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TD ondes no 6 Interface & ondes acoustiques— solution

1—  Transmission par une paroi

1. La nature a priori complexe du coefficient t traduit
l’introduction d’un déphasage dans la pression lors de
la traversée de la paroi.

On peut assimiler la paroi à une masse surfacique si
son épaisseur est négligeable devant la longueur carac-
téristique de la propagation de l’onde, c’est-à-dire sa

longueur d’onde : a ≪λ .

L’impédance acoustique du milieu pour une onde se
propageant dans le sens des x croissants étant Z0, les
champs de pression et de vitesse de l’onde incidente
sont donnés par :

p
i
(x, t ) = pi 0 exp

(
j(ωt −kx)

)
v i (x, t ) = pi 0

Z0
exp

(
j(ωt −kx)

)
.

Lors que cette onde rencontre la paroi, elle donne nais-
sance à une onde réfléchie p

r
(x, t ) et v r (x, t ) et à une

onde transmise p
t
(x, t ) et v t (x, t ).

En notant r le coefficient de réflexion, a priori com-
plexe, la surpression de l’onde réfléchie vérifie au ni-
veau de la paroi p

r
(0, t ) = r p(0, t ).

L’impédance acoustique du milieu pour une onde se
propageant dans le sens des x décroissants étant −Z0,

on a v r (x, t ) = −
pr (x, t )

Z0
; on en déduit les champs de

l’onde réfléchie :
p

r
(x, t ) = r pi 0 exp

(
j(ωt +kx)

)
v r (x, t ) =−r

pi 0

Z0
exp

(
j(ωt +kx)

)
.

L’impédance acoustique du milieu valant Z0 pour
l’onde transmise, qui se propage dans le sens des x
croissants, on en déduit :

p
t
(x, t ) = t pi 0 exp

(
j(ωt −kx)

)
v t (x, t ) = t

pi 0

Z0
exp

(
j(ωt −kx)

)
.

L’onde acoustique est donnée, en x < 0, par la superpo-
sition des ondes incidente et réfléchies, et en x > 0 par
l’onde transmise.

On en déduit le champ de pression acoustique.

Pour x < 0 :

p(x, t ) = pi 0 exp
(
j(ωt −kx)

)+ r pi 0 exp
(
j(ωt +kx)

)
.

Pour x > 0 :
t pi 0 exp

(
j(ωt −kx)

)
.

Champ des vitesses.

Pour x < 0 :

v(x, t ) = pi 0

Z0
exp

(
j(ωt −kx)

)− r
pi 0

Z0
exp

(
j(ωt +kx)

)
Pour x > 0 :

v(x, t ) = t
pi 0

Z0
exp

(
j(ωt −kx)

)
.

La vitesse normale (qui s’identifie à la vitesse du fluide,
l’onde étant longitudinale) du fluide au contact avec la
paroi est égale à la vitesse de la paroi ; cette condition,
qui s’écrit v(x = 0, t ) = v(x = a, t ) dans le cas général,
s’écrit comme une condition de continuité si l’on né-
glige l’épaisseur de la paroi :

v(x = 0−, t ) = v(x = 0+, t ) ∀t .

En utilisant l’expression du champ de vitesse, on en dé-
duit

pi 0

Z0
exp(jωt )− r

pi 0

Z0
exp(jωt ) = t

pi 0

Z0
exp(jωt ) ,

d’où

1− r = t .

Considérons une surface S de la paroi. Elle est sou-
mise à la pression p(x = 0−, t ) à gauche, et à la pression
p(x = 0+, t ) à droite ; le principe fondamental de la dy-
namique appliqué à ce système de masse σS s’écrit

σS
∂v(0, t )

∂t
= Sp(0−, t )−Sp(0+, t ) ,

soit

σjω
t

Z0
pi 0 exp(jωt ) = pi 0 exp(jωt )+ r pi 0 exp(jωt )

− t pi 0 exp(jωt ) ,

d’où :

j
σω

Z0
t = 1+ r − t .

De l’équation précédente, et avec 1− r = t , on déduit

2 =
(
2+ j

σω

Z0

)
t ,

d’où l’expression du coefficient de transmission en sur-
pression :

t = 1

1+ j σω2Z0

.
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2. L’intensité sonore incidente sur la paroi est donnée
par

Ii = 〈|pi (0, t )vi (0, t )〉 = 〈pi (0, t )2〉Z0 .

La surpression acoustique est donnée par

pi (x, t ) = Re(p
i
(x, t )) = pi 0 cos(ωt −kx) .

On en déduit :

Ii =
p2

i 0

Z0
〈cos2(ωt )〉 = p2

i 0

2Z0
.

L’intensité sonore transmise est donnée par

It =
|t |2 p2

i 0

2Z0
.

On en déduit le coefficient de transmission en puis-

sance sonore T = It

Ii
= |t |2, soit

T = 1

1+ ω2σ2

4Z 2
0

.

Il est de la forme T = 1

1+ ω2

ω2
c

avec ω0 = 2Z0

σ
. On re-

trouve l’expression du gain d’un filtre passe-bas du
premier ordre, de pulsation de coupure ωc . La fré-

quence de coupure fc = ω

2π
vaut donc fc = Z0

πσ
.

Le gain en décibels en transmission vaut

GdB = 10logT (ω) =−10log

(
1+ ω2σ2

4Z 2
0

)
.

En basse fréquence (ω≪ 2Z0

σ
), on a GdB ≈ 0 = GdB,BF,

soit une asymptote horizontale.

En haute fréquence, (ω≫ 2Z0

σ
), on a

GdB ≈−20log

(
ωσ

2Z0

)
=GdB,HF ,

soit une asymptote de pente −20 dB/décade.

Les asymptotes se coupent en ω0 tel que GdB,BF(ω0) =
GdB,HF(ω0), soit 0 =−20log

(
ω0σ

2Z0

)
, donc pour

ω0 = 2Z0

σ
=ωc .

Représentons le diagramme de Bode en amplitude :

1 2 3−1−2−3 log
f

f0

TdB

3. Le gain en décibel étant donné par

GdB =−10log

(
1+ f 2

f 2
c

)
.

Un affaiblissement de 40 dB se produit à la fréquence
f telle que

GdB ( f ) =−40 =−10log

(
1+ f 2

f 2
c

)
,

soit GdB = −20log

(
f

fc

)
= −40, un tel affaiblisse-

ment se situant dans le domaine linéaire (pente
−20 dB/décade).

Pour f = 100 Hz, on déduit de
f

fc
= 102 la valeur fc =

f

100
= 1 Hz. La fréquence de coupure fc = 1 Hz est si-

tuée dans le domaine des infrasons.

La fréquence de coupure est donnée par

fc = Z0

πσ
= µairc

πσ
,

d’où σ= µairc

π fc
.

Comme σ=µ0a, on en déduit l’épaisseur du mur :

a = µairc

π fcµ0
.

Dans le cas d’une paroi en brique, on calcule
abrique = 14 cm ; pour une paroi en béton cellulaire,

on obtient abéton = 31 cm .

Pour une fréquence f = 100 Hz, la longueur d’onde

vaut λ = c

f
= 3,4 m. Dans les deux cas envisagés, on

a bien a ≪ λ ; l’hypothèse d’une masse surfacique est
validée.

Une paroi se comportant comme un filtre passe-bas,
elle filtre d’autant mieux les ondes acoustiques que sa
fréquence de coupure est basse, donc que sa masse
surfacique est élevée. Elle doit donc être épaisse et
construite dans un matériau de masse volumique éle-
vée. Les sons de basse fréquence sont les moins bien
atténués par un mur.
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2—  Couche anti-reflet en échographie

1. On calcule

T = 4ZaZm

(Za +Zm)2 = 1,8×10−3 .

Moins de 0,2 % de la puissance sonore est transmise à
l’interface air-muscle. On peut peut réaliser une écho-
graphie si une couche d’air s’est immiscée entre la
sonde et la peau.

2. Dans le milieu x > e, on propose une onde progres-
sive dans le sens des x croissants : c’est l’onde trans-
mise après la traversée de la couche de graisse.

Dans le milieu x < 0, on propose une onde progressive
dans le sens des x croissants : on se place dans le cas
où il n’y a pas d’onde réfléchie (principe de la couche
anti-reflet).

Dans la couche de graisse, on a une onde progressive
dans le sens des x croissants (issue de la transmission
de l’onde incidente), et une onde progressive dans le
sens des x décroissants (issue de la réflexion sur l’in-
terface x = e).

3. Le champ de surpression est donné par

p(x < 0) = Za Aa ej(ωt−kax)

p(x > e) = Zm Am ej(ωt−kmx)

v(0 < x < e) = Zg

(
Ag ej(ωt−kgx)−Bg ej(ωt+kgx)

)
4. Les relations de passage à l’interface x = 0 s’écrivent
après simplification par ejωt :

Aa = Ag +Bg (1)

et
Za Aa = Zg

[
Ag −Bg

]
. (2)

À l’interface x = e, on obtient de même

Am e−jkme = Ag e−jkge +Bg ejkge (3)

et
Zm Am e−jkme = Zg

[
Ag e−jkge −Bg ejkge

]
(4)

En formant (2)/(1) on obtient

Za = Zg
Ag −Bg

Ag +Bg

d’où
(Za +Zg)Bg = (Zg −Za)Ag . (5)

En formant (4)/(3) on obtient

Zm = Zg
Ag e−jkge −Bg ejkge

Ag e−jkge +Bg ejkge

soit

Zm = Zg
Ag −Bg e2jkge

Ag +Bg e2jkge
.

Avec (E5) on obtient

Zm = Zg

1− Zg−Za

Zg+Za
e2jkge

1− Zg+Za

Zg+Za
e2jkge

= Zg
(Zg +Za)− (Zg −Za)e2jkge

(Zg +Za)+ (Zg −Za)e2jkge

soit

Zm

[
(Zg +Za)+ (Zg −Za)e2jkge

]
= Zg

[
(Zg +Za)− (Zg −Za)e2jkge

]
.

On factorise

(Zg −Za)(Zm +Zg)e2jkge = (Zg −Zm)(Zg +Za)e2jkge

d’où

e2jkge = (Zg −Zm)(Zg +Za)

(Zg −Za)(Zg +Zm)
.

L’égalité des parties imaginaires de l’équation précé-
dente donne

sin(2kge) = 0

d’où 2kge = nπ.

On a alors cos(2kge) =±1.

La solution cos(2kge) = 1 conduit à

Zg −Za

Zg +Za
= Zg −Zm

Zg +Zm

d’où Za = Zm ce qui est impossible (on a justement
Za ̸= Zm).

Il faut donc cos(2kge) =−1, d’où

2kge = (2n +1)π .

Les valeurs possibles de l’épaisseur sont donc

eg = (2n +1)
π

2kg
= (2n +1)

λg

4

où λg = 2π/kg est la longueur d’onde dans la graisse.

On a alors
(Zg −Zm)(Zg +Za)

(Zg −Za)(Zg +Zm)
=−1

soit

(Zg −Zm)(Zg −Za) = (Za −Zg)(Zg +Zm) .

En développant et après simplification, on trouve

Zg =
√

ZaZm .

On calcule Zg = 2,6×104 kg ·m2 · s−1.
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5. La puissance moyenne incidente dans l’air est

〈Πa〉 =
Za A2

a

2
.

La puissance transmisse dans le muscle est

〈Πm〉 = Zm A2
m

2
.

D’après l’équation (E3) on a

Am = Ag +Bg e2jkge = Ag −Bg

compte tenu de la relation sur e.

L’équation (E2) permet alors d’écrire

Am = Za

Zg
Aa .

On a donc

〈Πm〉 = Zm
Z 2

a

Z 2
g

A2
a

2
= Zm

Z 2
a

ZaZm

A2
a

2
= Za A2

a

2
= 〈Πa〉 .

La puissance incidente dans l’air est intégralement
transmise dans le muscle.

3—  Silencieux automobile

1. Schématisons le silencieux :

0 L

x

p
i

p
r

p
1

p
2

p
t

Au niveau de l’interface x = 0 (discontinuité de sec-
tion), l’onde incidente donne naissance à une onde ré-
fléchie p

r
et une onde transmise p

1
.

Au niveau de l’interface x = L, l’onde p
1

donne nais-
sance à une onde réfléchie p

2
et une onde transmise p

t
.

Les différences ondes s’écrivent

p
i
(x, t ) = Pi ei(ωt−kx) et p

r
(x, t ) = P r ei(ωt+kx) ,

p
1

(x, t ) = P 1 ei(ωt−kx) et p
2

(, t ) = P 2 ei(ωt+kx) ,

et
p

t
(x, t ) = P t ei(ωt−kx) .

Dans les trois zones, la surpression s’écrit alors

p(x, t ) =


Pi ei(ωt−kx)+P r ei(ωt+kx) pour x < 0

P 1 ei(ωt−kx)+P 2 ei(ωt+kx) pour 0⩽ x < L

P t ei(ωt−kx) pour x ⩾ L.

2. En utilisant la relation entre vitesse et surpression
pour une onde progressive, l’onde de vitesse s’écrit

v(x, t ) =


Pi
µ0c ei(ωt−kx)− P r

µ0c ei(ωt+kx) pour x < 0
P 1
µ0c ei(ωt−kx)− P 2

µ0c ei(ωt+kx) pour 0⩽ x < L
P t
µ0c ei(ωt−kx) pour x ⩾ L.

Le continuité de la surpression en x = 0 s’écrit

Pi +P r = P 1 +P 2 . (E1)

La continuité du débit volumique en x = 0 s’écrit

S1(Pi −P r) = S2(P 1 −P 2) . (E2)

Le continuité de la surpression en x = L s’écrit

P 1 e−ikL +P 2 eikL = P t eikL . (E3)

La continuité du débit volumique en x = L s’écrit

S2

[
P 1 e−ikL −P 2 eikL

]
= S1P t e−ikL . (E4)

De (E1) et (E2) on obtient d’une part

2P 1 = Pi

(
1+ S1

S2

)
+Pr

(
1− S1

S2

)
soit

P 1 =
Pi

2

(
1+ S1

S2

)
+ P r

2

(
1− S1

S2

)
. (E5)

D’autre part

2P 2 = Pi

(
1− S1

S2

)
+Pr

(
1+ S1

S2

)
soit

P 2 =
Pi

2

(
1− S1

S2

)
+ P r

2

(
1+ S1

S2

)
. (E6)

De (E3) et (E4) on obtient d’une part

P 1 =
(
1+ S1

S2

)
P t

2
. (E7)

D’autre part

2P 2 eikL =
(
1− S1

S2

)
P t e−ikL

soit

P 2 eikL =
(
1− S1

S2

)
P t

2
e−ikL . (E8)
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3. De (E5) et (E7) on obtient

P t

(
1+ S1

S2

)
= Pi

(
1+ S1

S2

)
+P r

(
1− S1

S2

)
,

d’où

P r =
S1 +S2

S2 −S1
P t −

S1 +S2

S2 −S1
P i ,

soit

P t(S2 −S1)e−2ikL = Pi(S2 −S1)+P r(S2 +S1) .

En éliminant P r, on obtient

P t(S2−S1)e−2ikL = Pi(S2−S1)+P t
(S1 +S2)2

S2 −S1
−Pi

(S1 +S2)2

S2 −S1

De (E6) et (E8) on obtient

P t

(
1− S1

S2

)
e−2ikL = Pi

(
1− S1

S2

)
+P r

(
1+ S1

S2

)
.

soit

Pi
[
(S1 +S2)2 − (S2 −S1)2]= Pt

[
(S1 +S2)2

−(S2 −S1)2 e−2ikL
]

.

Après factorisation, on obtient

t = P t

Pi
= 4S1S2

(S1 +S2)2 − (S2 −S1)2 e−2ikL
.

4. Le coefficient de transmission en énergie est donné
par

T = ∣∣t ∣∣2 = t t∗

= 16S2
1S2

2[
(S1 +S2)2 − (S2 −S1)2 e−2ikL

][
(S1 +S2)2 − (S2 −S1)2 e2ikL

]
Le dénominateur s’écrit

(S1 +S2)4 − (S1 +S2)2(S2 −S1)2 e2ikL

− (S1 +S2)2(S1 −S2)2 e−2ikL +(S2 −S1)4

= (S1+S2)4+(S2−S1)4−(S1+S2)(S2−S1)2
(
e2ikL +e−2ikL

)
= (S1 +S2)4 + (S2 −S1)4 −2(S1 +S2)(S2 −S1)2 cos(2kL)

= (S1+S2)4+(S2−S1)4−2(S1+S2)(S2−S1)2 (
1−2sin2(kL)

)
= [

(S1 +S2)2 − (S2 −S1)2]2+4(S1+S2)2(S2−S1)2 sin2(kL)

= (4S1S2)2 +4(S1 +S2)2(S2 −S1)2 sin2(kL) .

On a donc

T = 16S2
1S2

2

16S2
1S2

2 +4(S1 +S2)2(S2 −S1)2 sin2(kL)
.

On remarque que

(S1 +S2)2(S2 −S1)2 = [(S1 +S2)(S2 −S1)]2 = (
S2

2 −S2
1

)2
,

d’où

T = 16S2
1S2

2

16S2
1S2

2 +4
(
S2

2 −S2
1

)2
sin2(kL)

= 1

1+ (S2
2−S2

1)2

4S2
1S2

1
sin2(kL)

.

Avec le relation de dispersion, on a

k = ω

c
= 2π f

c
.

On en déduit

T = 1

1+m sin2 π f
f0

avec m = (S2
2 −S2

1)2

4S2
1S2

1

et f0 = c

2L
.

Le facteur de transmission est maximum pour fn = n f0

et vaut

Tmax = 1 .

Le facteur de transmission est minimum pour

π fn

f0
= π

2
+nπ ,

soit fn = f0

2
+n f0 et vaut

Tmin = 1

1+m
.

f

T

1

1
1+m

f0 2 f0

5. Le premier minimum de T a lieu pour

fmin = f0

2
= c

4L

On en déduit

L = c

4 fmin
= 340

4×250
= 0,34 m.

ä En fait, la température et donc la célérité du son est
plus élevée dans un peau d’échappement.

En prenant c = 460 m · s−1 à 250 °C, on obtient L =
0,45 cm.
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4—  Mesure de la vitesse du son dans une
mousse

Pour mesurer la vitesse du son dans une mousse, J.
Pierre et al ont développé un protocole original fondé
sur l’étude d’un coefficient de réflexion. On étudie ici
le fondement théorique et un exemple d’application de
cette méthode.

1. On rappelle l’expression du coefficient de réflexion
pour l’onde de pression acoustique :

r = Z1 −Z0

Z1 +Z0
.

2. En x < 0, l’onde de pression est

p(x, t ) = pi0 ej(ωt−kx)+r pi0 ej(ωt+kx)

en notant r le coefficient de réflexion.

On en déduit l’expression de l’onde de vitesse

v(x, t ) = pi0

Z0
ej(ωt−kx)−r pi0

Z0
ej(ωt+kx) .

La continuité de la pression à l’interface s’écrit
p(0−, t ) = p(0+, t ), soit(

pi0 + r pi0
)

ejωt = p(0+, t ) .

La continuité de la vitesse s’écrit de même v(0−, t ) =
v(0+, t ), soit (

pi0

Z0
− r pi0

Z0

)
ejωt = p(0+, t )

Z∗ .

Des deux dernières égalités ont déduit

pi0 + r pi0 =
(
pi0 − r pi0

) Z∗

Z0

soit

(1+ r )Z0 = (1− r )Z∗ .

On en déduit

r = Z∗−Z0

Z∗+Z0
.

3. Le champ de vitesse associé à

p(x, t ) = p10 ej(kx−ωt )+p20 ej(−kx−ωt ) .

est

v(x, t ) = 1

Z1

(
p10 ej(kx−ωt )−p20 ej(−kx−ωt )

)
.

4. La cloison rigide impose v(d , t ) = 0, ∀t , soit

p10 ejkL = p20 e−jK L

d’où

p20 = p10 e2jkL .

On a alors

p(x, t ) = p10 ej(kx−ωt )+p10 ej[k(2L−x)−ωt )]

et

v(x, t ) = 1

Z1

(
p10 ej(kx−ωt )−p10 ej[k(2L−x)−ωt )]

)
.

On en déduit

p(0+, t ) = p10

(
1+ej2kL

)
ejωt

et
v(0+, t ) = p10

Z1

(
1−ej2kL

)
ejωt

d’où

Z∗ = p(0+, t )

v(0+, t )
= Z1

1+ej2kL

1−ej2kL
= Z1

ejkL +ejkL

e−jkL −ejkL
= Z1

2cos(kL)

−2jsin(kL)

d’où

Z∗ = jZ1

tan(kd)
.

5. La partie imaginaire de l’impédance Z∗ est propor-
tionnelle à 1/tan(kd).

Elle diverge lorsque tan(kd) = 0, soit pour kd = nπ. On
a alors un nœud de vitesse en x = 0.

Elle s’annule lorsque |tan(kd)| → ∞, soit pour kd =
π

2
+nπ. On a alors un nœud de pression en x = 0.

Les pertes dissipatives augmentent avec la fréquence,
d’où l’amortissement de la courbe quand la fréquence
augmente.

Les zéros de la partie imaginaire de Z∗ étant donnés
par

knd = ωn

c
d = 2π fn

c
d = nπ

on a
fn = n

c

2d
.

On mesure l’écart moyen entre deux zéros de la
courbe :

∆ f = 0,75 kHz = c

2d

d’où
c = 2d∆t = 2×1,93×10−2 ×750

soit c = 29 m · s−1 .

La vitesse du son est très faible dans la mousse.
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