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Dispersion & absorption — solution

1 — Pavillon acoustique

1. Enl’absence d’onde, le volume de la tranche consi-
dérée est
0Vp=S(x)dx.

En présence d’onde, la tranche est comprise entre les
plans d’abscisses

x+ulx,t) et x+dx+u(x+dx,1).

La longueur de la tranche est donc

d¢=dx+u(x+dx,t)—u(x,1t) :dx(1+g_z

La position de la tranche étant a I'abscisse x + u(x, t), la
section a considérer au premier ordre est

ds
Sx+uw)=Sx)+u(x, t)—.
dx
Le volume de la tranche perturbée est donc

oV=Skx+udl= (S(x) + u(x, t)%) (1 + a_u) dx.

0x

La variation de volume vaut donc

ds ou o
dEV) =6V -6V, = (u— +s2 u—uS(x)) dx
dx 0x 0x

La perturbation u(x,) étant un infiniment petit, le

ou
terme uaS (x) est d’ordre deux. Au premier ordre, la

variation de volume s’écrit

doV) = (uﬁ + Sa_u) dx = d(Su)
dx

dx ~Ox dx.

La variation relative de volume vaut donc

doév) 1 d(Sw
§Vy  S(x),dx dx

dx

soit

d(éVv) _ 10(Su)
5V0 _S 0x ’

On considere une tranche de fluide située, au repos,
entre les plans d’abscisses x et x + dx. Déterminer sa
variation relative de volume lorsqu’elle est perturbée.

2. L'équation de la dynamique linéarisée s’écrit

ov op
HOE——a
soit
0 ov
dp__ oul

Le coefficient de compressibilité isentropique est dé-
fini par

1(0V) &V 1
wlark= v
ol 6V estla variation de volume entrainée par une va-
riation 6 P de pression.

xs=

La variation de pression est ici la surpression acous-
tique p(x, f). On retrouve la variation relative de vo-
lume

8V _10(Sw

V S 0x
On adonc

__la(Su)l

s = S 0x p
d’ol

_ 1 0w

"~ xsS ox

3. Lavitesse est reliée au déplacement selon

b(xB) = ou(x, )
S T

D’apres la question précédente, on a

op _Lﬁ(a(S“))__Li(SG_“)
ot ysSor\ ox ¥sSox\" ot
_ 1 0a@sv)
¥sS O0x
De plus
Fu_ 1010 (1as)
0t g 0tdx  poxs0x\S ox
soit
0’v 26(16(81/)) 1
—=c"—|= avec |(c= .
alte ox\S ox VHoXs
On a de plus
az_P__Li( @)__LE(S@)
otz xsSox\ ar2) ysSox\ ot
_Li(_ia_l?)
" xsSox\ o ox
soit
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4. L'équation vérifiée par v(x, ) dévient

v 26(6v+1d8) 26(6v+2 )
—=c"—|—+=——v|=c"—|—+2mv
ot? 0x\0x Sdx 0x \0x
soit
62v_6262v+2mczav
otz 0x2 dx

L'équation vérifiée par p(x, t) dévient

*p c*dSap Czazp

0r> S dx ox 0x2
soit

azp 26217 20p

— L2t iome?ZE

o2 = ox2 T 5

On obtient la méme équation.

5. Ecrivons que v = Vpel@ %9 vyérifie I'équation

d’onde :
2

—w? = —k*c® -2mdc?jk
soit
2
; w

k? +2jmk — — =0|.

- - c
6. L'équation précédente est une équation du second
degré dont le discriminant réduit est

A , 0 w'-w?
STt T2

avec w¢=mec.

Siw < we, onaA’ <0 et la solution de la relation de
dispersion est
w? — w?
c2

k=—jmzj

Le nombre d’onde est imaginaire pur : k' = 0; il n'y a
donc pas de propagation (on obtient une onde évanes-
cente).

Siw>w;onaA >0et

2 2
. w?—w
k=-jmx+ .

c2

Le nombre d’onde posséde une partie réelle non nulle :
il y a propagation.

Le pavillon se comporte donc comme un filtre passe-
haut : il y a propagation si w < w.

On calcule . =343 rad-s~!.

7. En choisissant le signe de facon a avoir une onde
se propageant dans le sens des x croissants, on a k =
k' +jk", avec
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On a alors

w? — w?
X
2
w? — w?
wt— X
c

Il s'agit d'une onde se propageant selon les x crois-
sants, dont 'amplitude s’atténue sur une distance ca-
ractéristique 6 = —1/m.

v(x, 1) =Voe ™ exp (j ((ut -

soit pour I'onde réelle

v(x, 1) = Voe ™ cos

8. Sereporter au cours.

2 — Cornet acoustique

1. On considere la tranche comprise entre les abs-
cisses x et x+dx:

X x+dx

La masse de ce systéme est
om(x, 1) = pu(x, )S(x)dx.

Pendant d¢, elle varie de
_ _0m
dém)=o6m(x,t+dt)—6m(x,t) = ES(x) dxdzt.
La masse recue par ce systeme pendant d¢ est

8 Mrequ = p(x, vy (x, HS(x) de
—p(x+dx, vy (x+dx, £)S(x+dx) dt
0 (plx, Hn (x, HS(x)

= dxdt.
0x .

En se limitant au premier ordre, comme pu(x, t) = o +
p1(x, 1), ona

61/1 ds
62mre(;u = —[JOES(X) dxdt—po Ula dxdt
0
= —poa—l:S(x) dxdt+ ugov; S(x)dxdt

avec S(x) = Spe 7%,
Le bilan d(6m) = 62 Myecu, conduit alors a
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L'équation d’Euler linéarisée s’écrit
ov; 0y
Hoar = ox
L'équation linéarisée traduisant '’adiabaticité de I'évo-
lution s’écrit
H1=HoXspPi-

2. La conservation de la matiére s’écrit alors

2l =— on + oo v
HoXs o Ho ox HoO V1.
Dérivons par rapport au temps :
62]91 _ 62121 + Gavl
HoXs a2 ,antax Ho ET

D’apres I’équation d’Euler, on a donc

’p1_0p1_ op
otz 0x? ox

HoXs

Avec c = 1/,/figX s, on en déduit’équation d’onde véri-
fiée par la surpression :

Fp1 _ Czazpl Y

6}’)1
2
o1 o2 C x|

0x

» Ce n'est pas 'équation de d’Alembert; cependant,
dans le cas d'un tuyau de section constante, ca-
ractérisé par o = 0, on retrouve bien I'équation de
d’Alembert, le phénomene étant unidimensionnel.

En cherchant une solution proportionnelle a expli(wt—
kx)], on obtient

2

—w? = —k*c* +ikoc?,

d’ou la relation de dispersion :
k*—iock-w?/c*=0 .

Le discriminant de la relation de dispersion s’écrit

oc
Il apparait une pulsation caractéristique w¢ = >

1ercas: w <w..OnaA<0,et

ioc+iv-A

k=
- 2

Le module d’onde est imaginaire pur : il n'y a pas de
propagation possible (pas de partie réelle pour k); on
observe une onde évanescente.
2¢cas:w>wce.OnaA>0,et

ic+VA io wz_w%
k=——=—4+
- 2 2 c
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La surpression s’écrit alors

N
w—wg

_ i(wt+ -
Py (x, 1) = Py €

X g=i(Fx)
On conserve la solution correspondant a une progres-

sion dans le sens des x croissants, soit

. \/“'2"‘)% g
— i(wt— z X) X
B1(x’ ) Bme ex",
On adonc
o X
p1(x, 1) = proez*cos w(t——+(p)
v
@

. . o .
La partie imaginaire k" = 5 > 0 se traduit pas une am-

plification de I'amplitude de 'onde acoustique (c’est
le réle du cornet!). Cette amplification n’est pas due au
milieu de propagation, mais a la géométrie du systéme.

C

I'onde a la vitesse de phase v, =

La partie réelle k' = traduit la propagation de

c
w?
V'
En conclusion :

— le cornet permet de transmettre les ondes de pulsa-
tion w > w¢ = %; il se comporte donc comme un
filtre passe-haut;

— lorsque les ondes sont transmises, le cornet réalise
une amplification, d’autant plus important que o
est grand (c’est-a-dire que la section du cornet di-
minue rapidement), mais la fréquence de coupure
fc est alors plus élevée;

— la propagation, quand elle se produit, est disper-
sive : c’est un amplificateur de piétre qualité mu-
sicale.

3 — Equation des télégraphistes

1. Loi des mailles:
0i(x, 1)

ulx,)=ulx+dx,t)+ri(x,)dx+ A dx,
soit 5 . it t
- u(;);, ):ri(x,t)+/1 l(g’ ).

Loi des noeuds :

ou(x+dx, )
0

i(x,t)=gu(x+dx,)dx+y dx+i(x+dx, 1)

soit
0i(x, 1) ou(x, )
" ox =gu(x, ) +y ar
On adonc
0’ u i 0%i ou 0%
o2~ Tox Moxar T TEMENFTY G A5 e
=rgu(x, 1)+ r)/a—u + Aga—u + /lyaz—u
' ot ot or?
d’ou
%u 0%u ou
32 y/lﬁ +(ry+ Ag)a +rgu(x, 1) .

3/9



TD ondesn° 5

Dispersion & absorption — solution

2. Onretrouve I'équation de d’Alembert dans le casoul et

— r =0, larésistance des conducteurs est négligeable;
— g =0, larésistance de fuite de I'isolant est infinie.

On a alors
u _ 0*u 10°u woe loe 1
0x? 012 % or? Ay

3. Léquation d’'onde conduit a
—k* = —0*yA+jory+Ag) =g

soit avec I'expression de ¢

2 .
k :g—Jw(r}/+/1g)—rg.

On peut écrire

wZ

2—_
k_cz

iy (ry+21Ag)c? ~ rgc?

1
w w?

_wz[l ry+ g rg

ra wly Ay

—_—

que I'on peut mettre sous la forme

kz_w_
__Cz

i)t
Ao yo Aw yw

Lexpression proposée s’écrivant

2
kZ:(Z—Z [1-j(a+b) - ab]

on identifie facilement

4. La condition de Heaviside s’écrit
r_§
Ay’

etlarelation de dispersion devient

wZ 2

T r
1-2j

K= — .
Aw  A2w?

=T
Ennotant k = k; +jk;, on a
K = k2 = Kk + 2Kk -

Par identification avec la relation de dispersion :

2
2 42 W
kr—kiZ?l

1‘2

A2w?

2y

w
et 2kiki=-2——.
S ¢z lw

On identifie facilement

w
kr=—
c
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w r r r
K== e~ "~ 2V
soit
ki:—r %

)

La vitesse de phase vaut v, = = ¢ : la propagation
T

n’est pas dispersive.

On a k;j < 0:il y a absorption de 'onde au cours de sa
propagation. Londe peut s’écrire

ki (wt—k;yx) =u, e—x/6 Cos](wt—er) .

u(x, 1) = uye"* cos

L'absorption se fait sur une distance caractéristique 6 =

1 1 /A
——,s0it |6 =——1/—|.

i ryy

4 — Corde vibrante verticale

1. Considérons I'’élément de corde compris en 1'abs-
cisse z et I'extrémité z = L, de masse m = A(L—z). 1l
est sourmis :

— asonpoids mg = A(L-2)ge,;
— alatension ? =-T(z)€;au point de jonction avec
la partie supérieure de la corde.

L'élément de corde étant au repos, la condition d’équi-
libre s’écrit, en projection sur €,

ML-2)g—T(2) =0, (1

d’ol
T(z)=A(L-2)g .

2. Onnote a(z, t) 'angle que fait la tangente a la corde
en z avec la verticale; on considere des oscillations
de faible amplitude : || < 1. La projection selon €,
du principe de la dynamique appliqué a I'élément de
corde précédent conduit a

0=Agdz+T(z+dz,t)cosalz+dz, 1) - T(z)cosal(z, 1)
=~Agdz+T(z+dz,1)-T(z,1)

On retrouve I'équation(1); au premier ordre, la ten-
sion reste indépendante du temps et est donnée par
T(R)=AML-2)g.
La projection selon €, du principe de la dynamique
s’écrit :

2

)Ldza—tf = T(z+d2)sina(z+dz, 1) - T(2)sinalz, 1)

~T(z+dz)a(z+dz, t) - T(2)a(z, 1)
0(T(2)a(z, 1)
=————— "dz.
0z
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0x
Comme a(z,t) =tana(z, t) = 0_' ona
z

&—i AML-2) ox =-A a—x+/1 (L—z)az—x
92~ oz 89z) " "84z 18T 52
L'équation d’onde s’écrit donc
Pr__ox . o
o2~ 85z 8T Y52

3. En tenant compte du frottement visqueux, le prin-
cipe de la dynamique s’écrit, en projection sur € :
8°x . :
Adzﬁ =T(z+dz)sina(z+dz, t)— T(z)sinal(z, 1)
0x

-a—dz.
o297

Dans le cas d’oscillations de faible amplitude, on ob-
tient :

0%x 0%x
ap ~8U-A55 -

4. Avec la solution proposée, I’équation d’onde s’écrit

—wzgo =—k’g(L- z)x, +ikgx,— iw%go

Elle admet une solution xp #Z0 si:

w? —k’g(L—2z) +i

a
kg—w—] =0.
u

Le complexe w?— kzg(L —2)+1i

kg—wg] est nul si et

seulement si sa partie imaginaire et sa partie réelle sont
nulles.

On a donc d'une part kg — wg =0, d’'ot1 la valeur du

coefficient de frottement ap = gu—.
w

D’autre part, on a w? — k?g(L—z) =0, d’o1
w=kyglL-2z)=ky/gL

avec z< L.Onadonc ag = gu , soit

k
kv/gL
g = ﬂ\/% .
5. Sia=ap,onaw=k\/g(L—2z2)=ky\/gL, etlavitesse
de phase v, = % est donnée par | vy, = /gL .

. dw )
La vitesse de groupe vg = a est alors donnée par

vg=+/8L .
On a v, = vg indépendant de la pulsation w :
petitfondgrisil n'y a pas dispersion.
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6. Avec la solution proposée, I'équation d’onde s’écrit
2 . 2 s 2
—w a=ikga—-g(L-2z)k"a=ikga—gLk"a

en négligeant les frottements et si z < L. Le nombre
d’onde k doit donc vérifier I’équation

gLk® —igk—w?=0.
En posant k = k; +iky, on adonc
gLk} — k5 + 2iky k) —ig(ky +ikp) —w? =0
soit:

gLk} —k3) + gko — w* +ighky Lk, —1)=0.  (2)

La partie imaginaire de I'équation (2) doit étre nulle,
1
dou kp=— .
2L
La solution k; = 0 est a rejeter car elle ne correspond
pas a une onde se propageant.

L'élongation s’écrit alors

X(z, 1) = xyexp (i(wt — k1 z —ik2 2))
= xyexp(kzz) exp (i(wt - k1 2))

avec kp > 0. Lamplitude de 'onde augmente comme
exp(kpz) pendant la propagation.

A la question 4, nous avons trouvé qu'une onde pro-
gressive (non amortie) pouvait exister avec des frotte-
ments, sile coefficient de frottement a la valeur ay.

Il est donc cohérent de trouver une augmentation de
I'amplitude en’absence de frottement; ce terme d’am-
plification s’oppose exactement au terme de frotte-
ment lorsque a = ay.

7. Lapartie imaginaire de I'équation (2) étant nulle, on
obtient la relation de dispersion :

gL(kS —k5) + ghy —0* =0

w2

1 1
aveck2=—,soitk%+———=0.
2L 412 gL

g w?
En posant w% = i ona 4Lk% tl-—= 0,dott:
w
0

1 |w?
ki=—1/—-1.
2L w(z)

Pour que k; soit réel, il faut donc | w > wy |: la corde se
comporte comme un filtre passe-haut.

Représentons le nombre d’onde k en fonction de la
pulsation o :

5/9
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et:
00 d? 0%
k 0,-1()=0(x—-d,0)=0(x,0)—-d 6x+ > 3.2
66 d2 4%0
=0,(1) -
6x 2 0x2
2620 .. .
On aalors 0,41 —20,,+0,_1 =d F) et I’équation de
X
récurrence s’écrit :
mlL? 6°0 8%0 mgL 69
0 wo w — — =Cd*— - —=0(x,¢ 3
3 0r? 0x2 5= 6t B

La courbe k(w) est une branche d’hyperbole, admet-
tant pour asymptote la droite k = @

N

) w?— wg w? - wg " ]
8. Onaky = = . En différenciant cette
4L2w3

2wdw o dw

relation, on obtient 2kydk; = ———, soit — —
M= Ter ki dk;

=gL.

Onadonc vyvg=gL .

5 — Chaine infinie de pendules couplés

1. Appliquons le théoréme du moment cinétique en
O;,, projeté sur ’axe Ox, au pendule (n). Ce pendule est
soumis a son poids mg, qui s’applique en son centre
de gravité G,, de moment

—_—> — L . —
0,GhyAmg = —Emgsm(()n) €x.

Le couple de rappel exercé par le fil de torsion compris
entre O,,_1 et O,, est —C(0,, — 0,,_1) € ; le fil de torsion
compris entre O, et O, exerce le couple de rappel
—~C(0,, —0p41) €. La projection selon € du théoréme
du moment cinétique s’écrit alors :

mL? d%6 mgL .
Tt = ClO1 =205+ 0,1] — T sind),
_ 40,
dr

Dans le cas des oscillations de faible amplitude, on
peut linéariser sinf, = 8, et '’équation du mouvement
devient :

ml? d*0, mgL

do
3 F :C[8n+1_29n+gn—1]__0n_ =

Car

2. On peut alors remplacer 8, et 8,.; dans I'équa-
tion précédente par leur développement de Taylor au
voisinage de x = nd :

00 d?o%0

Op1(H)=0(x+d,t)=0(x, t)+da+7@
— 0,00+ 66 d? 00
B 6x 2 9x2
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Nous obtenons une équation d’onde, qui n'est pas
I’équation de d’Alembert.

3. Ecrivons que 'onde

_ i(wt—kx)
O(x,1) = Qoe =

est solution de I'équation d’'onde précédente. Apres
simplification par exp (i(w? — kx)), on obtient
—k*Cd® - +tiwa|b,.

W2 mIL? A mglL
3 = 2

L'onde cherchée est solution si Qo #0, soitsi:

mlL? mgL . wa
k* = w? - —i . 4
- 3Cd? 2Cd* Cd? @
Cette relation entre k et w est appelée relation de dis-
persion.

4.a) Sia=0,larelation de dispersion (4) devient :

,  mlL? L2 MeL _ mL* [ , 3g
= 3Cd? 2Cd?>  3Cd? 2L
Elle est de la forme
2 _ w? — ‘U%
LA Cz

avec

= [38 _|3ca?
““Vor "\ omi2

4.b) Siw>w; ona @2 > (0. Le nombre d’onde est réel :

\/7 \/mLZ

3Cd?

k/(w) wl -2

Ily a propagation. La vitesse de phase vaut

w c 3Cd?
Vy=—= = .
¢ k/ w% mL2 _ 3mgL

— m 2w2

La vitesse de phase dépend de la pulsation : la propa-
gation est dispersive. Comme k" = 0, il n'y a pas ab-
sorption.

6/9
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Siw < w,, ona k? < 0.Le nombre d’onde est imaginaire
pur:

soit

mL? [3g
K=y oy [ 28— 2.
3caz V2L ¢

Il y a donc absorption. Comme k' = 0, il n’y a pas pro-
pagation.

5. Siw est élevé, on peut négliger le terme constant de-
vant le terme en w? de la partie réelle de k? dans la re-

lation (4). Il faut donc
ml?* , mgL

>
3ca2” 7 2cdz

soit
38

2L°

w>>\/g.
L

La pulsation de I'onde doit étre grande devant la pulsa-
tion propre de chaque pendule pesant.

w >

Cela revient a

5.a)

3a

2 .
, mL® , i« i
ml?w

£ 73ca2?

mL2w? [1
— w=
Cd? 3Cd?

Le terme sans dimension

peut étre considéré
mL?w

comme un infiniment petit quand w est grand, d’ot la
linéarisation :

1

mL2w? 2

3Cd?

i
—i
mL2w
mL2w?
3Cd?

1-i
[ 2ml2w

La relation de dispersion s’écrit alors :

| mIL? ] 3 .
k((,l)) = Ww —1a m = k'(w) arF 1k"(w)
avec :
mlL? 3
t K0 = —ay ) —a—s .
sc?| o K@=y s

5.b) Comme k' # 0, il y a propagation. La vitesse de

phase vaut
_w _ [3Cd?
TN e

Elle est indépendante de w : la propagation n’est pas
dispersive.

K'(w) =
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5.c) On a k" (w) <0 (avec k'(w) > 0) : il y a absorption.
On remarque que I'absorption est d’autant plus impor-
tante que le coefficient a caractéristique du couple de
frottement est grand, ce qui était prévisible.

5.d) Sia=0,onak” =0:0naunphénomene de pro-
pagation non dispersif, sans absorption. La relation de
dispersion s’écrit alors

o mLl*

=——0".
= 3Cd?
Considérer w grand revient a négliger le terme di a la
pesanteur. Léquation d’onde est alors donnée par
mL* %0
3 012

2
2,070
0x?
On retrouve I"équation de d’Alembert, qui décrit bien
un phénomene non dispersif, sans absorption.

6 — Tuyau d’'orgue

Commentaire préliminaire : l'onde sonore obéit a
l'équation de d’Alembert. Nous cherchons ici une so-
lution sous forme d’onde stationnaire. Le milieu étant
borné, seuls des modes propres peuvent exister.

1. On écrit que pi(x,y,2,t) vérifie I'équation de
d’Alembert

o°p1 +62P1 Fpr 10°m o
0x2  0y2 08z % o2

soit
2

w
—kﬁ—ki—k§+?=o

2

Onadonc | kZ+ k5 + kS = (Z—z .

2. » Onne peut pas utiliser la relation p; = yocv; fai-
sant intervenir 'impédance acoustique Z, = yyc,
car cette derniére n'est valable que pour une onde
progressive; nous avons ici une onde stationnaire.

Léquation d’Euler linéarisée s’écrit
07 ——
—— =—gradp;.
Ho—>7 gradp

La projection sur les trois axes donne

0

Ho g;x = —kxpmsin(k,x) cos(kyy) cos(k;z) cos(wt)
al/ly ‘

Ho—at = —kypm cos(kyx)sin(kyy) cos(k.z) cos(wt)
lez _ .

Ho~5¢ = —kzpm cos(kyx) cos(kyy) sin(k; z) cos(w?)

En intégrant par rapport au temps, on en déduit
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k
Vix = P sin(kyxx) cos(kyy) cos(k,z)sin(wt)
How
vy = i cos(kyx) sin(ky y) cos(k;z) sin(wt)
How
_ Pmkz . .
Vg = cos(kyx) cos(kyy) sin(k;z) sin(wt)

How

La vitesse normale aux parois étant nulle sur chaque
paroi, les conditions aux limites s’écrivent

V1x=0 enx=0etx=1L
v1y=0 eny=0ety=D
v1;,=0 enz=0etz=D

Les conditions en x =0, y = 0 et z = 0 sont vérifiées.

La condition en x = L s’écrit sin(kyxL) = 0, soit kL =
mr,

la condition en y = D s’écrit sin(ky D) = 0, soit k,D =
nom,

la condition en z = D s’écrit sin(k,D) = 0, soit k,D =
Ny, ol n; et ny et ng sont trois entiers.

On adonc

nmm nom nsmw
kx=—1| |ky=——1| |kz=—

L "D D
3. Larelation de dispersion s’écrit donc, avec w =27 f :

2.2 2.2
mn nsm

L? D?

n§n2 47I2f2
=+ =
D? c?

G2 c? c?
fn1n2n3 = \/l’l%m + ngm ar ngﬂ
4. Les modes propres sont caractérisés par les triplets
(ny,n2,n3). Comme D > L, la plus basse fréquence,
qui correspond au mode fondamental, est donnée par
n; =1etny = n3z =0, soit

c
fioo = 5L

Les modes correspondant a np = n3 = 0 correspondent
aux harmoniques de fréquence multiple de celle du
fondamental :

S0 = n1£ = m fio0
donnant un son harmonieux.
La fréquence minimale non multiple du fondamental
fioo correspond an; =0, np=1etng =0 (ouny =0et
n3 = 1), soit

Cc
fm—fOIO— E

On calcule | fi, =17 kHz | . Cette valeur est a la limite

supérieure de la bande passante de l'oreille; les sons
non harmonieux sont alors inaudibles.

7 — Dispersion dans une chaine infinie
d’atomes [***]

1. On applique le PFD ala masse derang n :

d?x,
= = —K(xp — xp-1) — K(xp — Xp+1) -
2. Ecrivonsque x,, = Ael@i=kX) yérifie 'équation pré-
cédente :
—mw? = —K(l - eik“) - K(l - e_ik“)
soit

mw’ =K (2 —elka_ e_ik“) =K(@2-2coska)

k
=2K(1 - coska) = 4K sin” (%)

sin| — avec woz\/— .
2 m

3. Siw > 2wg, aucune valeur réelle de k satisfait la rela-
tion de dispersion : il n'y a pas de propagation possible.

soit

w = 2wy

La chaine se comporte donc comme un filtre passe-
bas de pulsation de coupure | wc = 2wy |.

Compte tenu de la périodicité de la relation de disper-
sion, on peut la représenter pour —n/a< k<m/a:

K

|
SYE

=)
e

. ka :
4. Le cas w < w, correspond a > « 1; la relation de

dispersion peut se linéariser selon

ka
w=2wyg—
2
soit
w = awpk .
On a alors
K
Vp=Usg=awy= a\| —
o= Vg -

Le phénomene est alors non dispersif.
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8 — Propagation d'un signal électrique
dans un axone [**]

1. Laloi des mailles s’écrit
u(x+dx, t)+radxi(x, t)—u(x,t)=0

soit

ou .
x =—rai(x, 1) .

La loi des nceuds s’écrit
. . ou
i(x,)=i(x+dx, 1)+ gmdxu(x,t)+ cm dxa

soit

—ﬁ— u(xt)+ca—u
ox _ SmiH DT mG, -

2. En éliminant 'intensité, on obtient

0%u(x, 1)

ou(x,t)
0x? ’

= gmlal(x,t) + raCm a1

On a en ordre de grandeur pour une onde harmonique

ou
— = WU.
ot
Si racm >> gmra, soit si
m
W > We = gm
Cm
on peut écrire
%u ou

— =TaCm—= .
ox2  TT™Mor

3. On retrouve 1'équation de la diffusion. Elle décrit
aussi la diffusion de particules, la diffusion thermique.

4. En écrivant que u(x, t) = u, el @I=kX) ogt solution de
I’équation précédente on obtient

- kz =jwracm
soit la relation de dispersion
k? = —joracn .

On peut écrire
k=wracme ) ™?

CPGE PSI 2025-2026

Lycée Jean Perrin

k=\/@racme "t = \/a)racmTZJ.

On a donc k = k' (w) +jk" (w) avec

K@) =/ 2200 et k() = - 2
2 2 |

On a k" <0:le milieu est absorbant.

La vitesse de phase vaut

w 2
Vp=—=w
K WraCm
soit
2w
Uy = .
? I'aCm

Elle dépend de w : le milieu est dispersif.

Ona
k/2 _ FaCm®W
2
d’ou1
TaC
2k’ dk' = 22 dow
2
On en déduit
do 4K 4
l}g = —, = =
dk TaCm FaCm wracm
soit
8w
Vg = .
8 T'aCm

Ona vg=2v, .
5. Londe s’atténue sur la distance caractéristique 6 =
—1/k" soit

2

WTaCm |

0=

Cette distance est d’autant plus petite que la fréquence
est élevée : on retrouve l'effet de peau.
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