
CPGE PSI 2025-2026 L y c é e J e a n P e r r i n E. SAUDRAIS

DS no 5 Sujet « facile »— solution

 Partie I— Un peu d’aviation, beaucoup de physique (Mines PC 2011)

 Les premiers avions, quelques connaissances de base

q 1 — D’après la relation de Bernoulli, l’augmentation
du débit d’air entraîne une diminution de la pression.
Si le débit est plus important au voisinage de l’extrados
qu’au voisinage de l’intrados, la pression est plus impor-
tant sur l’intrados que sur l’extrados; la résultante des
forces de pression est donc « vers le haut » et s’oppose
au poids.

ä Cet argument est fort discutable. On fait d’ailleurs
étudier par la suite une aile plane telle que le débit
est le même près de l’extrados et près de l’intrados !

q 2 — La portance compensant le poids, on a

mg = Fp =CP(0)
µV 2

2
S

d’où

CP(0) = 2mg

µV 2S
.

On calcule CP(0) = 0,85 .

q 3 — L’avion se déplaçant à une vitesse de module
constant, son énergie cinétique reste constante. Le
théorème de la puissance cinétique s’écrit alors

0 =P−Ft,totaleV

où Ft, totale est le module de la traînée totale. La traînée
totale de l’avion étant due pour les deux tiers aux ailes,
on Ft,totale = 3

2 Ft, d’où

Ft = 2P

3V
.

On en déduit

CT(0) = 4P

3µV 3S
.

On calcule CT(0) = 0,10 .

q 4 — Le débit massique du fluide dévié par l’aile
s’écrit

Dm =µSV =µLhV .

q 5 — La conservation du débit massique s’écrit

µLhV =µLh′V ′ .

On a d’après le schéma h′ = h

cosα
, d’où

V ′ =V cosα .

q 6 — Le système Σ∗ constitué de l’air compris entre
les sections S et S′ est un système ouvert. On définit le
système fermé Σ(t ) associé :

— à t , Σt est constitué de la réunion de Σ∗ et de la
masse Dm dt d’air rentrant à travers S entre t et
t +dt ;

— à t +dt , Σt +dt est constitué de la réunion de Σ∗ et
de la masse Dm dt d’air sortant à travers S′ entre t et
t +dt .

En notant
#»
P ∗ la quantité de mouvement constante

(l’écoulement est stationnaire) de Σ∗, la quantité de
mouvement de Σ vaut :

#»
P (t ) = Dm dt

#»
V + #»

P ∗

et
#»
P (t +dt ) = Dm dt + #»

P ∗ .

On en déduit le taux de variation

D
#»
P

Dt
= Dm[

#»
V ′− #»

V ] .

Le système est soumis :

— à la résultante des forces de pression extérieure,
nulle car P0 est uniforme;

— à la force
#»
F a/e exercée par l’aile.

Le bilan de quantité de mouvement s’écrit alors

Dm[
#»
V ′− #»

V ] = #»
F a/e .

On en déduit

#»
F a/e = Dm[V ′ cosαêx −V ′ sinαêy −V êx ]

= Dm[V (cos2α−1)êx −V cosαsinαêy ]

=−DmV [sin2αêx − sinαcosαêy ] ,

soit

#»
F a/e =−µLhV 2 sinα[sinαêx +cosαêy ] .

ä On remarque que l’on peut écrire

#»
F a/e =−µLhV 2 sinα#»n

où #»n = sinαêx + cosαêy est le vecteur unitaire nor-
mal à l’aile « vers le haute ». Cette force est normale
à l’aile, ce qui est attendu car on a négligé les frotte-
ments.
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q 7 — On a
#»
F e/a =−#»

F a/e, d’où

#»
F e/a =µLhV 2 sinα[sinαêx +cosαêy ]

= µLℓV 2

2

(
Cx êx +Cy êy

)
.

Par identification, on en déduit

Cx = 2
h

ℓ
sin2α et Cy = 2

h

ℓ
sinαcosα ,

soit en posant λ= h/ℓ

Cx = 2λsin2α et Cy = 2λsinαcosα .

q 8 — Il s’agit d’éliminer λ en combinant les expres-
sions de Cx et Cy .

On peut écrire d’une part Cy =λsin2α, d’où

sin2α= Cy

λ
.

D’autre part Cx =λ(1−cos2α), d’où

cos2α= 1− Cx

λ
.

La relation
cos2 2α+ sin2 2α= 1

s’écrit alors (
Cy

λ

)2

+
(
1− Cx

λ

)2

= 1,

soit
(λ−Cx )2 +C 2

y =λ2 .

Il s’agit de l’équation paramétrée d’un cercle de centre
(λ,0), de rayon λ.

Pour α= 0, on a Cx = 0 et Cy = 0.

Pour α=π/2, on a Cx = 2λ et Cy = 0.

Cx

Cy

2λ0 λ

λ

α= 0 α=π/2

αc =π/4

q 9 — La portance s’identifie ici à la composante de
#»
F e/a selon êy , soit

CP(α)
µV 2

2
S = µLℓV 2

2
2λsinαcosα .

Le coefficient de portance est donc de la forme

CP(α) = 2Lℓ

S
sinαcosα= Lℓ

S
sin(2α) .

On retrouve les deux propriétés évoquées :

— pour les faibles valeurs de α, on a CP(α) ≈ Lℓ

S
2α.

Le coefficient de portance est une fonction linéaire
de α ;

— le coefficient de portance est maximum pour

αc = π

4
. Au delà de cette valeur, CP diminue, ce qui

correspond au phénomène de décrochage.

q 10 — La tangente à la polaire est horizontale pour
α=αc : diminuer α revient donc à diminuer de façon si-
gnificative la traînée (l’abscisse Cx diminue) en gardant
une portance (l’ordonnée Cy ) à peu près constante. On
aura donc intérêt à se placer dans un domaine intermé-
diaire entre 0 et αc :

— se placer proche de αc augmente la traînée sans aug-
menter la portance;

— se placer proche de α= 0 diminue la traînée, mais la
portance aussi tend vers zéro. . .

q 11 — Pour perdre de l’altitude, le pilote peut :

— diminuer l’angle α ce qui diminue la portance;

— diminuer la vitesse (la force de portance varie
comme V 2) ;

— augmenter la surface S de projection de l’aile en ou-
vrant des volets.
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 Partie II— Ondes élastiques dans les milieux solides (E3A 2007)

1—  Propagation d’onde longitudinale dans une barre

q 1 — Le terme
∂u

∂x
est sans dimension, donc [Fg] =

[E ]L2. Le module d’Young a donc la dimension d’une
pression (force surfacique).

En considérant une tranche dont l’épaisseur tend vers 0,
sa masse tend alors vers 0 et le principe fondamentale
de la dynamique s’écrit

#»
0 = #»

F g + #»
F d .

On a donc
#»
F d =−#»

F d .

q 2 — En présence de l’onde, la tranche initialement
comprise entre les abscisses x et x + dx est comprise
entre les abscisses

x +u(x, t ) et x +dx +u(x +dx, t ) .

Son volume vaut alors

dV ′ = S[x +dx +u(x +dx, t )−x −u(x, t )]

= S

[
dx + ∂u

∂x
dx

]
= S

[
1+ ∂u

∂x

]
dx .

On a donc dV ′−dV = S
∂u

∂x
dx = ∂u

∂x
dV , d’où

δ= ∂u

∂x
.

q 3 — Le principe fondamental de la dynamique appli-
qué à la tranche considérée s’écrit

ρS dx
∂2u

∂t 2
#»e x = #»

F g(x, t )+ #»
F d(x +dx, t ) ,

soit en projetant selon #»e x :

ρS
∂2u

∂t 2 dx =−E
∂u

∂x
(x, t )S +E

∂u

∂x
(x +dx, t )S

= ES
∂2u

∂x2 dx .

On a donc
∂2u

∂t 2 − E

ρ

∂2u

∂x2 = 0.

Le déplacement vérifie l’équation de d’Alembert

∂2u

∂x2 − 1

C 2

∂2u

∂t 2 = 0 avec C =
√

E

ρ

2—  Liaison inter-atomique et module
d’Young

q 4 — On a

#»
F = F (r ) #»u =−#      »

gradEp =−dEp

dr
#»u

d’où

F (r ) =−2λ

r 3 + 10µ

r 11 .

L’équilibre correspond à F (r0) = 0, d’où

r 8
0 = 5µ

λ
.

q 5 — On calcule

µ= λ

5
r 8

0 = 0,37

5
(0,274)8

soit µ= 2,35×10−6 eV ·nm10 .

On a Ep(r0) =−3,94 eV .

La grandeur Ep(r0) représente l’énergie nécessaire pour
casser la liaison entre deux atomes voisins au sein du
réseau métallique.

q 6 — En écrivant Ep(r ) = µ

r 10 (1−λr 8), on a

lim
r→0

Ep(r ) =+∞ .

On a lim
r→∞Ep(r ) = 0, par valeurs négatives car

Ep(r ) =− λ

r 2

(
1+ µ

r 8

)
≈− λ

r 2 < 0.

L’extremum est

Ep(r0) =− λ

r 2
0

(
1− µ

λr 8
0

)
=− λ

r 2
0

(
1− 1

5

)
=− 4λ

5r 2
0

< 0.

On peut tracer le graphe de E·p(r ).

r (nm)

Ep (eV)

r0

Pour r < r0, Ep(r ) est une fonction décroissante, donc
F (r ) > 0.

Pour r > r0, Ep(r ) est une fonction croissante, donc
F (r ) < 0.

La force entre les deux atomes est attractive pour r > r0

et répulsive pour r < r0.
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q 7 — Au voisinage de r0, on peut écrire

F (r ) = F (r0)+ (r − r0)F ′(r0) = (r − r0)F ′(r0)

car F (r0) = 0 (position d’équilibre). On a donc F (r ) =
−K (r − r0) avec

K =−F ′(r0) =−6λ

r 4
0

+ 110µ

r 12
0

=−6λ

r 4
0

+ 110λ

5r 4
0

=−80λ

5r 4
0

soit K = 16λ

r 4
0

.

On a

λ = 0,37 eV ·nm2 = 0,37×1,6×10−19 × (10−9) J ·m2 .

On calcule K = 10,5 N ·m−1 .

q 8 — La diagonale d’une maille cubique de côté a est
d = a

p
3. L’atome central étant à la distance r0 des som-

mets (ses plus proches voisins), on a d = 2r0.

On en déduit a = 2p
3

r0 . On a a = 0,316 nm .

q 9 — Dans le système cubique centré, on a 1+8× 1
8 soit

2 atomes par maille. ‘ Le volume d’une maille est a3, sa
masse 2m. On a donc

ρ = 2m

a3 .

q 10 — On a

C =
√

K

3m
a =

√
E

ρ
a ,

d’où

E = Kρa2

3m
= 2mK a2

3ma3

soit

E = 2K

3a
.

On a d’une part K = 16λ

r 4
0

et d’autre part a = 2p
3

r0. On

en déduit

E = 2

3

16λ

r 4
0

p
3

2r0
,

d’où

E = 16p
3

λ

r 5
0

.

q 11 — On calcule E = 2,2×1010 Pa .

3—  Étude des ondes sismiques terrestres

q 12 — L’onde, de célérité C1, se propage sur une dis-
tance x en un temps

τ1 = x

C1
.

q 13 — La distance parcourue est

d = 2×
√

h2 +
( x

2

)2
.

Le temps de parcours est donc τ2 = d/C1, soit

τ2 =
p

x2 +4h2

C1
.

q 14 — Le cas où l’onde réfractée se propage le long de
l’interface correspond à r =π/2, soit sinr = 1. On a alors

sinα= C1

C2
.

On a x = PP ′+2h tanα.

Pour que cette onde puisse être détectée, il faut PP ′ > 0,
soit

x > 2h tanα= 2h
sinα√

1− sin2α
= 2h

C1
C2√

1− C 2
1

C 2
2

On a donc

xm = 2h
C1√

C 2
2 −C 2

1

.

q 15 — L’onde parcourt la distance PP ′ à la célérité C2

et la distance SP +P ′M à la célérité C1. On a

SP = P ′M = h

cosα
= h√

1− C 2
1

C 2
2

.

D’autre part

PP ′ = x −xm = x −2h

C1
C2√

1− C 2
1

C 2
2

.

Le temps de propagation est

τ3 = 2
SP

C1
+ PP ′

C2

= 2
h

C1

√
1− C 2

1

C 2
2

+ x

C2
−2

h

C2

C1
C2√

1− C 2
1

C 2
2

= x

C2
+ 2h

C1

1− C1
C2√

1− C 2
1

C 2
2

soit

τ3 = x

C2
+ 2h

C1

√
1−

(
C1

C2

)2

.
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q 16 — Le graphe de τ1(x) est une droite passant par
l’origine, de pente 1

C1
.

Le graphe de τ3(x) est une droite de pente 1
C2

< 1
C1

, d’or-

donnée à l’origine 2h cosα
C1

.

Ep

x

τ3(x)

τ1(x)

τ2(x)

2h
C1

cosα

2h
C1

xi ≈ 100 km

q 17 — La pente de la droite passant par l’origine est

1

C1
= 23

150
s ·km−1

d’où C1 ≈ 6,5 km · s−1 .

L’autre droite a pour pente

1

C2
= 21−7

150
s ·km−1

d’où C2 ≈ 11 km · s−1 .

Les deux courbes se croisent en xi tel que

xi

C2
+ 2h

C1

√
1−

(
C1

C2

)2

= xi

C1

soit numériquement (xi ≈ 100 km) :

100

11
+ 2h

6,5

√
1−

(
6,5

11

)2

= 100

6,5
− 100

11
,

d’où h ≈ 25 km .

q 18 — L’ordonnée à l’origine de la deuxième courbe
est

2h

C1

√
1−

(
C1

C2

)2

≈ 6,5 km

d’où l’on déduit h ≈ 26 km .

Les deux résultats sont en accord; la précision des me-
sures est très bonne compte tenu des hypothèses sim-
plificatrices du modèle (milieu homogène).
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 Partie III — Accumulateur au plomb (CCINP PSI 2019)

1—  Composition de l’atome de plomb

q 1 — Le noyau de l’atome de plomb contient
82 protons et 125 neutrons .

2—  Diagramme potentiel-pH du plomb

q 2 — Nombre d’oxydation du plomb :

espèce n.o. du plomb type de domaine
Pb(s) 0 existence

Pb2+(aq) II prédominance
PbO(s) II existence

HPbO –
2 (aq) II prédominance

Pb3O4(s) 8/3 existence
PbO2(s) IV existence

On place les espèces dans le diagramme de telle sorte
que le nombre d’oxydation croît avec E .

Les espèces les plus basiques apparaissent aux pH les
plus élevés.

On peut remarquer que

Pb2++H2O = PbO+2H+

et
PbO+H2O = HPbO−

2 +H+ .

Donc Pb2+ est la forme acide associée à la forme basique
PbO, et PbO est la forme acide associée à la forme ba-
sique HPbO –

2 .

Pb(s)

Pb2+(aq)

PbO(s)

HPbO –
2 (aq)

Pb3O4(s)

PbO2(s)

L’espèce Pb3O4(s) semble ne pas respecter la quantifi-
cation de la charge (nombre d’oxydation fractionnaire,
alors que la charge doit être un multiple de la charge élé-
mentaire). Cela s’explique par le fait que le plomb existe
dans deux degrés d’oxydation différents dans cette es-
pèce (deux atomes au degré +II et un atome au degré

+IV) : il s’agit d’un composé à valence mixte. Finale-
ment, la quantification de la charge est bien respectée.

q 3 — Pour le couple H+/H2 (équivaut à H2O/H2) :

2H++2e− = H2 .

La loi de Nernst s’écrit :

E = E o(H+/H2)+ 0,06

2
log

(
P o[H+]2

P (H2)

)
.

Avec P (H2) = P o à la frontière, on obtient l’équation

E =−0,06pH .

Pour le couple O2/H2O :

O2 +4H++4e− = 2H2O .

La loi de Nernst s’écrit :

E = E o(O2/H2O)+ 0,06

4
+ log

(
P (O2)

P o
[H+]4

)
.

Avec P (O2) = P o à la frontière, on obtient l’équation

E = 1,23−0,06pH .

q 4 — On superpose le diagramme E-pH de l’eau au
diagramme E-pH du plomb :

En milieu acide, les domaines de Pb et de H2O sont dis-
joints : le plomb n’est pas stable en milieu acide.

À partir des demi-équations

Pb = Pb2++2e− et 2H++2e− = H2

on en déduit la réaction d’oxydation du plomb dans
l’eau en milieu acide

Pb+2H+ = Pb2++H2 .

En milieu basique, le plomb a une partie de son do-
maine en commun avec celui de l’eau : le plomb est
stable en milieu basique.
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3—  Solubilité du sulfate de plomb dans
une solution d’acide sulfurique

q 5 — La réaction de dissolution du sulfate de plomb
s’écrit

PbSO4(s) = Pb2+(aq)+SO2−
4 (aq) .

Sa constante d’équilibre est le produit de solubilité du
sulfate de plomb, soit

Ks = [Pb2+]éq[SO2−
4 ]éq = 1,6×10−8 .

La solubilité s du sulfate de plomb est la quantité maxi-
mum de sulfate de plomb que l’on peut dissoudre dans
un litre de la solution considérée.

On se place à l’équilibre, à la limite de la dissolution du
sulfate de plomb : on a dissous s moles de PbSO4, mais
l’équilibre est encore réalisé avec [Pb2+]éq = s, ce qui
permet d’écrire

Ks = s[SO2−
4 ]éq .

La concentration [SO2−
4 ] étant élevée dans la solution

considérée (0,5 mol ·L−1), et la constante Ks étant très
faible, on peut négliger les SO2 –

4 apportés par la dis-
solution de PbSO4, ce qui permet d’écrire [SO−2

4 ] =
0,5 mol ·L−1.

On a donc

s = Ks

[SO2−
4 ]

= 1,6×10−8

0,5

soit s = 3,2×10−8 mol .

Il était légitime de négliger les ions sulfates issus de la
dissolution devant ceux initialement présents.

Le sulfate de plomb est très peu soluble dans une solu-
tion d’acide sulfurique concentrée.

4—  Accumulateur au plomb en fonction-
nement générateur

q 6 — Couple PbO2/PbSO4.

Dans PbO2, on a no(Pb)=IV.

Dans PbSO4, on a no(Pb)=II.

On peut écrire la demi-réaction électronique :

PbO2 +4H++SO2−
4 +2e− −−→ PbSO4 +2H2O .

C’est une réduction : le compartiment de gauche est la
cathode.

Couple PbSO4/Pb :

Pb+SO2−
4 −−→ PbSO4 +2e− .

C’est une oxydation : le compartiment de droite est
l’anode.

La réaction globale de fonctionnement de l’accumula-
teur est donc

PbO2 +Pb+2SO−2
4 +4H+ −−→ 2PbSO4 +2H2O .

q 7 — Le potentiel de la borne ⊕ est

E⊕ = E o(PbO2/PbSO4)+ 0,06

2
log

(
[H+]4[SO2−

4 ]
)

.

Le potentiel de la borne ª est

Eª = E o(PbSO4/Pb)+ 0,06

2
log

(
1

[SO2−
4 ]

)
.

La fém e = E⊕−Eª de l’accumulateur est donc

e = E o(PbO2/PbSO4)−E o(PbSO4/Pb)+0,06log[SO2−
4 ]

−0,12pH.

La fém de l’accumulateur au plomb dépend du pH.

Elle est d’autant plus élevé que le pH est faible : il est
préférable d’utiliser de l’acide sulfurique très concen-
tré.

5—  Masse d’une batterie au plomb

q 8 — La mise en série de plusieurs éléments permet
de délivrer une tension plus élevée.

La mise en parallèle de plusieurs éléments permet de
délivrer une plus grande intensité : on augmente la ca-
pacité.

q 9 — La tension à vide d’un élément est

U0 = 1,68− (−0,33) = 2,01 V.

Il faut donc 6 cellules en série pour obtenir 12 V à vide.

Compte tenu de la baisse de tension lorsque l’accumu-
lateur débite, il faut prévoir 7 cellules pour maintenir
une tension supérieure à 12 V en fonctionnement.

q 10 — En notant n(e−) le nombre total (en moles)
d’électrons échangés, la capacité s’écrit

Q = n(e−)F .

La quantité de plomb consommée, compte tenu de
la stœchiométrie de la demi-réaction d’oxydation, est

n(Pb) = n(e−)

2
. La masse de plomb correspondante est

m(Pb) = n(Pb)M(Pb). On a donc

Q = 2n(Pb)F = 2
m(Pb)

M(Pb)
F

d’où

m(Pb) = QM(Pb)

2F
.

On calcule

m(Pb) = 50×3600×207

2×96500

soit pour l’accumulateur

m(Pb) = 0,19 kg .

CPGE PSI 2025-2026 Lycée Jean Perrin 7/7


