit kx L =
n1π,

la condition en y = D s’écrit sin(ky D) = 0, soit ky D =
n2π,

la condition en z = D s’écrit sin(kz D) = 0, soit kz D =
n2π, où n1 et n2 et n3 sont trois entiers.

On a donc

kx = n1π

L
; ky = n2π

D
; kz = n3π

D
.

3. La relation de dispersion s’écrit donc, avec ω= 2π f :

n2
1π

2

L2 + n2
2π

2

D2 + n2
3π

2

D2 = 4π2 f 2

c2

d’où

fn1n2n3 =
√

n2
1

c2

4L2 +n2
2

c2

4D2 +n2
3

c2

4D2

4. Les modes propres sont caractérisés par les triplets
(n1,n2,n3). Comme D À L, la plus basse fréquence,
qui correspond au mode fondamental, est donnée par
n1 = 1 et n2 = n3 = 0, soit

f100 = c

2L

Les modes correspondant à n2 = n3 = 0 correspondent
aux harmoniques de fréquence multiple de celle du
fondamental :

fn100 = n1
c

2L
= n1 f100

donnant un son harmonieux.

La fréquence minimale non multiple du fondamental
f100 correspond à n1 = 0, n2 = 1 et n3 = 0 (ou n2 = 0 et
n3 = 1), soit

fm = f010 = c

2D

On calcule fm = 17 kHz . Cette valeur est à la limite

supérieure de la bande passante de l’oreille ; les sons
non harmonieux sont alors inaudibles.

7—  Dispersion dans une chaîne infinie
d’atomes [***]

1. On applique le PFD à la masse de rang n :

m
d2xn

dt 2 =−K (xn −xn−1)−K (xn −xn+1) .

2. Écrivons que xn = A ei(ωt−k Xn ) vérifie l’équation pré-
cédente :

−mω2 =−K
(
1−eika

)
−K

(
1−e−ika

)
soit

mω2 = K
(
2−eika −e−ika

)
= K (2−2coska)

= 2K (1−coska) = 4K sin2
(

ka

2

)
soit

ω= 2ω0

∣∣∣∣sin

(
ka

2

)∣∣∣∣ avec ω0 =
√

K

m
.

3. Si ω> 2ω0, aucune valeur réelle de k satisfait la rela-
tion de dispersion : il n’y a pas de propagation possible.

La chaîne se comporte donc comme un filtre passe-
bas de pulsation de coupure ωc = 2ω0 .

Compte tenu de la périodicité de la relation de disper-
sion, on peut la représenter pour −π/a < k <π/a :

2ω0

0 π
a−π

a
K

ω

4. Le cas ω¿ ωc correspond à
ka

2
¿ 1; la relation de

dispersion peut se linéariser selon

ω= 2ω0
ka

2

soit

ω= aω0k .

On a alors

vφ = vg = aω0 = a

√
K

m
.

Le phénomène est alors non dispersif.
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8—  Propagation d’un signal électrique
dans un axone [**]

1. La loi des mailles s’écrit

u(x +dx, t )+ ra dxi (x, t )−u(x, t ) = 0

soit
∂u

∂x
=−rai (x, t ) .

La loi des nœuds s’écrit

i (x, t ) = i (x +dx, t )+ gm dxu(x, t )+ cm dx
∂u

∂t

soit

− ∂i

∂x
= gmu(x, t )+ cm

∂u

∂t
.

2. En éliminant l’intensité, on obtient

∂2u(x, t )

∂x2 = gmrau(x, t )+ racm
∂u(x, t )

∂t
.

On a en ordre de grandeur pour une onde harmonique
∂u

∂t
≈ωu.

Si racmωÀ gmra, soit si

ωÀωc = gm

cm

on peut écrire

∂2u

∂x2 = racm
∂u

∂t
.

3. On retrouve l’équation de la diffusion. Elle décrit
aussi la diffusion de particules, la diffusion thermique.

4. En écrivant que u(x, t ) = u0 ej(ωt−kx) est solution de
l’équation précédente on obtient

−k2 = jωracm

soit la relation de dispersion

k2 =−jωracm .

On peut écrire
k =ωracm e−jπ/2

d’où

k =p
ωracm e−jπ/4 =p

ωracm
1− jp

2
.

On a donc k = k ′(ω)+ jk ′′(ω) avec

k ′(ω) =
√

ωracm

2
et k ′′(ω) =−

√
ωracm

2
.

On a k ′′ < 0 : le milieu est absorbant.

La vitesse de phase vaut

vφ = ω

k ′ =ω

√
2

ωracm

soit

vφ =
√

2ω

racm
.

Elle dépend de ω : le milieu est dispersif.

On a

k ′2 = racmω

2

d’où

2k ′ dk ′ = racm

2
dω .

On en déduit

vg = dω

dk ′ =
4k ′

racm
= 4

racm

√
ωracm

2

soit

vg =
√

8ω

racm
.

On a vg = 2vφ .

5. L’onde s’atténue sur la distance caractéristique δ =
−1/k ′′ soit

δ=
√

2

ωracm
.

Cette distance est d’autant plus petite que la fréquence
est élevée : on retrouve l’effet de peau.
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