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Sujet « difficile » — solution

Partie | - Etude d’une éolienne (ENs Lyon PC 2016)

Conversion de puissance d'un aérogénérateur. Limite de Betz.

01— Le vent cédant de 'énergie a 1'éolienne, sont
énergie cinétique diminue entre I’amont et I’aval du ro-
tor, d’ol1 7 < v;.

Lair étant considéré comme incompressible, le débit
volumique est conservé, soit Sy vy = Savy,.

On en déduit | S» > S; |: le tube de courant s’évase.

02— Le débit massique s’écrit
m =pS1v1=pSv=pS0, .

Détermination de la vitesse v.

U 3 — On définit un systeme fermé associé a la portion
(1,2]

alinstant r: fluide dans la portion [1,2] et la masse
6my = g dt de fluide qui y entre entre ¢ et £ +d¢;

alinstant £+ dz: fluide dans la portion [1,2] et la masse
6my = gm dt de fluide qui y sort entre ¢ et ¢ +dt.

La quantité de mouvement du systéme fermé s’écrit
— —> —>
P(t)= P+ 6m71 =Pup2 () +gm dtT/)l
et de méme
— — 5
P(t+dt) = P[Lg](t-i-dl') +gmdt vy,

—
oll P19 est la quantité de mouvement de la portion
(1,2].

z . , . . - -
Lerégime étant stationnaire, Py 2 (¢£+dt) = Py1,2(¢). On
adonc

P(t+dD) - P(D) = gmdt(T2— 1)

DP _ P(t+dn-P()
Dr de

= qm(T/)Z - Tf»l) .

Les actions exercées sur le fluide du systéme fermée
sont:

R
la force de pression en amont F;

—>
— la force de pression en aval F»;

. , =g
la force de pression sur la surface latérale Fiy;
—
la force exercée par le rotor sur l'air Fy ;.

Le poids est négligé.
Laloi dela quantité de mouvement appliqué au systeme
fermé s’écrit
R
DP — — — — -
Dr =F1+Fy+ F1+ Flat+ Fya.

Au niveau des surfaces S; et Sy, la pression vaut pg. La
surface fermée S; U Sy U pSia¢ est donc soumise a une
pression uniforme, d’ ot

?1+F2+?1+f]at=6>.

On adonc
> > - o
gm(V2— V1) =0+ Fy/a.

La force exercée par le rotor sur 'air vaut donc
= — —
Frja=qm(v2—vy) .

U4 — Lécoulement est parfait, stationnaire, homo-
gene et isotrope. On peut appliquer le théoreme de Ber-
noulli sur une ligne de courant entre les sections (1) et
(E). Le poids étant négligé, on obtient

+ U%— + v
Po PZ—PE Pz-

De méme entre les sections (S) et (2) on obtient
+ v? =po+ Ug
ps P2 = Po PZ-

On en déduit
pe=po+S(f-v?) et ps=po+S(v5-v?) .

U5 — Connaissant les pressions s’appliquant sur les
surface (E) et (S), on peut faire un bilan de quantité de
mouvement en considérant la surface de controle entre
les sections (E) et (S).

La surface de controle X qui définit le systéme ouvert est
délimitée par les sections Sg et Sg.

Le systeme fermé associé est défini comme suit :

alinstant ¢ : fluide compris entre Sg et Sg, et la masse
Odmpg = qm dt de fluide quiy entre entre ¢ et t +d¢;

alinstant r + d¢: fluide compris entre Sg et Sg, et la
masse dmg = gmdt de fluide qui y sort entre ¢ et
t+dt.

La quantité de mouvement du systeme fermé s’écrit
— — >
P(t)=Px(t)+ qmdt VE

et
P(t+dp) = Ps(t+dD) + gmdt Ts,

N
ou Py estla quantité de mouvement du fluide contenu
dans entre Sg et S;.



Le régime étant stationnaire, f;z(t +dpn = 3;(1‘). On a
donc
P(t+df)— P(t) = gmdt(Vs— Vg)
d’ou
DP _P(t+dn-P ()

Dr dr = Im(Vs = VE).

Comme vg = vg = v, on a finalement

DP
-~ -7.

Dt

Les actions exercées sur le fluide du systeme fermé sont :

N
la force F./, exercée par le rotor;

N
— la force de pression en amont Fpe, = PESE =
—
peSeéx;
. - —
— la force de pression en aval Fs = —psSsex =

=
—psSeéx;

N
la force de pression sur la surface latérale Fiy.

L, . —> —>
Par symétrie,ona Fig;= 0.
La loi de la dynamique s’écrit alors

P 0=( )Sex+ F
_— = — e .
Dt PE—Ps X r/a

On a donc
Fyja=(ps— pE)S?x .

On peut utiliser les expressions établies précédemment
al’aide du théoréme de Bernoulli pour exprimer

S S R
Fiat = %(vg— v €y .

16— Onadonc

= PS 2 2\ —=> - —
Flat—7(1/2_1}1)ex—qm(yz_vl)ex—pSV(VZ_VI) €y

comme gy, = pSv.
En remarquant que vg - vf = (v2 — 1) (V2 + v7) il vient

pS
7(112 —v) (w2 +v1) = pSv(ve—v1)

V1 + U2
U= .
2

Puissance transférée de I'écoulement a I’éolienne et
rendement de la conversion.

Q7 — On raisonne sur le systeme fermé défini a la
question 3.
Son énergie mécanique a l'instant ¢ est

1
Em(D) =&En(0)+ E(SI’I’IV%
soit comme é6m = pS v dt:

1
Em(t) = E[LQ](I) + 5[)51 U%dl’
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en ne considérant pas|’énergie potentielle de pesanteur
(le poids est négligé).
Alinstant ¢ +d¢ elle vaut
1
Em(t+de) =Epo(t+dD) + E(vag
soit comme dm = pSyvodt :

1
Em(t+dt) = E[LQ](I) + EPSZ Ugdt.

On a & 2(t+dt) = €;1,2)(8) car le régime est station-
naire.

Avec dm = g dt, on adonc
_ _1 3_g 3
Em(t+di) 8m(t)_2p(82v2 Sivy)de,
d’ou

DE€m _ Em(t+dN—Em() _ 1 (S0
Dr dt B LA

- S11}).

Le théoreme de I'énergie mécanique s’écrit

D(gm

= Pext + Pint.
Dt ext int

Le fluide étant parfait, on a Pj,¢ = 0 (pas de puissance
interne dissipée par viscosité).

Les forces extérieures fournissant une puissance au sys-
téme sont :

— laforce de pression en amont fl = poS1 €, qui four-
nit
:Pl = f1'71 = poSll}l;
— la force de pression en aval Fg =—-poSy ¢ qui four-
nit
:Pz = T:")z '72 = —]90821)2;

— le rotor qui fournit la puissance P que I'on cherche a
exprimer.

On a donc

1
EP(SZ vy —S103) = poS1v1 — poSavz + P

1
P= 5[)(821/:23 -8 Uii}) - pOSI V1 + poSg Vo.

Ona gy =pS1v1 =pS2v2,donc S;v; = Savs et
1 3 3
93—2;0(821/2 S1v7) .
Comme pS;v; = pS2v2 = g, ON peut écrire
_1 2 2
fP—Eqm(v2 vy) .
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8 — Considérons I'air incident de vitesse v;. L'éner-
gie cinétique traversant pendant d¢ la section S de I'éo-
lienne, en 'absence de cette derniére est

1
dE¢inc = Eqmolwf.
Avec qm =pSvi,0na
1 3
dE¢inc = Edetv1 dr.

On adonc

dr

La grandeur P* représente donc la puissance cinétique
qui traverserait la section S en I'absence de I'éolienne;
on peut l'interpréter comme la puissance maximale dis-
ponible pour I'éolienne.

19— Le rendement de 1'éolienne relativement a P*
peut étre défini par

+ Duissance cinétique fournie aI’éolienne

puissance cinétique disponible

La puissance cinétique fournie a I'éolienne de la par tde
l'air est —P; on peut donc écrire

P
+—_—
T] - ﬂ)* .

Avec les expressions précédentes, on a donc

= pSv3
Avec
V1 + 0o
Gm=pSv=pS—
ona
. pS(v1 + vg)(vf— v§ _(n+ Ug)(vf— v%)

3 3
2pSv; 20y

En posant r = v,/ vy, on obtient
nt = %(1 +r)(1-r9).

On peut développer I'identité remarquable
1-r*=1+n1-7),

ce qui permet d’écrire

nt= %(1+r)2(1—r) )

Q10— Onao0<r<l1.
1
Les valeurs extrémes sont n* (0) = 2 etn*(1)=0.

On calcule
dn® 1

- _ _ 2
" 2[2(1+r)(1 r)—(1+r7]

:%(1+r)[2—2r—1—r]
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soit
%

dn
dr

= %(1+r)(1—3r).

1
La dérivée est nulle pour rpy, = 3 et le rendement pré-

sente le maximum

0 1/3 1 r

U 11— Lecasr =1 correspond au cas ou1 v = v; : I'éo-
lienne ne perturbe pas I'’écoulement de I'air et ne pré-
leve aucun puissance.

Le cas r = 0 correspond au cas ou v, = 0 : le débit serait
nul.

La situation optimale est pour 1y, = 1/3 soit vp = v1/3:1a
vitesse du vent est divisée par 3. On a alors le rendement
maximum 7y, =59% .
Quelques remarques :

(v1+ v2) (V] — v3)
2v3
mente d’autant plus que 'on freine le vent (diffé-
rence v% - vg grande); mais dans ce cas, v, est plus
faible, et le débit proportionnel a v; + v, diminue, ce
qui fait baisser le rendement. On a donc une compé-
tition entre deux termes, d’out un rendement maxi-

mal pour une valeur intermédiaire de r;

— on a n* = . Le rendement aug-

pour ry, = 1/3, la section de sortie est trois fois plus
grande que la section d’entrée;

la courbe est assez plate au voisinage de r, : le ren-
dement reste bon méme quand on s’éloigne de I'op-
timum.

Quelques remarques sur le cadre de I'étude.

U 12— La section du tube de courant se modifie as-
sez rapidement au niveau du rotor. Comme la vitesse
est tangente au lignes de courant, on ne peut considé-
rer une vitesse purement axiale au niveau du rotor. C’est
donc une hypotheése forte.

U 13 — Entre les sections (E) et (S), le fluide n’est pas
soumis qu’aux forces de pression : il y a des piéces mo-
biles (le rotor) qui échangent une puissance mécanique.
On ne peut donc y appliquer le théoréme de Bernoulli.

U 14 — En pratique, c’est la forme des pales qui déter-
mine le rapport r.
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Partie Il - Ondes et vagues : aspects énergétiques (Agrégation interne physique-chimie 2025)

1 — Etude du mouvement de la houle en eau peu
profonde

U1 — Larelation de 'hydrostatique s’écrit
gradp=pg=-pge;.

En projetant selon (Oz) on a donc

ap)
3 =-p§.
(Oz oyt

On integre par rapport a z, les autres variables étant
fixées :
p(x,z,t)=—pgz+ A(x, 1)

la « constante » d’intégration dépendant a priori des
autres variables, soit x et ¢ (le probléme est indépendant
de y par hypothese).

Ecrivons que la pression a la surface libre vaut py :
po=—-pgIH+n(x, )]+ A(x,1).
On en déduit A(x, ) = po + pglH +n(x, t)], d’out
p(x,z,0)=po+pg[H+nx,1)-z] .

U2 — Léquation de la dynamique appliquée a une
particule de fluide de masse dm = pdr s’écrit

pddr=—-gradpdr +pgdr,

avec > 57 07
- Dv v, — [
a=—=—+(v-grad)v = —

Dt ot g ot
en linéarisant, soit
s

oV _ radp+pg
pP5; = 8radp+ps.
En projetant selon (Ox), on obtient

dvx(x,1) _ 0p(x,z,1)
or ox

03— D’apres l'expression de p(x,z,t) obtenue a la
question 1, on a

op B on(x,t)
ox ox
On a donc
Ovy(x,t) on(x, 1)
ar P8 ox
d’ol
0vy(x, b) on(x,t)
=— . 1
o1 § ox ()
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U4 — La masse d’eau dans la tranche d’épaisseur dux,
de largeur L et de hauteur H +1n(x, t) est

m(x, 1) = pL[H+n(x, )] dx .
Sa variation temporelle est donc

om(x, ) on(x, t)
= ol
or Pl I

U 5— La masse qui entre dans le volume de contréle
en x par unité de temps est donnée par le débit mas-
sique a travers la section L[H + n(x, )], soit

Ome

g " Pun 0L [H+n(x, 0]
d’out

Sme = pvx(x, )L[H+n(x, )] dt .

U 6 — La masse qui sort dans le volume de contrdle en

X par unité de temps est donnée par le débit massique a
travers la section L[H + n(x + dx, t)], soit

omsg
dr

= pux(x+dx, )L[H+n(x+dx,1)]
d’ou
dms=puy(x+dx, )L[H+n(x+dx, )] dt .

U7 — Le bilan de masse pour le volume de contréle
s'écrit
om(x,t) Ome Omyg
or  dt dt

soit

on

L
P

dx=pvy(x, )L[H+7n(x,1)]

—pvx(x+dx, )L[H+n(x +dx, 1)]
=pLH[vy(x,t) — vx(x+dx, 1)]
—pL[vx(x, ON(x, 1) — vx(x+dx, On(x + dx, 1)]
0vy 0(vxn)
0x

:—pLHde—pL dx.

Les grandeurs v, et n étant des infiniment petits du

0(vym)
méme ordre, le terme il

est un infiniment petit

X
d’ordre deux. A I'ordre le plus bas, en ne gardant que le
terme du premier ordre, on obtient donc
on 0vy
L—dx=-pLH—d
PEr X T TP
soit
0vx(x, 1) 1 0nx,1) @)
ox  H or
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08 — Dérivons I’équation (2) par rapporta ¢ :

*n 3 0%,
a2~ arox”
Dérivons I’équation (1) par rapporta x :
0%, %n
oxor  Sox?
v,  0°vy ., . R
Sgr:me %0 ~ 9iox d’apres le théoreme de Schwarz,
on_ . 0
oz = 852
soit

*n(x, 1) 1 8°n(x, 1)
0x2  gH o
On retrouve 'équation de d’Alembert.
09— Ecrivons que 1(x,t) = ngcos(wt — kx) vérifie
I’équation d’onde précédente :
L
—k*n(x, 1) = —wzm
gH

d’oui la relation de dispersion

)
Q10— Lavitesse de phase est définie par v, = —, d’ou

k
v(p:\/gH.

La vitesse de phase ne dépend pas de la pulsation w de
I'onde : le phénomene de propagation n’est pas disper-
sif.

2 — Aspects énergétiques

Q11 — Lorsque 'on écrit que I'énergie potentielle de
pesanteur Epp d'un systeme de masse m est donnée par
Epp = mgz+cte, la cote z est celle du centre de masse
du systéme.

U 12— Lorigine del'énergie potentielle étant prise ala
cote z = H, i.e. lorsque 1(x, t) = 0, 'énergie potentielle
de la tranche de fluide d’épaisseur dx est associée a la
masse de fluide qui s’écarte de la cote z = H.
Considérons i > 0. La masse de fluide au-dessus de la
surface libre au repos est

dm=pLn(x,t)dx.

La hauteur de son centre de masse (situé au milieu) par
rapport a la cote de référence z = H est /2.
L'énergie potentielle de cette masse est donc

1 ,t
dEpp (x, 1) = 6mg% =pLn(x,t) dxn(z ) ,
soit
2
X, t
dEpp(x, 1) = ngde ,
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» On a dEpp(x,t) > 0 méme sin <0, ce qui peut pa-
raitre contre-intuitif.
Si n <0, il faut retirer la masse 6m = pL|n(x, t)| dx
a la colonne de fluide au repos. On revient donc
a «ajouter » au fluide au repos la masse négative
—6m=—pL|n(x,1)| dx = pLn(x, t) dx comme 7 < 0.
Son énergie potentielle est alors dEp, =
-omgn(x, t)/2 et on retrouve 'expression établie.

U 13— Avecn(x,t) =ngcos(wt—kx),ona

pgL

dEpp(x, 1) = Tn(z) cos?® (wt—kx)dx.

La densité linéique d’énergie potentielle est donc

dEy,(x, ¢ L
pgi ): pg n%cosz(wt—kx).

Comme (cos?(wt — kx)) = 1/2, sa moyenne temporelle
est

_ pgLn

(e) 7

14 — La tranche de fluide considérée a une masse
Sm=pL[H+n(x, 1] dx.

Le fluide ayant la vitesse v (x, t), son énergie cinétique
est

dEc(x, 1) = %Sm (V2 (x, 1)
soit
dE.(x,0) = %L [H+n(x, 0] (vx(x, ) dx.

Comme 7)(x, t) et vy(x, t) sont des infiniment petits du
méme ordre, on obtient a I'ordre le plus bas

pL
2

dE.(x,t) = H (x(x, £)* dx .

U 15— Avecn(x, t) =ngcos(wt—kx) ona

on(x,t)
0x

=noksin(wt— kx)

et’équation (1) donne

0vy
X _opaksin(wt—kx).
. gnoksin(w X)

En intégrant par rapport au temps, on obtient

k
vy(x, 1) = 8Nk cos(wt—kx) |.
w

» La «constante » d’intégration par rapport a ¢ est a
priori une fonction de x : B(x). Un tel terme n'a au-
cun caractere ondulatoire; on le prend donc nul.
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Avec la relation de dispersion k =w/+\/gH,ona

8Mo

N

Ux (X, 1) =10y / %cos((ut— kx) |.

116 — Lénergie cinétique de la tranche de fluide
s’écrit alors

ve(lx, )= cos(wt —kx)

soit

LH
dE.(x,t) = an%% cos?® (wt—kx)dx
L 2
= PE-To cos?(wt — kx)dx.

La densité linéique d’énergie cinétique est donc

dEc(x,1) _ pgLn;

e cos®(wt — kx).

K(x,t) =

Sa moyenne temporelle vaut alors

pgLny
Ky =—.
(K) n
Q17 — Onremarque que | {e) = (k) .
Cette égalité traduit I'équipartition en moyenne de
Iénergie mécanique sous les formes potentielle et ci-
nétique.
1 18 — La densité linéique moyenne totale est donnée
par (w) = (e) + (x), soit

pgLmg
Wty |
W 19— On suppose que I'énergie se propage a la célé-
rité de I'onde vyarphi.
Pendant d¢, 'onde se propage d'une distance dx =
vy dr. Lénergie propagée pendant d est donc I'énergie
contenue sur cette longueur dx, soit

(dW) =(w)dx = w)v,dt.
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La puissance transport vaut alors

(dw)
(ﬂ)) = T = <W>V(p.

Par unité de largeur de front, on obtient la puissance

moyenne

_P_wiv
(Pry= A A

Avec les expressions obtenues, on a

pgLnj;
Pry=—" 0\VgH

soit
2
Py = [
<{J)L>_T H g3 .

U120 — Ladimension d'une énergie est [W] = MIL2T2,
Celle d’'une puissance est donc [P] = ML?T~3.

La puissance par unité de longueur a donc comme di-
mension

[Pr] = MLT 3.
Ona
[p]=ML™*; [g]=LT* et [no]=L.
On adonc
png\/ﬁ@ =ML L2V 213218 = ML- T3,

Lexpression obtenue est bien homogene.

121 — Pour L =1m, on calcule

3 2
(P)) = w x V100 x V'10°.

soit
(P1)=20,5kW .

U 22 — L'énergie fournie pendant un jour, soit 24 h est
W =20,5 x 24 =492 kWh.

On peut donc alimenter 492/12 foyers par ce dispositif,
soit 41 foyers.
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Partie lll — Accumulateur cadmium-nickel (e3A mp 2023)

1 — Généralité

U 1— On calcule les nombres d’oxydations :

espece | Cd(s) | Cd(OH),(s) | Ni(OH),(s) | Ni,O4(s)
n.o. 0 1I 1I 111

U2 — On a deux nombres d’oxydation a envisager : 0
pour Cd(s) et Il pour Cd** et Cd(OH),(s).

L'espéce Cd sera dans la partie basse du diagramme,
tandis que les deux deux seront dans la partie haute.

Au degré 11, la cation Cd?** a son domaine pour les pH E V)

acides, tandis que Cd(OH),(s) a son domaine pour les
pH plus élevés.

Frontiére Cd?*/Cd(OH) 2

L'équilibre de précipitation entre les deux espéces est

Cd(OH), = Cd** +2HO™.

Ona
Ksp = [CA*T1[HO™]2.

Ala frontiere, on a Ky, = ¢o[HO™JZ, d’olt
[HO 1 = vKs2co = 108 mol - L7 1.
On en déduit
pHj, = 14 +1log [HO ],

soit | pHg, = 8,0  pour la frontiere verticale entre Cd** et
Cd(OH),.

Frontiere Cd?*/Cd

L'équation électrochimique est

Cd*t +2e” = Cd(s).

La loi de Nernst s’écrit alors

Cd2+
E = E°(Cd**/Cd) + 0,0?)log( [Cd™] ) )
CO
Ala frontiere, on a [Cd**] = ¢y =1x 1072 mol-L™!, d’ol1
Ep=—0,46V|.

Frontiere Cd(OH),/Cd
L'équation électrochimique est

Cd(OH), +2H" +2e~ = Cd+2H,0.

La relation de Nernst s’écrit

] [H*]?
E = E°(Cd(OH),/Cd) +0,03log o8

soit pour la frontiére

Ef = E°(Cd(OH),/Cd) — 0,06pH.
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Le potentiel standard E°(Cd(OH),/Cd) n’est pas donné.
Le plus simple pour tracer le graphe et d’utiliser la conti-
nuité de la frontiere entre Cd(0) et Cd(II) a pH = 8,0, soit

-0,46 = E°(Cd(OH),/Cd) — 0,06pH

d’ott E°(Cd(OH),/Cd) = 0,02 V; I'équation de la fron-
tiere est alors

E =0,02—0,06pH .

Cd** Cd(OH),

Cd

2 — Etude de la décharge

U 3 — En superposant les diagrammes E-pH du cad-
mium et du nickel, on constate que Cd et Ni, O, ont des
domaines disjoints. On en déduit la réaction spontanée
de fonctionnement de la pile.

anode: oxydation de Cd en Cd(OH), selon
Cd+2HO™ — Cd(OH), +2¢~ .

On équilibre les charges avec HO™ et non avec H*
car on est en milieu trés basique (pH = 14).

cathode: réduction de Ni, O, en Ni(OH), selon
Ni,O; +3H,0+2e~ — 2Ni(OH), +2HO™ .

On obtient la réaction de fonctionnement de la pile en
éliminant les électrons :

U4 — Le potentiel du couple Ni,O,/Ni(OH), a pH = 14
est donné par

E,=1,02-0,06x14

soit | EL =0,18V .
Le potentiel du couple Cd(OH),/Cd a pH = 14 est donné
par

E_=0,02-0,06x 14

soit | E_=-0,82V|.
La différence de potentiel de la pile est alors

Enica=1,0V .
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05— Laréaction de fonctionnement de la pile fait in-
tervenir I'’échange de n = 2 électrons. On a donc

AG® = —nFEnicd = —2FEnicd,

soit
A:G° =—-193kJ-mol ™! .

On calcule I'enthalpie standard de réaction :
ArH® = AfH°(Cd(OH), + 2AsH°(Ni(OH), — AfH°(Cd)
— AfH°(Ni,O4) —3A¢H®(H,0)

soit
AH® =-273,7k] -mol ™! .

Lentropie standard de réaction se déduit de la relation
A:G° = A H®° — TA,S°,
d’our
AS°=-271]-K '-mol™! .
16 — Dans 'approximation de Ellingham, on a
ArG°(T) = ArH® — TAS°.
Comme A;G = —2FEyjcd, on en déduit

ArH°
2F

ArSO
2F

ENicd = —

On a A;S° <0, donc Eyjcq est la tension diminue quand
la température augmente.

Q7 — D’apres la question précédente, on a

dEnica _ ArS°
N T - 14x107% VgL
dT ~ 2F

Cette valeur est faible : une variation de 10 °C de la tem-
pérature ambiante entraine une variation de 1,4 mV de
la tension de la pile, soit 1,4 %.

La concentration en potasse K(OH) fixe le pH du milieu
(par [HO™)).
D’apres la question 4, on a

E,=1,02-0,06xpH et E_=0,02-0,06xpH.

La tension de la pile Enjcq = E+ — E- est donc indépen-
dante du pH.

La tension de la pile ne dépend donc pas de la concen-
tration en potasse.
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3 — Etude de la recharge

U 8 — La recharge consiste a provoquer les réactions
inverses des réactions de fonctionnement de la pile :

Péle @ : on al’oxydation
2Ni(OH), + 2HO™ — Ni, 04 +3H,0 +2e~

et I’électrode est alors une anode.

Pole ©: on alaréduction
Cd(OH)2 +2e” — Cd+2HO™

et I'électrode est alors une cathode.

Ni,O,

paroi
poreuse

9 — La réaction réalisée pendant la charge est 'in-
verse de la réaction de fonctionnement de la pile, soit

U 10— Pour recharger 'accumulateur, il faut appli-
quer | Umin > Enicd -

U 11 — Cette valeur peut étre augmentée de facon si-
gnificative par deux phénomenes :

— lexistence de surpotentiels anodique et cathodique,
si les systemes sont lents;

— la résistance interne de la pile qui cause une chute
de potentiel ohmique.
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