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Interface & ondes acoustiques — solution

1 — Transmission par une paroi

1. La nature a priori complexe du coefficient ¢ traduit
l'introduction d'un déphasage dans la pression lors de
la traversée de la paroi.

On peut assimiler la paroi a une masse surfacique si
son épaisseur est négligeable devant la longueur carac-
téristique de la propagation de I'onde, c’est-a-dire sa

longueur d’'onde:| a<x A .

Limpédance acoustique du milieu pour une onde se
propageant dans le sens des x croissants étant 72y, les
champs de pression et de vitesse de 'onde incidente
sont donnés par :

P, (x,0) =
v, (x )=
Lors que cette onde rencontre la paroi, elle donne nais-

sance a une onde réfléchie P, (x,1) et v.(x,1) et aune
onde transmise p, (x,n)etv (x 1.

Pio exp (j(wt — kx))

70 exp (jlwt —kx)) .

En notant r le coefﬁment de réflexion, a priori com-
plexe, la surpression de I'onde réfléchie vérifie au ni-
veau de la paroi p, 0,0 =rp(0,1).

Limpédance acoustique du milieu pour une onde se

propageant dans le sens des x décroissants étant — 7,
pr(x, 1)

onay,.(x,t)=— ; on en déduit les champs de
0

I'onde réfléchie :
{Br (x,1) = rpioexp (jwt + kx))
Pio

N exp (jlwt + kx)) .

v,.(x,0) =

Limpédance acoustique du milieu valant Z; pour
l'onde transmise, qui se propage dans le sens des x
croissants, on en déduit :

Pio

p,(x,0) = tpigexp (jlwt-kx))
v,(x, 1) =t—exp(jlwr—kx).
Zy

Londe acoustique est donnée, en x < 0, par la superpo-
sition des ondes incidente et réfléchies, et en x > 0 par
I'onde transmise.

On en déduit le champ de pression acoustique.

Pour x<0:
px, 1) = pioexp (j(wt - kx)) + rpioexp (j(wr + kx)) .

Pour x>0:
tpioexp (jlwt —kx)) .

Champ des vitesses.

Pour x<0:

v(x, 1) = —exp(](wt—kx))—rp—exp(](wt+ kx))
2y 2y

Pour x>0:

v(x, 1) = t? exp (jlwt — kx)) .

0

La vitesse normale (qui s’identifie a la vitesse du fluide,
I'onde étant longitudinale) du fluide au contact avec la
paroi est égale a la vitesse de la paroi; cette condition,
qui s’écrit v(x = 0,1) = v(x = a, t) dans le cas général,
s’écrit comme une condition de continuité si 'on né-
glige 'épaisseur de la paroi :
v(x=07,0=v(x=0"1 Vr.

En utilisant I'expression du champ de vitesse, on en dé-
duit

Pio Pio Pio
Z exp(jwt) —r Z exp(jwt) =t Z exp(jw?),

0
d’ou
1-r=t.

Considérons une surface S de la paroi. Elle est sou-
mise a la pression p(x =07, t) a gauche, et a la pression
p(x = 0%, 1) a droite; le principe fondamental de la dy-
namique appliqué a ce systéme de masse oS s’écrit

av(0,1)

S
I 5¢

= 82(07’ t) _SB(0+) t))

soit

t
ijz;mo exp(jwt) = pijpexp(jot) + rpioexp(jwr)
0

—tpjoexp(jwt),

ow
j—it=14+r—t.
Zy

De I'équation précédente, et avec 1 — r = ¢, on déduit

ow
2= (2+]—) t,
Z() -

d’ot1l’expression du coefficient de transmission en sur-
pression :
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2. Lintensité sonore incidente sur la paroi est donnée
par
I; = (Ipi (0, D w; (0, 1)) = (pi (0, ) Z.

La surpression acoustique est donnée par
pilx, 1) = Re(Ei(x, 1)) = piocos(wt — kx).

On en déduit :
2

2
I = @@osz(wt)) - Pio .
Zo 27

Lintensité sonore transmise est donnée par

2,2
_ 117 pio
T oz,

On en déduit le coefficient de transmission en puis-

I; .
sance sonore T = I_ = Itlz, soit
i

T 1
- w?g?
1+ 7
1 27
Il est de la forme T = = avec o= 20 Onre-
1+%; o

trouve l'expression du gain d’'un filtre passe-bas du

premier ordre, de pulsation de coupure w.. La fré-

w Z
quence de coupure f, = — vaut donc| f, = =)
2 no

Le gain en décibels en transmission vaut

w?o? )
> |-

47

27
En basse fréquence (v « —0), on a Ggg = 0 = Ggp BF)
o

Ggg =10log T'(w) = —lolog(l +

soit une asymptote horizontale.

, 27y
En haute fréquence, (w > —),on a
o

Gap ~ —2010 (‘M)—G
dB = g 270 = GdB,HF,

soit une asymptote de pente —20 dB/décade.

Les asymptotes se coupent en wy tel que Ggg gr(wo) =
woo
27y

27
Wp=——=wWwe.
g

Gag,ur(wo), soit 0 = —Zolog( ), donc pour

Représentons le diagramme de Bode en amplitude :
T4
-3

-2 -1 1 2 3
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3. Le gain en décibel étant donné par

Ggg = —10log |1+ =

c

fz).

Un affaiblissement de 40 dB se produit a la fréquence
f telle que

f2
Gap(f) =—-40= —lolog(l + 7

c

’

soit Ggg = —40, un tel affaiblisse-

—2010g(f£) =

C
ment se situant dans le domaine linéaire (pente

—20dB/décade).

Pour f = 100 Hz, on déduit de fi = 10? la valeur f, =

c
t
100 : _
tuée dans le domaine des infrasons.

=1 Hz. La fréquence de coupure | f, =1 Hz | est si-
La fréquence de coupure est donnée par

fczé: IJ/airC,

o o

N airC
dou| o= K .
7 fe

Comme o = ppa, on en déduit I'épaisseur du mur :

HairC
a=—|.
T fepo

Dans le cas d'une paroi en brique, on calcule
Aprique = 14 cm ; pour une paroi en béton cellulaire,

on obtient | apgion =31 cm ..

Pour une fréquence f = 100 Hz, la longueur d’onde

c c
vaut A = — = 3,4 m. Dans les deux cas envisagés, on

a bien a <« 1; I'hypothése d’'une masse surfacique est
validée.

Une paroi se comportant comme un filtre passe-bas,
elle filtre d’autant mieux les ondes acoustiques que sa
fréquence de coupure est basse, donc que sa masse
surfacique est élevée. Elle doit donc étre épaisse et
construite dans un matériau de masse volumique éle-
vée. Les sons de basse fréquence sont les moins bien
atténués par un mur.
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2 — Couche anti-reflet en échographie

1. On calcule

47,7

— — -3
_m—l,leo .

Moins de 0,2 % de la puissance sonore est transmise a
I'interface air-muscle. On peut peut réaliser une écho-
graphie si une couche d’air s’'est immiscée entre la
sonde et la peau.

2. Dans le milieu x > e, on propose une onde progres-
sive dans le sens des x croissants : c’est 'onde trans-
mise apres la traversée de la couche de graisse.

Dans le milieu x < 0, on propose une onde progressive
dans le sens des x croissants : on se place dans le cas
ol il n'y a pas d’onde réfléchie (principe de la couche
anti-reflet).

Dans la couche de graisse, on a une onde progressive
dans le sens des x croissants (issue de la transmission
de I'onde incidente), et une onde progressive dans le
sens des x décroissants (issue de la réflexion sur 'in-
terface x = e).

3. Le champ de surpression est donné par

p(x <0) = Z, Ay @~ kax)

p(x>e) = Zim Ay e @ Fmd

_ j(wt—kgx) j(@t+kgx)
v(0<x<e) —Zg(AgeJ“’ s —Bge)'” gx)
4. Lesrelations de passage a l'interface x = 0 s’écrivent
apres simplification par e/’ :
Ag = Ag+ Bg (1)

et
ZyAq=Zg|Ag— Byg] . )
Alinterface x = e, on obtient de méme
A e ke = Ag RA +Bg elkee 3)

et
—jkme _ —jkge _ jkge
ZmAme =Zg|Age 8" —Bge'"®

En formant (2)/(1) on obtient

d’ ol
(Za+ Zg)Bg = (Zg— Za) Ag. 5)

En formant (4)/(3) on obtient

—jkge jkoe
Age Kg —Bge] 8

Zm = Z, - -
T8 A e ikse 4 B eikse
g g
soit )
A.—B e2]kge
Zo =z, 88
¥ Ag + Byedikee
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Avec (E5) on obtient

Zg—2a 2jkge
A

(Zg+ Za) — (Zg— Zy) €5Ks®
8 (Zg+ Za) + (Zg— 7o) e¥kee

I =Zg T
1— 22 o2k
ZgtZy

soit
I |(Zg+ Za) + (Zg— Zn) e2jkge]
= 7| (Zg + 22) - (Zg - Zwy |
On factorise
(Zg = Za) (Zn + Zg) €945 = (Zy = Zn) (Zg + Zy) ¢
d’olt

(Zg— Zm) (Zg + Za)

e2jkge — )
(Zg - Za) (Zg + Zm)

L'égalité des parties imaginaires de I'équation précé-
dente donne
sin(2kge) =0

d’'ou 2kge = nm.
On a alors cos(2kge) = +1.
La solution cos(2kge) = 1 conduit a

Zg=Za  Zg—7Im
Zg+Za Zg+Zm

d'ol Z; = Zy, ce qui est impossible (on a justement
Za # Zm).
Il faut donc cos(2kge) = -1, d’ou

2kge=Q2n+1)m.
Les valeurs possibles de I'épaisseur sont donc
T Ag
eg=(2n+ 1)2—kg =(2n+ l)z
ou Ag =27/ kg est la longueur d’onde dans la graisse.

On a alors
(Zg - Zm) (Zg + Za) _

(Zg— Za)(Zg+ Zm)

soit
(Zg— Zim) (Zg — Za) = (Za — Zg) (Zg + Zn).
En développant et apres simplification, on trouve
Zg=\"ZaZm .
On calcule Zg = 2,6 x 10* kg-m?-s™1.
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5. La puissance moyenne incidente dans I'air est

Za A2
o

(M) =
La puissance transmisse dans le muscle est

Zm A2,

(m) = )

D’apres I’équation (E3) on a
Am = Ag+ Bge?%s¢ = A, — B,

compte tenu de la relation sur e.
L'équation (E2) permet alors d’écrire

Za
An=—"A;
Zg
On adonc
(M) = Z, Z_§A_§: Z A_‘%‘:ZaAi:(H)
MUz 2 T 2 2 2 ar

La puissance incidente dans l'air est intégralement
transmise dans le ml}cscle.

3 — Silencieux automobile

1. Schématisons le silencieux:

p
— P — P,
—_—
P -~
P,
0 L

Au niveau de l'interface x = 0 (discontinuité de sec-
tion), I’onde incidente donne naissance a une onde ré-
fléchie p_etune onde transmise p

Au niveau de l'interface x = L, l’onde P, donne nais-
sance a une onde réfléchie p,etune onde transmise P
Les différences ondes s’écrivent

pi(x, =" ei(wt—kx) et pr(x’ f) = Br ei(wt+kx) ,
El(x, 1) = Bl el(wt—kx) et Bz(’ f) = Bz el(a)t+kx) )
et
Bt(x’ )= Bt el@i—kx)

Dans les trois zones, la surpression s’écrit alors
P; el(a)t—kx) +£r el(wt+kx) pour x < 0

plx, 1) =4 P, el@=k0) 1 p el@+kx)  pouro < x <L

Bt ellwr—kx) pour x > L.

CPGE PSI 2025-2026

Lycée Jean Perrin

2. En utilisant la relation entre vitesse et surpression
pour une onde progressive, 'onde de vitesse s’écrit

i(w t+kx)

P i(wt—kx) _ P,
uoce uoc pour x <0
v(x, 1) = ,17010 el@i=k0 _W el@Hk)  pour0< x< L
P iwt-kx)
1oc € pour x > L.

Le continuité de la surpression en x = 0 s’écrit

Pi+P.=P,+P,. (E1)
La continuité du débit volumique en x = 0 s’écrit
S1(Pi—P,) =S2(P, —P,). (E2)
Le continuité de la surpression en x = L s’écrit
La continuité du débit volumique en x = L s’écrit
S, [21 e ikL -P, eikL] =S\P, o ikL (E4)
De (E1) et (E2) on obtient d'une part
S1 S1
2P, =P; 1+ +P(1-—
Sz Sz
soit
P S S
PI:—1(1+—1) —f( ——1) (E5)
— Sy 2 Sy
D’autre part
S1 S1
2P, =P; — +P(1+—
Sy Sz
soit
P S1 P, S1
P=—|1-=|+Z[1+=]|. (E6)
2 S,) 2 Sy
De (E3) et (E4) on obtient d'une part
P —(1+Sl)£t (E7)
U 8,/ 2
D’autre part
S .
2P2 elkL - (1 _ _1)£t e—lkL
Sz
soit
S1\ P
P2 ikL - (1 _ _1) =t —ikL (E8)
Sy) 2
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3. De (E5) et (E7) on obtient d’ou
S S S
Pl1+2|=p1+2|+p [1-22], _ 165753 _ 1
- S2 S2) S2 I= e 2_ 62242 GG '
165785 +4(85—8%) sin*(kL) 1+ ot sin2 (kL)
d’olt 1°1
S1+ 8, S1+8;
P = Sy — 5t - S, — Sy b, Avec le relation de dispersion, on a
soit
w 27
| (o2
P(S2—Spe 2k = Pi(S, - S1) + P(S2 + S1). c ¢
En éliminant P, on obtient On en déduit
2 Q2y2
i (S1+S2)* _ (S1+52)° 1 (83— 8D c
P.(Sy—S;) e 2k = py(S,—S1)+P —P; T = avec m=———— et =— .
—t( 2 1) 1( 2 l) Ly 82—81 i SZ—SI ]_+msin27;,—{ 48%8% fO 2L

De (E6) et (E8) on obtient

S - S S
Pt(l__l)e—ZlkL:Pi(l__l)+Pr(1+_
- Sy Sy - Sy

Le facteur de transmission est maximum pour f;, = nfy
et vaut

Tmax =1 .
soit
Le facteur de transmission est minimum pour

P [(S1+82)* = (S2— S1)?] = Py [(S1 + S2)*
nfn w

—2ik =—+ ,
_(82—51)26 2i L] . f() 5 nm

Apreés factorisation, on obtient fo
soit f,; = > + nfy et vaut

e P, 4515,
TP (S1+822-(Sp-S1)Pe kL] 1
Tmin=7—".
1+m
4. Le coefficient de transmission en énergie est donné
par T
T=if=tr 1
~ 168353
[(S1+82)2 = (S2 = S1)2e HKL] [(Sy + S2)2 — (Sp — S1)2 e2ikL]
Le dénominateur s’écrit 1
T+m
(S1+S2)* = (S1 + $2)%(S - Sp)* e?*F : :
—(S1+82)%(S1 — $2)? e 2K 4 (8, — Sp)* fo 2fo /

= (S1+82) +(S2=81)* = (S1+82) S - 81)* (GZikL + e_ZikL) 5. Le premier minimum de T alieu pour
= (S1+82)* + (S2 = S)* = 2(S1 + 52)S2 — S1)? cos(2kL)

= ($1+82) +(S2=81)* ~2(81+852) (82~ 81)? (1 - 2sin* (kL)) Jmin = % = ﬁ

= [(S1+82)* = (S2 - 51)2]2+4(51+52)2(52—31)2 sin®(kL)

On en déduit
= (45182)% +4(S1 + $2)*(S2 — S1)*sin® (kL)
I c 340 0.34
= = =0, m.
On adonc 4fmin 4 x250
168353 . . A s
T= o 5 > . » En fait, la température et donc la célérité du son est

165753 +4(S1 + 52)%(S2 = §1)*sin” (kL) plus élevée dans un peau d’échappement.

On remarque que En prenant ¢ = 460 m-s~! 4 250 °C, on obtient L =
0,45 cm.

(S1+S2)2(S2 — S1)% = [(S1 + S2)(Sa — SI2 = (S2 - §2)°,

CPGE PSI 2025-2026 Lycée Jean Perrin 5/6
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4 — Mesure de la vitesse du son dans une
mousse

Pour mesurer la vitesse du son dans une mousse, J.
Pierre et al ont développé un protocole original fondé
sur I'étude d’'un coefficient de réflexion. On étudie ici
le fondement théorique et un exemple d’application de
cette méthode.

1. On rappelle I'expression du coefficient de réflexion
pour 'onde de pression acoustique :

VAR
7= .
Zl+Z()

2. En x <0, ’onde de pression est
p(x, t) = pio ej(wt—kx) +Tpio ej(wt+kx)

en notant r le coefficient de réflexion.

On en déduit I'expression de ’'onde de vitesse

Pio jwi-kx) _LP0 jwi+kn

v(x, 1) =
(x, 1) Z Z

La continuité de la pression a linterface s'écrit
p(0~, 1) =p(0*, 1), soit

(pio +rpio) & = p(0*,1).

La continuité de la vitesse s’écrit de méme v(07,¢) =
v(0*, ), soit

jor_ PO*,1)

(@_Lpio)e
Z*

Zo  Zo

Des deux dernieres égalités ont déduit

Z*
pio +I'pio = (Pio —Ll?io)
Zy
soit
1+nNZ=0-nZz".
On en déduit
o VARV
= Z*+ 7 |

3. Le champ de vitesse associé a
p(x, f) = ploe](kx—a)t) + P20 e](—kx—wt) .
est

1 . )
_ (kx-wt) _ (—kx—-wt)
v(x,t) = Z (PloeJ p2o€ ) .
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4. Lacloison rigide impose v(d, t) =0, Vt, soit

P10 el = P20 e KL

d’ ol
2jkL
P20 = pP1o€ kL |
On a alors
p(x, l’) = p1o e](kx—wt) +I910 e}[k(ZL—x)—wt)]
et

1 . ,
v(x, 1) = - (pme](kx—wt) — P10 e][k(ZL—x)—wt)]) _
1

On en déduit

p0*, 1) = pio (1 +ej2kL) oot

et
vo*, 1) = P10 (1- €2k ) et
Z

d’ou
e POSD 1+e?kL ekl ekl 2cos(kL)

T w0t '1-e2kl ekl _gikL — “' _jsin(kL)
d’ou

* JZl
tan(kd)

5. La partie imaginaire de I'impédance Z* est propor-
tionnelle a 1/ tan(kd).

Elle diverge lorsque tan(kd) = 0, soit pour kd = nz. On
a alors un neceud de vitesse en x = 0.

Elle s’annule lorsque [tan(kd)| — oo, soit pour kd =
s

) + nx. On a alors un nceud de pression en x = 0.

Les pertes dissipatives augmentent avec la fréquence,

d’ou 'amortissement de la courbe quand la fréquence
augmente.

Les zéros de la partie imaginaire de Z* étant donnés
par

2
k,,d:%d: L Lpp—
ona c
fn:ng.

On mesure I'écart moyen entre deux zéros de la
courbe:

Cc
Af=0,75kHz= —
! 2= %4

d’ol1

c=2dAt=2x1,93x1072 x 750
soit ¢=29m-s”! .
La vitesse du son est tres faible dans la mousse.
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