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DS no 5 Sujet « difficile »— solution

 Partie I – Étude d’une éolienne (ENS Lyon PC 2016)

 Conversion de puissance d’un aérogénérateur. Limite de Betz.

q 1 — Le vent cédant de l’énergie à l’éolienne, sont
énergie cinétique diminue entre l’amont et l’aval du ro-
tor, d’où v2 < v1.

L’air étant considéré comme incompressible, le débit
volumique est conservé, soit S1v1 = S2v2,.

On en déduit S2 > S1 : le tube de courant s’évase.

q 2 — Le débit massique s’écrit

qm = ρS1v1 = ρSv = ρS2v2 .

Détermination de la vitesse v .

q 3 — On définit un système fermé associé à la portion
[1,2] :

à l’instant t : fluide dans la portion [1,2] et la masse
δm1 = qm dt de fluide qui y entre entre t et t +dt ;

à l’instant t +dt : fluide dans la portion [1,2] et la masse
δm2 = qm dt de fluide qui y sort entre t et t +dt .

La quantité de mouvement du système fermé s’écrit

#»
P (t ) = #»

P [1,2](t )+δm #»v 1 = #»
P [1,2](t )+qm dt #»v 1

et de même

#»
P (t +dt ) = #»

P [1,2](t +dt )+qm dt #»v 2 ,

où
#»
P [1,2] est la quantité de mouvement de la portion

[1,2].

Le régime étant stationnaire,
#»
P [1,2](t+dt ) = #»

P [1,2](t ). On
a donc

#»
P (t +dt )− #»

P (t ) = qm dt ( #»v 2 − #»v 1)

d’où

D
#»
P

Dt
=

#»
P (t +dt )− #»

P (t )

dt
= qm( #»v 2 − #»v 1) .

Les actions exercées sur le fluide du système fermée
sont :

— la force de pression en amont
#»
F 1 ;

— la force de pression en aval
#»
F 2 ;

— la force de pression sur la surface latérale
#»
F lat ;

— la force exercée par le rotor sur l’air
#»
F r/a.

Le poids est négligé.

La loi de la quantité de mouvement appliqué au système
fermé s’écrit

D
#»
P

Dt
= #»

F 1 + #»
F 2 + #»

F 1 + #»
F lat + #»

F r/a .

Au niveau des surfaces S1 et S2, la pression vaut p0. La
surface fermée S1 ∪ S2 ∪ pSlat est donc soumise à une
pression uniforme, d’où

#»
F 1 + #»

F 2 + #»
F 1 + #»

F lat = #»
0 .

On a donc
qm( #»v 2 − #»v 1) = #»

0 + #»
F r/a .

La force exercée par le rotor sur l’air vaut donc

#»
F r/a = qm( #»v 2 − #»v 1) .

q 4 — L’écoulement est parfait, stationnaire, homo-
gène et isotrope. On peut appliquer le théorème de Ber-
noulli sur une ligne de courant entre les sections (1) et
(E). Le poids étant négligé, on obtient

p0 +ρ
v2

1

2
= pE +ρ

v2

2
.

De même entre les sections (S) et (2) on obtient

pS +ρ
v2

2
= p0 +ρ

v2
2

2
.

On en déduit

pE = p0 + ρ

2

(
v2

1 − v2) et pS = p0 + ρ

2

(
v2

2 − v2) .

q 5 — Connaissant les pressions s’appliquant sur les
surface (E) et (S), on peut faire un bilan de quantité de
mouvement en considérant la surface de contrôle entre
les sections (E) et (S).

La surface de contrôle Σ qui définit le système ouvert est
délimitée par les sections SE et SS .

Le système fermé associé est défini comme suit :

à l’instant t : fluide compris entre SE et SS , et la masse
δmE = qm dt de fluide qui y entre entre t et t +dt ;

à l’instant t +dt : fluide compris entre SE et SS , et la
masse δmS = qm dt de fluide qui y sort entre t et
t +dt .

La quantité de mouvement du système fermé s’écrit

#»
P (t ) = #»

P Σ(t )+qm dt #»v E

et
#»
P (t +dt ) = #»

P Σ(t +dt )+qm dt #»v S ,

où
#»
P Σ est la quantité de mouvement du fluide contenu

dans entre SE et SS .
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Le régime étant stationnaire,
#»
P Σ(t +dt ) = #»

P Σ(t ). On a
donc

#»
P (t +dt )− #»

P (t ) = qm dt ( #»v S − #»v E )

d’où

D
#»
P

Dt
=

#»
P (t +dt )− #»

P (t )

dt
= qm( #»v S − #»v E ) .

Comme vE = vS = v , on a finalement

D
#»
P

Dt
= #»

0 .

Les actions exercées sur le fluide du système fermé sont :

— la force
#»
F r/a exercée par le rotor ;

— la force de pression en amont
#»
F E

#»e x = pE SE =
pE S #»e x ;

— la force de pression en aval
#»
F S = −pSSS

#»e x =
−pSS #»e x ;

— la force de pression sur la surface latérale
#»
F lat.

Par symétrie, on a
#»
F lat = #»

0 .

La loi de la dynamique s’écrit alors

D
#»
P

Dt
= #»

0 = (pE −pS)S #»e x + #»
F r/a .

On a donc
#»
F r/a = (pS −pE )S #»e x .

On peut utiliser les expressions établies précédemment
à l’aide du théorème de Bernoulli pour exprimer

#»
F lat =

ρS

2
(v2

2 − v2
1) #»e x .

q 6 — On a donc

#»
F lat =

ρS

2
(v2

2 − v2
1) #»e x = qm(v2 − v1) #»e x = ρSv(v2 − v1) #»e x

comme qm = ρSv .

En remarquant que v2
2 − v2

1 = (v2 − v1)(v2 + v1) il vient

ρS

2
(v2 − v1)(v2 + v1) = ρSv(v2 − v1)

d’où

v = v1 + v2

2
.

Puissance transférée de l’écoulement à l’éolienne et
rendement de la conversion.

q 7 — On raisonne sur le système fermé défini à la
question 3.

Son énergie mécanique à l’instant t est

Em(t ) =E[1,2](t )+ 1

2
δmv2

1

soit comme δm = ρS1v1 dt :

Em(t ) =E[1,2](t )+ 1

2
ρS1v3

1 dt

en ne considérant pas l’énergie potentielle de pesanteur
(le poids est négligé).

À l’instant t +dt elle vaut

Em(t +dt ) =E[1,2](t +dt )+ 1

2
δmv2

2

soit comme δm = ρS2v2 dt :

Em(t +dt ) =E[1,2](t )+ 1

2
ρS2v3

2 dt .

On a E[1,2](t + dt ) = E[1,2](t ) car le régime est station-
naire.

Avec δm = qm dt , on a donc

Em(t +dt )−Em(t ) = 1

2
ρ(S2v3

2 −S1v3
1)dt ,

d’où

DEm

Dt
= Em(t +dt )−Em(t )

dt
= 1

2
ρ(S2v3

2 −S1v3
1) .

Le théorème de l’énergie mécanique s’écrit

DEm

Dt
=Pext +Pint .

Le fluide étant parfait, on a Pint = 0 (pas de puissance
interne dissipée par viscosité).

Les forces extérieures fournissant une puissance au sys-
tème sont :

— la force de pression en amont
#»
F 1 = p0S1

#»e x qui four-
nit

P1 = #»
F 1 · #»v 1 = p0S1v1 ;

— la force de pression en aval
#»
F 2 = −p0S2

#»e x qui four-
nit

P2 = #»
F 2 · #»v 2 =−p0S2v2 ;

— le rotor qui fournit la puissance P que l’on cherche à
exprimer.

On a donc

1

2
ρ(S2v3

2 −S1v3
1) = p0S1v1 −p0S2v2 +P

d’où

P= 1

2
ρ(S2v3

2 −S1v3
1)−p0S1v1 +p0S2v2 .

On a qm = ρS1v1 = ρS2v2, donc S1v1 = S2v2 et

P= 1

2
ρ(S2v3

2 −S1v3
1) .

Comme ρS1v1 = ρS2v2 = qm, on peut écrire

P= 1

2
qm(v2

2 − v2
1) .
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q 8 — Considérons l’air incident de vitesse v1. L’éner-
gie cinétique traversant pendant dt la section S de l’éo-
lienne, en l’absence de cette dernière est

dEc,inc = 1

2
qm dt v2

1 .

Avec qm = ρSv1, on a

dEc,inc = 1

2
ρS dt v3

1 dt .

On a donc

P∗ = 1

2
ρSv3

1 = dEc,cin

dt
.

La grandeur P∗ représente donc la puissance cinétique
qui traverserait la section S en l’absence de l’éolienne;
on peut l’interpréter comme la puissance maximale dis-
ponible pour l’éolienne.

q 9 — Le rendement de l’éolienne relativement à P∗

peut être défini par

η+ = puissance cinétique fournie à l’éolienne

puissance cinétique disponible
.

La puissance cinétique fournie à l’éolienne de la par tde
l’air est −P ; on peut donc écrire

η+ =− P

P∗ .

Avec les expressions précédentes, on a donc

η+ =−qm(v2
2 − v2

1)

ρSv3
1

.

Avec
qm = ρSv = ρS

v1 + v2

2
on a

η+ = ρS(v1 + v2)(v2
1 − v2

2)

2ρSv3
1

= (v1 + v2)(v2
1 − v2

2)

2v3
1

.

En posant r = v2/v1, on obtient

η+ = 1

2
(1+ r )(1− r 2) .

On peut développer l’identité remarquable

1− r 2 = (1+ r )(1− r ) ,

ce qui permet d’écrire

η+ = 1

2
(1+ r )2(1− r ) .

q 10 — On a 0⩽ r ⩽ 1.

Les valeurs extrêmes sont η∗(0) = 1

2
et η+(1) = 0.

On calcule

dη+

dr
= 1

2

[
2(1+ r )(1− r )− (1+ r )2]

= 1

2
(1+ r ) [2−2r −1− r ]

soit
dη∗

dr
= 1

2
(1+ r )(1−3r ) .

La dérivée est nulle pour rm = 1

3
, et le rendement pré-

sente le maximum

η∗m = 1

2

(
1+ 1

3

)2 (
1− 1

3

)
= 1

2
× 16

9
× 2

3
= 16

27
≈ 0,59, .

1/3

1/2

ηm

0 1 r

η∗(r )

q 11 — Le cas r = 1 correspond au cas où v2 = v1 : l’éo-
lienne ne perturbe pas l’écoulement de l’air et ne pré-
lève aucun puissance.

Le cas r = 0 correspond au cas où v2 = 0 : le débit serait
nul.

La situation optimale est pour rm = 1/3 soit v2 = v1/3 : la
vitesse du vent est divisée par 3. On a alors le rendement

maximum η∗m = 59 % .

Quelques remarques :

— on a η∗ = (v1 + v2)(v2
1 − v2

2)

2v3
1

. Le rendement aug-

mente d’autant plus que l’on freine le vent (diffé-
rence v2

1 − v2
2 grande) ; mais dans ce cas, v2 est plus

faible, et le débit proportionnel à v1+v2 diminue, ce
qui fait baisser le rendement. On a donc une compé-
tition entre deux termes, d’où un rendement maxi-
mal pour une valeur intermédiaire de r ;

— pour rm = 1/3, la section de sortie est trois fois plus
grande que la section d’entrée;

— la courbe est assez plate au voisinage de rm : le ren-
dement reste bon même quand on s’éloigne de l’op-
timum.

Quelques remarques sur le cadre de l’étude.

q 12 — La section du tube de courant se modifie as-
sez rapidement au niveau du rotor. Comme la vitesse
est tangente au lignes de courant, on ne peut considé-
rer une vitesse purement axiale au niveau du rotor. C’est
donc une hypothèse forte.

q 13 — Entre les sections (E) et (S), le fluide n’est pas
soumis qu’aux forces de pression : il y a des pièces mo-
biles (le rotor) qui échangent une puissance mécanique.
On ne peut donc y appliquer le théorème de Bernoulli.

q 14 — En pratique, c’est la forme des pales qui déter-
mine le rapport r .
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 Partie II – Ondes et vagues : aspects énergétiques (Agrégation interne physique-chimie 2025)

1—  Étude du mouvement de la houle en eau peu
profonde

q 1 — La relation de l’hydrostatique s’écrit

#      »

grad p = ρ #»g =−ρg #»e z .

En projetant selon (Oz) on a donc(
∂p

∂z

)
x,y,t

=−ρg .

On intègre par rapport à z, les autres variables étant
fixées :

p(x, z, t ) =−ρg z + A(x, t )

la « constante » d’intégration dépendant a priori des
autres variables, soit x et t (le problème est indépendant
de y par hypothèse).

Écrivons que la pression à la surface libre vaut p0 :

p0 =−ρg [H +η(x, t )]+ A(x, t ) .

On en déduit A(x, t ) = p0 +ρg [H +η(x, t )], d’où

p(x, z, t ) = p0 +ρg
[
H +η(x, t )− z

]
.

q 2 — L’équation de la dynamique appliquée à une
particule de fluide de masse dm = ρdτ s’écrit

ρ #»a dτ=−#      »

grad p dτ+ρ #»g dτ ,

avec
#»a = D #»v

Dt
= ∂#»v

∂t
+ ( #»v · #      »

grad) #»v ≈ ∂#»v

∂t

en linéarisant, soit

ρ
∂#»v

∂t
=−#      »

grad p +ρ #»g .

En projetant selon (Ox), on obtient

ρ
∂vx (x, t )

∂t
=−∂p(x, z, t )

∂x
.

q 3 — D’après l’expression de p(x, z, t ) obtenue à la
question 1, on a

∂p

∂x
= ρg

∂η(x, t )

∂x
.

On a donc

ρ
∂vx (x, t )

∂t
=−ρg

∂η(x, t )

∂x

d’où
∂vx (x, t )

∂t
=−g

∂η(x, t )

∂x
. (1)

q 4 — La masse d’eau dans la tranche d’épaisseur dx,
de largeur L et de hauteur H +η(x, t ) est

m(x, t ) = ρL
[
H +η(x, t )

]
dx .

Sa variation temporelle est donc

∂m(x, t )

∂t
= ρL

∂η(x, t )

∂t
dx .

q 5 — La masse qui entre dans le volume de contrôle
en x par unité de temps est donnée par le débit mas-
sique à travers la section L[H +η(x, t )], soit

δme

dt
= ρvx (x, t )L

[
H +η(x, t )

]
d’où

δme = ρvx (x, t )L
[
H +η(x, t )

]
dt .

q 6 — La masse qui sort dans le volume de contrôle en
x par unité de temps est donnée par le débit massique à
travers la section L[H +η(x +dx, t )], soit

δms

dt
= ρvx (x +dx, t )L

[
H +η(x +dx, t )

]
d’où

δms = ρvx (x +dx, t )L
[
H +η(x +dx, t )

]
dt .

q 7 — Le bilan de masse pour le volume de contrôle
s’écrit

∂m(x, t )

∂t
= δme

dt
− δms

dt

soit

ρL
∂η

∂t
dx = ρvx (x, t )L

[
H +η(x, t )

]
−ρvx (x +dx, t )L

[
H +η(x +dx, t )

]
= ρLH [vx (x, t )− vx (x +dx, t )]

−ρL
[
vx (x, t )η(x, t )− vx (x +dx, t )η(x +dx, t )

]
=−ρLH

∂vx

∂x
dx −ρL

∂(vxη)

∂x
dx .

Les grandeurs vx et η étant des infiniment petits du

même ordre, le terme
∂(vxη)

∂x
est un infiniment petit

d’ordre deux. À l’ordre le plus bas, en ne gardant que le
terme du premier ordre, on obtient donc

ρL
∂η

∂t
dx =−ρLH

∂vx

∂x
dx

soit
∂vx (x, t )

∂x
=− 1

H

∂η(x, t )

∂t
. (2)
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q 8 — Dérivons l’équation (2) par rapport à t :

∂2η

∂t 2 =−H
∂2vx

∂t∂x
.

Dérivons l’équation (1) par rapport à x :

∂2vx

∂x∂t
=−g

∂2η

∂x2 .

Comme
∂2vx

∂x∂t
= ∂2vx

∂t∂x
d’après le théorème de Schwarz,

on a
∂2η

∂t 2 = H g
∂2η

∂x2

soit
∂2η(x, t )

∂x2 = 1

g H

∂2η(x, t )

∂t 2 .

On retrouve l’équation de d’Alembert.

q 9 — Écrivons que η(x, t ) = η0 cos(ωt − kx) vérifie
l’équation d’onde précédente :

−k2η(x, t ) =−ω2 η(x, t )

g H

d’où la relation de dispersion

k = ω√
g H

.

q 10 — La vitesse de phase est définie par vφ = ω

k
, d’où

vφ =√
g H .

La vitesse de phase ne dépend pas de la pulsation ω de
l’onde : le phénomène de propagation n’est pas disper-
sif.

2—  Aspects énergétiques

q 11 — Lorsque l’on écrit que l’énergie potentielle de
pesanteur Epp d’un système de masse m est donnée par
Epp = mg z + cte, la cote z est celle du centre de masse
du système.

q 12 — L’origine de l’énergie potentielle étant prise à la
cote z = H , i.e. lorsque η(x, t ) = 0, l’énergie potentielle
de la tranche de fluide d’épaisseur dx est associée à la
masse de fluide qui s’écarte de la cote z = H .

Considérons η > 0. La masse de fluide au-dessus de la
surface libre au repos est

δm = ρLη(x, t )dx .

La hauteur de son centre de masse (situé au milieu) par
rapport à la cote de référence z = H est η/2.

L’énergie potentielle de cette masse est donc

dEpp(x, t ) = δmg
η(x, t )

2
= ρLη(x, t )dx

η(x, t )

2
,

soit

dEpp(x, t ) = ρg L

(
η(x, t )

)2

2
dx ,

ä On a dEpp(x, t ) > 0 même si η < 0, ce qui peut pa-
raître contre-intuitif.

Si η < 0, il faut retirer la masse δm = ρL
∣∣η(x, t )

∣∣ dx
à la colonne de fluide au repos. On revient donc
à « ajouter » au fluide au repos la masse négative
−δm =−ρL

∣∣η(x, t )
∣∣ dx = ρLη(x, t )dx comme η< 0.

Son énergie potentielle est alors dEpp =
−δmgη(x, t )/2 et on retrouve l’expression établie.

q 13 — Avec η(x, t ) = η0 cos(ωt −kx), on a

dEpp(x, t ) = ρg L

2
η2

0 cos2(ωt −kx)dx .

La densité linéique d’énergie potentielle est donc

dEpp(x, t )

dx
= ρg L

2
η2

0 cos2(ωt −kx) .

Comme 〈cos2(ωt − kx)〉 = 1/2, sa moyenne temporelle
est

〈e〉 = ρg Lη2
0

4
.

q 14 — La tranche de fluide considérée a une masse

δm = ρL
[
H +η(x, t )

]
dx .

Le fluide ayant la vitesse vx (x, t ), son énergie cinétique
est

dEc(x, t ) = 1

2
δm (vx (x, t ))2

soit

dEc(x, t ) = ρL

2

[
H +η(x, t )

]
(vx (x, t ))2 dx .

Comme η(x, t ) et vx (x, t ) sont des infiniment petits du
même ordre, on obtient à l’ordre le plus bas

dEc(x, t ) = ρLH

2
(vx (x, t ))2 dx .

q 15 — Avec η(x, t ) = η0 cos(ωt −kx) on a

∂η(x, t )

∂x
= η0k sin(ωt −kx)

et l’équation (1) donne

∂vx

∂t
=−gη0k sin(ωt −kx) .

En intégrant par rapport au temps, on obtient

vx (x, t ) = gη0k

ω
cos(ωt −kx) .

ä La « constante » d’intégration par rapport à t est a
priori une fonction de x : B(x). Un tel terme n’a au-
cun caractère ondulatoire ; on le prend donc nul.
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Avec la relation de dispersion k =ω/
√

g H , on a

vx (x, t ) = gη0√
g H

cos(ωt −kx)

soit

vx (x, t ) = η0

√
g

H
cos(ωt −kx) .

q 16 — L’énergie cinétique de la tranche de fluide
s’écrit alors

dEc(x, t ) = ρLH

2
η2

0
g

H
cos2(ωt −kx)dx

= ρg Lη2
0

2
cos2(ωt −kx)dx .

La densité linéique d’énergie cinétique est donc

κ(x, t ) = dEc(x, t )

dx
= ρg Lη2

0

2
cos2(ωt −kx) .

Sa moyenne temporelle vaut alors

〈κ〉 = ρg Lη2
0

4
.

q 17 — On remarque que 〈e〉 = 〈κ〉 .

Cette égalité traduit l’équipartition en moyenne de
l’énergie mécanique sous les formes potentielle et ci-
nétique.

q 18 — La densité linéique moyenne totale est donnée
par 〈w〉 = 〈e〉+〈κ〉, soit

〈w〉 = ρg Lη2
0

2
.

q 19 — On suppose que l’énergie se propage à la célé-
rité de l’onde vvarphi.

Pendant dt , l’onde se propage d’une distance dx =
vφ dt . L’énergie propagée pendant dt est donc l’énergie
contenue sur cette longueur dx, soit

〈dW 〉 = 〈w〉dx = 〈w〉vφ dt .

La puissance transport vaut alors

〈P〉 = 〈dW 〉
dt

= 〈w〉vφ .

Par unité de largeur de front, on obtient la puissance
moyenne

〈PL〉 = 〈P〉
L

= 〈w〉vφ

L
.

Avec les expressions obtenues, on a

〈PL〉 =
ρg Lη2

0

2L

√
g H

soit

〈PL〉 =
ρη2

0

2

p
H

√
g 3 .

q 20 — La dimension d’une énergie est [W ] = ML2T−2.

Celle d’une puissance est donc [P] = ML2T−3.

La puissance par unité de longueur a donc comme di-
mension

[PL] = MLT−3 .

On a

[ρ] = ML−3 ; [g ] = LT−2 et [η0] = L.

On a donc[
ρη2

0

p
H

√
g 3

]
= ML−3L2L1/2L3/2T−3 = ML ·T−3 .

L’expression obtenue est bien homogène.

q 21 — Pour L = 1 m, on calcule

〈P1〉 = 103 × (0,36)2

2
×p

100×
√

103 .

soit
〈P1〉 = 20,5 kW .

q 22 — L’énergie fournie pendant un jour, soit 24 h est

W = 20,5×24 = 492 kWh.

On peut donc alimenter 492/12 foyers par ce dispositif,
soit 41 foyers.
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DS no 5 Sujet « difficile »— solution

 Partie III — Accumulateur cadmium-nickel (E3AMP 2023)

1—  Généralité

q 1 — On calcule les nombres d’oxydations :

espèce Cd(s) Cd(OH)2(s) Ni(OH)2(s) Ni2O3(s)
n.o. 0 II II III

q 2 — On a deux nombres d’oxydation à envisager : 0
pour Cd(s) et II pour Cd2+ et Cd(OH)2(s).

L’espèce Cd sera dans la partie basse du diagramme,
tandis que les deux deux seront dans la partie haute.

Au degré II, la cation Cd2+ a son domaine pour les pH
acides, tandis que Cd(OH)2(s) a son domaine pour les
pH plus élevés.

Frontière Cd2+/Cd(OH)2

L’équilibre de précipitation entre les deux espèces est

Cd(OH)2 = Cd2++2HO− .

On a
Ks2 = [Cd2+][HO−]2 .

À la frontière, on a Ks2 = c0[HO−]2
fr, d’où

[HO−]fr =
p

Ks2c0 = 10−6 mol ·L−1 .

On en déduit

pHfr = 14+ log[HO−]fr

soit pHfr = 8,0 pour la frontière verticale entre Cd2+ et

Cd(OH)2.

Frontière Cd2+/Cd

L’équation électrochimique est

Cd2++2e− = Cd(s) .

La loi de Nernst s’écrit alors

E = E o(Cd2+/Cd)+0,03log

(
[Cd2+]

co

)
.

À la frontière, on a [Cd2+] = c0 = 1×10−2 mol ·L−1, d’où

Efr =−0,46 V .

Frontière Cd(OH)2/Cd

L’équation électrochimique est

Cd(OH)2 +2H++2e− = Cd+2H2O.

La relation de Nernst s’écrit

E = E o(Cd(OH)2/Cd)+0,03log

(
[H+]2

(co)2

)

soit pour la frontière

Efr = E o(Cd(OH)2/Cd)−0,06pH.

Le potentiel standard E o(Cd(OH)2/Cd) n’est pas donné.
Le plus simple pour tracer le graphe et d’utiliser la conti-
nuité de la frontière entre Cd(0) et Cd(II) à pH = 8,0, soit

−0,46 = E o(Cd(OH)2/Cd)−0,06pH

d’où E o(Cd(OH)2/Cd) = 0,02 V; l’équation de la fron-
tière est alors

Efr = 0,02−0,06pH .

pH

E (V)

−0,46

8
Cd2+

Cd(OH)2

Cd

2—  Étude de la décharge

q 3 — En superposant les diagrammes E-pH du cad-
mium et du nickel, on constate que Cd et Ni2O3 ont des
domaines disjoints. On en déduit la réaction spontanée
de fonctionnement de la pile.

anode : oxydation de Cd en Cd(OH)2 selon

Cd+2HO− −−→ Cd(OH)2 +2e− .

On équilibre les charges avec HO – et non avec H+

car on est en milieu très basique (pH = 14).

cathode : réduction de Ni2O3 en Ni(OH)2 selon

Ni2O3 +3H2O+2e− −−→ 2Ni(OH)2 +2HO− .

On obtient la réaction de fonctionnement de la pile en
éliminant les électrons :

Cd+Ni2O3 +3H2O −−→ Cd(OH)2 +2Ni(OH)2 .

q 4 — Le potentiel du couple Ni2O3/Ni(OH)2 à pH = 14
est donné par

E+ = 1,02−0,06×14

soit E+ = 0,18 V .

Le potentiel du couple Cd(OH)2/Cd à pH = 14 est donné
par

E− = 0,02−0,06×14

soit E− =−0,82 V .

La différence de potentiel de la pile est alors

ENiCd = 1,0 V .
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DS no 5 Sujet « difficile »— solution

q 5 — La réaction de fonctionnement de la pile fait in-
tervenir l’échange de n = 2 électrons. On a donc

∆rG
o =−nF ENiCd =−2F ENiCd ,

soit
∆rG

o =−193 kJ ·mol−1 .

On calcule l’enthalpie standard de réaction :

∆rH o =∆fH
o(Cd(OH)2 +2∆fH

o(Ni(OH)2 −∆fH
o(Cd)

−∆fH
o(Ni2O3)−3∆fH

o(H2O)

soit
∆rH o =−273,7 kJ ·mol−1 .

L’entropie standard de réaction se déduit de la relation

∆rG
o =∆rH o −T∆rSo ,

d’où
∆rSo =−271 J ·K−1 ·mol−1 .

q 6 — Dans l’approximation de Ellingham, on a

∆rG
o(T ) =∆rH o −T∆rSo .

Comme ∆rG =−2F ENiCd, on en déduit

ENiCd =−∆rH o

2F
+T

∆rSo

2F
.

On a ∆rSo < 0, donc ENiCd est la tension diminue quand
la température augmente.

q 7 — D’après la question précédente, on a

dENiCd

dT
= ∆rSo

2F
=−1,4×10−3 V · °C−1 .

Cette valeur est faible : une variation de 10 °C de la tem-
pérature ambiante entraîne une variation de 1,4 mV de
la tension de la pile, soit 1,4 %.

La concentration en potasse K(OH) fixe le pH du milieu
(par [HO−]).

D’après la question 4, on a

E+ = 1,02−0,06×pH et E− = 0,02−0,06×pH.

La tension de la pile ENiCd = E+−E− est donc indépen-
dante du pH.

La tension de la pile ne dépend donc pas de la concen-
tration en potasse.

3—  Étude de la recharge

q 8 — La recharge consiste à provoquer les réactions
inverses des réactions de fonctionnement de la pile :

Pôle⊕ : on a l’oxydation

2Ni(OH)2 +2HO− −−→ Ni2O3 +3H2O+2e−

et l’électrode est alors une anode.

Pôleª : on a la réduction

Cd(OH)2 +2e− −−→ Cd+2HO−

et l’électrode est alors une cathode.

U

ª ⊕
Ie−

Cd(OH2)

Cd

Ni2O3

Ni(OH)2

paroi
poreuse

q 9 — La réaction réalisée pendant la charge est l’in-
verse de la réaction de fonctionnement de la pile, soit

Cd(OH)2 +2Ni(OH)2 −−→ Cd+Ni2O3 +3H2O .

q 10 — Pour recharger l’accumulateur, il faut appli-
quer Umin > ENiCd .

q 11 — Cette valeur peut être augmentée de façon si-
gnificative par deux phénomènes :

— l’existence de surpotentiels anodique et cathodique,
si les systèmes sont lents ;

— la résistance interne de la pile qui cause une chute
de potentiel ohmique.
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