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Électromagnétisme II — Champ électrique en régime stationnaire

 Le champ électrique

 Loi de Coulomb

Soient une charge ponctuelle q située en A et une charge ponctuelle q ′ située en M , dans le vide.

A
(q)

M
(q ′)

#»u AM

#»
F A→M#»

F M→A

La charge q exerce sur la charge q ′ une force donnée par la loi de Coulomb :

#»
F A→M = qq ′

4πε0

#    »
AM

AM 3 = qq ′

4πε0

#»u AM

AM 2 avec #»u AM =
#    »
AM
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,

où ε0 = 8,85×10−12 F ·m−1 est la permittivité diélectrique du vide.

ä La charge q ′ exerce sur la charge q la force opposée
#»
F M→A =−#»

F A→M .

ä Les forces sont attractives si les charges sont de signes contraires (qq ′ < 0), répulsives si les charges sont de
mêmes signes (qq ′ > 0).

ä La force électrostatique, dont l’intensité est inversement proportionnelle au carré de la distance entre les
charges, est une force newtonienne (comme la gravitation).

ä Dans un milieu matériel, il faut remplacer ε0 par ε0εr, où εr, permittivité relative, est une grandeur sans
dimension caractéristique du milieu. Pour l’air εr ≈ 1, pour l’eau εr ≈ 80.

 Champ électrique

On considère une distribution D de charges.

Si
#»
F D→M est la résultante des forces de Coulomb, dues aux charges de D, subie par une charge q ′ placée en

M , le champ électrostatique créé en M par la distribution D est défini par

#»
E (M) =

#»
F D→M

q ′ .

ä Le champ électrostatique ne dépend que de la distribution de charges qui en est la source, pas de la charge
q ′ qui, placée dans ce champ, subit la force de Coulomb.

ä La force étant un vecteur polaire (comme l’accélération), le champ électrique est un vecteur polaire.

 Théorème de Gauss

Étant donnée une surface fermée Σ, le flux sortant du champ électrostatique à travers cette surface s’écritÓ
P∈Σ

#»
E (P ) ·d

#»
SP = Qint

ε0
, (1)

où Qint est la charge intérieure à la surface Σ, et d
#»
SP le vecteur surface élémentaire en P , normal à Σ et dirigé

vers l’extérieur.

ä Dans le cas où il n’y a que des charges volumiques, siV est le volume délimité parΣ, on a Qint =
Ð

M∈Vρ(M)dτ.
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ä La surface Σ n’a pas de réalité physique, elle est purement « fictive » et n’a aucune raison de correspondre
avec une surface réelle de la distribution étudiée.

ä Le théorème de Gauss est toujours vrai, mais il n’est pas toujours utilisable pour calculer le champ
#»
E (M) en

tout point de l’espace. On peut l’utiliser pour calculer le champ créé dans le cas de distributions à haut degré
de symétrie : symétrie sphérique, symétrie cylindrique, couche ou plan infini.

ä Une distribution pas assez symétrie peut parfois s’écrire comme la superposition de plusieurs distributions
à haut degré de symétrie ; on calcule alors le champ

#»
E (M) créé en utilisant le principe de superposition.

 Applications

 Champ créé par une charge ponctuelle q

Une charge ponctuelle q située en O crée en tout point M de l’espace le champ

#»
E (M) = q

4πε0r 2
#»e r = q

4πε0

#     »
OM

OM 3 .

ä Selon le principe de superposition, un ensemble de N charges ponctuelles qi situées aux points Pi crée en
un point M le champ électrique

#»
E (M) =

N∑
i=1

qi

4πε0

#      »
Pi M

Pi M 3 .

 Champ créé par une distribution de charge à symétrie sphérique

Une distribution est dite à symétrie sphérique de centre O si elle est invariante par toute rotation autour de
tout axe passant par O.
Le champ créé est de la forme

#»
E (M) = E(r ) #»e r en coordonnées sphériques.

ä En coordonnées sphériques de centre O, sa densité volumique de charge ne dépend que de r : ρ(M) = ρ(r ).

ä Surface de Gauss : sphère de rayon r ; le flux du champ vaut 4πr 2E(r ).

 Champ créé par une distribution de charge à symétrie sphérique

Une distribution d’axe Oz est dite à symétrie cylindrique si elle est invariante :

— par toute rotation autour de l’ axe Oz ;

— par toute translation selon Oz.

Le champ créé est de la forme
#»
E (M) = E(r ) #»e r en coordonnées cylindriques.

ä Une telle transformation est nécessairement de longueur infini selon Oz : on néglige les effets de bord.

ä En coordonnées cylindriques d’axe Oz, sa densité volumique de charge ne dépend que de r : ρ(M) = ρ(r ).

ä Surface de Gauss : cylindre de rayon r , de hauteur H arbitraire ; le flux du champ vaut 2πr HE(r ).

 Champ créé par une distribution surfacique de charge

Une distribution de charges localisées au voisinage d’une surface Σ, sur une épaisseur h « très petite » (à l’échelle
mésoscopique) est modélisée par une distribution surfacique de charges.
On définit la densité surfacique de charges σ(M) telle que la charge portée par une élément de surface dSM

centré en M est dq =σ(M)dSM .

ä La densité surfacique de charges s’exprime en C ·m−2.

Le plan infini z = 0 portant la charge surfacique uniforme σ crée en tout point de l’espace le champ électrosta-
tique
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#»
E (M) =


σ

2ε0

#»e z pour z > 0

− σ

2ε0

#»e z pour z < 0

E(z)

z

σ
2ε0

− σ
2ε0

(σ> 0)

ä Le champ n’est pas défini sur le plan chargé en surface.

ä Le champ est discontinu à la traversée de la surface chargée 1 .

 Équations locales

 Équation de Maxwell-Gauss

Le champ électrostatique vérifie l’équation locale

div
#»
E (M) = ρ(M)

ε0
.

ä Cette équation relie le champ électrostatique à ses sources. Elle est linéaire, ce qui justifie l’utilisation du
principe de superposition.

ä Dans une région vide de charges, le champ électrostatique est à flux conservatif : div
#»
E (M) = 0.

 Équation de Maxwell-Faraday de l’électrostatique

Le champ électrostatique vérifie l’équation locale

#  »
rot

#»
E (M) = #»

0 .

ä Cette équation est dite intrinsèque au champ : elle ne fait pas intervenir les sources ρ(M).

Cette équation est la traduction locale du caractère conservatif de la circulation du champ électrostatique :

#»
E (M) est à circulation

conservative
⇐⇒

˛
M∈Γ

#»
E (M) ·d

#»

ℓM = 0 ⇐⇒ #  »
rot

#»
E (M) = #»

0

 Potentiel scalaire électrique

Le champ électrique étant à circulation conservative, on peut écrire

#  »
rot

#»
E (M) = #»

0 ⇐⇒ ∃V ,
#»
E (M) =−#      »

gradV (M) .

En tout point, le champ et le potentiel électrique sont reliés par

#»
E (M) =−#      »

gradV (M) .

Le potentiel électrique est continu.

ä Le potentiel électrique s’exprime en volt (V). L’intensité ∥#»
E ∥ du champ électrique s’exprime donc en V ·m−1.

ä Le principe de Curie s’applique pour le potentiel : il ne dépend pas de z si la distribution est invariante par
translation selon Oz ; il ne dépend pas de θ si la distribution est invariante par rotation d’angle θ. Si M et M ′

sont symétrie par rapport à un plan de symétrie de la distribution, on a V (M ′) =V (M).

1. Lors de la traversée d’une surface chargée, la composante du champ
#»
E normale à cette surface subit une discontinuité σ/ε0.
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 Équation de Poisson pour le potentiel

Le potentiel électrostatique vérifie l’équation de Poisson

∆V (M)+ ρ(M)

ε0
= 0.

ä Dans une région vide de charges le potentiel électrostatique vérifie l’équation de Laplace ∆V (M) = 0 .

 Énergie potentielle d’une charge ponctuelle dans un champ électrique extérieur

Dans une région de l’espace où règne un champ électrique
#»
E (M) et un potentiel électrique V (M), une charge

ponctuelle q placée en M possède une énergie potentielle Ep = qV (M) .

 Propriétés topographiques

Une ligne de champ est une courbe tangente au champ électrique en tout point, orientée par ce champ.

ä Un tube de champ est lensemble des lignes de champ qui sappuient sur un contour.

Une surface équipotentielle est l’ensemble des points M tel que V (M) =V0.

D’après
#»
E (M) =−#      »

gradV (M) on établit les propriétés suivantes :

ä Les lignes de champ électrostatiques sont normales aux surfaces équipotentielles.

ä Les lignes de champ sont orientés dans le sens des potentiels décroissants.

Les lignes de champ électrostatiques ne peuvent pas être des courbes fermées.

Les « extrémités » d’une ligne de champ ne peuvent être que :

— en un point où le champ est nul ;

— en un point où le champ n’est pas défini (présence d’une charge ponctuelle, d’une charge surfacique) ;

— à l’infini.

Dans un plan, les équipotentielles sont représentées
par des cercles, intersection des surfaces sphériques
avec le plan de tracé.

+
ligne de champ

équipotentielle

On peut donner une représentation en relief du po-
tentiel. On obtient une surface telle que la cote en
chaque point est donnée par le potentiel en ce point :
z =V (x, y).
Les équipotentielles correspondent aux lignes de ni-
veaux, les lignes de champs aux lignes de plus grande
pente.

Dans une région vide de charges, l’intensité du champ électrostatique le long d’un tube de champ augmente
quand les lignes de champ se resserrent.
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 Analogies avec le champ gravitationnel

Force de Coulomb Interaction gravitationnelle

#»
F 1→2 = q1q2

4πε0

#          »
M1M2

(M1M2)3

#»
F 1→2 =−Gm1m2

#          »
M1M2

(M1M2)3

On en déduit les analogies :

Électrostatique Gravitation
charge q masse m

1

4πε0
−G

1

ε0
−4πG

champ électrique
#»
E (M) champ gravitationnel

#»

G (M)

ä Une masse ponctuelle m en O crée en M le champ gravitationnel
#»

G (M) =−Gm
#»e r

r 2 .

Il y a cependant des différences entre les deux interactions :

— l’interaction gravitationnelle est toujours attractive ;

— il n’y a pas de masse négative, donc il n’existe pas de plan d’anti-symétrie pour une distribution de masses.

 Théorème de Gauss pour le champ gravitationnel

À partir des analogies précédentes, on peut écrire le théorème de Gauss pour le champ gravitationnel :Ó
P∈Σ

#»

G (P ) ·d
#»
SP =−4πGMint ,

où Mint est la masse intérieure à la surface fermée Σ.

ä Vis-à-vis du champ gravitationnel créé à l’extérieur, un astre à symétrie sphérique peut être modélisé par une
masse ponctuelle située en son centre.
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