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Électromagnétisme Le théorème de Gauss

1—  Énoncé

Étant donnée une surface fermée Σ, le flux sortant du champ électrostatique à travers cette surface
s’écrit Ó

P∈Σ
#»
E (P ) ·d

#»
SP = Qint

ε0
, (1)

où Qint est la charge intérieure à la surface Σ, et d
#»
SP le vecteur surface élémentaire en P , normal à

Σ et dirigé vers l’extérieur.

ä Dans le cas où il n’y a que des charges volumiques, si V est le volume délimité par Σ, on a

Qint =
Ñ

M∈V
ρ(M)dτ .

ä Le flux élémentaire du champ électrique s’écrit dΦP = #»
E (P ) ·d#»

SP . L’intégrale double du flux total se
comprend comme la somme des flux élémentaires à travers d

#»
SP , quand P décrit toute la surface Σ.

ä La surface Σ n’a pas de réalité physique, elle est purement « fictive » et n’a aucune raison de corres-
pondre avec une surface réelle de la distribution étudiée.

2—  Utilisation pour le calcul d’un champ électrostatique

2.1  Principe

Le théorème de Gauss est toujours vrai : pour tout surface fermée Σ, le champ électrique vérifie tou-
jours (1). En revanche, cette relation ne permet de calculer

#»
E (M) en tout point M de l’espace que dans

des situations « à haut degré de symétrie ».
Dans la pratique, les propriétés de symétrie et d’invariance du système doivent être telles que l’on peut
trouver un système de coordonnées (α, β, γ) tel que :

— le champ n’a de composante non nulle que selon un seul des vecteurs de base #»eα ;

— cette composante ne dépend que d’une seule coordonnées d’espace α.

Il peut donc se mettre sous la forme
#»
E (M) = E(α) #»eα.

2.2  Choix de la surface de Gauss

Étant donné un point M quelconque de l’espace où l’on veut calculer le champ, il s’agit de trouver une
surface fermée Σ :

— qui passe par le point M considéré ;

— telle qu’en chacun de ses points P , le champ
#»
E (P ) est :

— soit tangent à Σ ; on a alors dΦP = #»
E (P ) ·d

#»
SP = 0;

— soit normal à Σ, sa composante étant égale (au signe près) à la composante E(α) de
#»
E (M) ; on a

alors dΦP = #»
E (P ) ·d

#»
SP =±E(α)dS.

Le flux total Φ=Ò
P∈Σ

#»
E (P ) ·d#»

SP ne dépendra alors que de la composante E(α) du champ en M , ce qui
permet de déterminer ce champ.
Le choix de la surface de Gauss ne peut se faire qu’après une discussion soignée des symétries et
invariances de la distribution de charges.
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Invariances : elles permettent de conclure que les composantes de
#»
E sont indépendantes de cer-

taines coordonnées.

Symétries : elles permettent de conclure que certaines composantes du champ
#»
E sont nulles. On

utilise la propriété suivante : en tout point d’un plan Π de symétrie d’une distribution de
charges, le champ

#»
E est contenu dans ce plan.

ä Écrire qu’un champ est contenu dans un plan revient à écrire que sa composante normale au plan
est nulle. On cherchera donc les plans de symétrie définis par la donnée de M et de deux vecteurs
de base. La composante du champ électrique sur le troisième vecteur de base est alors nulle.

ä Si besoin, on pourra étudier la parité de la composante non nulle du champ.

2.3  Trois exemples fondamentaux

2.3.1  Distribution à symétrie sphérique

On considère une sphère de rayon a, portant la densité volumique de charge uniforme ρ. Compte tenu
de la distribution, il est naturel de choisir les coordonnées sphériques :

O

φ

θ r

M
#»e θ

#»eφ

#»e r

Le champ électrique s’écrit donc sous la forme générale

#»
E (M) = Er (r,θ,φ) #»e r +Eθ(r,θ,φ) #»e θ+Eφ(r,θ,φ) #»eφ .

Invariances La distribution étant invariante par toute rotation d’angle θ ou φ, les composantes du
champ ne dépendent pas de ces cordonnées :

#»
E (M) = Er (r, ̸ θ, ̸φ) #»e r +Eθ(r, ̸ θ, ̸φ) #»e θ+Eφ(r, ̸ θ, ̸φ) #»eφ .

Symétries Le plan (M ; #»e r
#»e θ) étant un plan de symétrie, la composante du champ selon #»eφ est nulle :

#»
E (M) = Er (r ) #»e r +Eθ(r ) #»e θ+Eφ///(r ) #»eφ .

Le plan (M ; #»e r
#»eφ) étant un plan de symétrie, la composante du champ selon #»e θ est nulle :

#»
E (M) = Er (r ) #»e r +Eθ///(r ) #»e θ+Eφ///(r ) #»eφ .

Finalement, le champ est radial et sa composante ne dépend que de r :

#»
E (M) = E(r ) #»e r .
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Choix de la surface de Gauss Le champ est porté par #»e r ; en coordonnées sphériques, le vecteur #»e r

est normal à la sphère de centre O et de rayon r .
Soit M(r,θ,φ) ; la sphère Σ de centre O et de rayon r est telle qu’en chacun de ses points, le champ est
normal à sa surface. Cette surface est fermée. On a doncÓ

P∈Σ
#»
E (P ) ·d

#»
SP =

Ó
P∈Σ

E(r ) #»e r ·dS #»e r =
Ó

P∈Σ
E(r ) ·dS .

La surfaceΣ vérifie par construction r = cte. On a donc E(r ) = cte quand P parcourt Σ, d’oùÓ
P∈Σ

E(r ) ·dS = E(r )
Ó

P∈Σ
dS = E(r )4πr 2 ,

la dernière intégrale n’étant autre que la surface totale de la sphère de rayon r .
Finalement, on a Ó

P∈Σ
#»
E (P ) ·d

#»
SP = 4πr 2E(r ) . (2)

Calcul de la charge intérieure Il s’agit de calculer la charge comprise à l’intérieur d’une sphère de
rayon r . Il faut envisager ici deux cas :

r ⩾ a : la sphère chargée de rayon a est entièrement à l’intérieur de la surface de Gauss ; on a donc
Qint = ρ 4

3πa3.

r < a : seule la partie de rayon r de la sphère chargée est à l’intérieur de la surface de Gauss ; on a donc
Qint = ρ 4

3πr 3.

Application du théorème de Gauss Compte tenu de l’expression (2), l’application de (1) conduit à

4πr 2E(r ) = 4πρa3

3ε
pour r ⩾ a, soit E(r ) = ρa3

3ε0r 2
,

4πr 2E(r ) = 4πρr 3

3ε
pour r < a, soit E(r ) = ρr

3ε0
.

On en déduit

#»
E (M) =


ρr

3ε0

#»e r pour r < a

ρa3

3ε0r 2
#»e r pour r ⩾ a

2.3.2  Distribution à symétrie cylindrique

On considère un cylindre infini d’axe Oz, de rayon a, portant la charge volumique uniforme ρ.
Compte tenu de la distribution, il est naturel de choisir les coordonnées cylindriques :

O

θ

z
r

M
#»e r

#»e z #»e θ

Le champ électrique s’écrit donc sous la forme générale

#»
E (M) = Er (r,θ, z) #»e r +Eθ(r,θ, z) #»e θ+Ez(r,θ, z) #»e z
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Invariances La distribution étant invariante par translation selon Oz, les composantes du champ ne
dépendent pas de z :

#»
E (M) = Er (r,θ, ̸ z) #»e r +Eθ(r,θ, ̸ z) #»e θ+Ez(r,θ, ̸ z) #»e z

La distribution étant invariante par toute rotation autour de Oz, les composantes du champ ne dé-
pendent pas de θ :

#»
E (M) = Er (r, ̸ θ, ̸ z) #»e r +Eθ(r, ̸ θ, ̸ z) #»e θ+Ez(r, ̸ θ, ̸ z) #»e z .

Symétrie Le plan (M ; #»e r , #»e z) est un plan de symétrie de la distribution; la composante du champ
normale à ce plan, donc selon #»e θ, est nulle :

#»
E (M) = Er (r ) #»e r +Eθ///(r ) #»e θ+Ez(r ) #»e z .

Le plan (M ; #»e r , #»e θ) est un plan de symétrie de la distribution; la composante du champ normale à ce
plan, donc selon #»e z , est nulle :

#»
E (M) = Er (r ) #»e r +Eθ///(r ) #»e θ+Ez///(r ) #»e z .

Finalement le champ est radial, et sa composante ne dépend que de r :
#»
E (M) = E(r ) #»e r .

ä Les discussions sur les invariances et sur les symétrie sont indépendantes : on peut les traiter dans
l’ordre que l’on veut.

ä La discussion sur les invariances ne fait intervenir que la distribution de charges, tandis que la
discussion sur les symétries fait intervenir le point M où l’on veut calculer le champ.

ä Attention à la rigueur : le champ est radial, et sa composante ne dépend que de r . En revanche, le
champ vectoriel

#»
E (M) ne dépend pas que de r : sa direction dépend de θ comme il est facile de

s’en convaincre sur la figure suivante :

#»e z M1

#»
E (M1)

M2

#»
E (M2)

r
r

O

Il est évident sur la figure que
#»
E (M1) ̸= #»

E (M2), avec OM1 =OM2 = r . Si la composante du champ ne
dépend que de r , la direction du vecteur #»e r dépend de θ (la base cylindrique est une base locale).
Il est donc faux de dire que « le champ ne dépend que de r ».

Choix de la surface de Gauss Le champ est porté par #»e r ; en coordonnées cylindriques, le vecteur #»e r

est normal au cylindre d’axe Oz et de rayon r .
Soit M(r,θ, z) ; le cylindre de rayon r , de hauteur H arbitraire est tel qu’en chacun de ses points, le
champ est normal à sa surface.
Une telle surface n’est pas fermée ; nous allons la fermer à l’aide de deux « couvercles ». Si on les choisit
perpendiculaires à Oz, le champ est tangent à ces surfaces.

d
#»
S

d
#»
S

d
#»
S

ΣH

ΣL

ΣB

CPGE PSI 2025-2026 Lycée Jean Perrin 4/8



Électromagnétisme Le théorème de Gauss

On a donc construit une surface fermée répondant aux critères énoncés en 2.2.

Calcul du flux En notant ΣL la surface latérale, ΣH le « couvercle » supérieur et ΣB « couvercle » infé-
rieur, on a Ó

P∈Σ
#»
E (P ) ·d

#»
SP =

Ï
P∈ΣL

#»
E (P ) ·d

#»
SP +

Ï
P∈ΣH

#»
E (P ) ·d

#»
SP +

Ï
P∈ΣB

#»
E (P ) ·d

#»
SP

avec
#»
E (P ) = E(r ) #»e r .

Sur ΣH, on a d
#»
SP = dS #»e z et

#»
E (P ) ·d

#»
SP = 0. Sur ΣB, on a d

#»
SP =−dS #»e z et

#»
E (P ) ·d

#»
SP = 0. On a doncÏ

P∈ΣH

#»
E (P ) ·d

#»
SP =

Ï
P∈ΣB

#»
E (P ) ·d

#»
SP = 0.

Sur ΣL, on a d
#»
SP = dS #»e r . On a donc

#»
E (P ) ·d

#»
SP = E(r ) #»e r ·dS #»e r = E(r )dS car #»e r · #»e r = 1, d’oùÏ

P∈ΣL

#»
E (P ) ·d

#»
SP =

Ï
P∈ΣL

E(r )dS .

La surface ΣL vérifie par construction r = cte. On a donc E(r ) = cte quand P parcourt ΣL, que l’on peut
donc factoriser en le « sortant » de l’intégrale :Ï

P∈ΣL

E(r )dS = E(r )
Ï

P∈ΣL

dS

La dernière intégrale double n’est autre que la surface totale de ΣL :Ï
P∈ΣL

dS = 2πr H .

Finalement, on a Ó
P∈Σ

#»
E (P ) ·d

#»
SP = 2πr HE(r ) . (3)

Calcul de la charge intérieure Il s’agit de calculer la charge comprise à l’intérieur d’un cylindre de
rayon r , de hauteur H . Il faut ici envisager deux cas :

r ⩾ a : la hauteur H du cylindre chargé, de rayon a, est entièrement à l’intérieur de la surface de Gauss ;
on a donc Qint = ρ×πa2H .

r < a : la hauteur H du cylindre chargé n’est à l’intérieur de la surface de Gauss que sur son rayon r ;
on a donc Qint = ρ×πr 2H .

Application du théorème de Gauss Compte tenu de l’expression (3), l’application de (1) conduit à

2πr HE(r ) = ρπa2H

ε0
pour r ⩾ a, soit E(r ) = ρa2

2ε0r
,

2πr HE(r ) = ρπr 2H

ε0
pour r < a, soit E(r ) = ρr

2ε0
,

On en déduit

#»
E (M) =


ρr

2ε0

#»e r pour r < a

ρa2

2ε0r
#»e r pour r ⩾ a
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2.3.3  Plan infini chargé en surface

On considère le plan infini z = 0, portant la densité surfacique de charges uniforme σ0.
On se place en coordonnées cartésiennes; le champ s’écrit sous la forme générale

#»
E (M) = Ex(x, y, z) #»e x +Ey (x, y, z) #»e y +Ez(x, y, z) #»e z .

La distribution étant invariante par translation selon Ox, les composantes du champ ne dépendent
pas de x :

#»
E (M) = Ex (̸ x, y, z) #»e x +Ey ( ̸ x, y, z) #»e y +Ez (̸ x, y, z) #»e z .

La distribution étant invariante par translation selon O y , les composantes du champ ne dépendent
pas de y :

#»
E (M) = Ex( ̸ x, ̸ y, z) #»e x +Ey ( ̸ x, ̸ y, z) #»e y +Ez (̸ x, ̸ y, z) #»e z .

Le plan (M ; #»e x , #»e z) est un plan de symétrie, donc la composante de
#»
E (M) selon #»e y est nulle :

#»
E (M) = Ex(z) #»e x +Ey///(z) #»e y +Ez(z) #»e z .

Le plan (M ; #»e y , #»e z) est un plan de symétrie, donc la composante de
#»
E (M) selon #»e x est nulle :

#»
E (M) = Ex///(z) #»e x +Ey///(z) #»e y +Ez(z) #»e z .

Finalement, le champ est de la forme
#»
E (M) = E(z) #»e z .

Le champ se réduit à sa composante normale au plan de la distribution z = 0. Ce plan est naturellement
un plan de symétrie de la distribution; si on considère deux points symétriques M(z) et M ′(−z) par
rapport à ce plan, les propriétés de symétrie du champ

#»
E (M) impliquent

#»
E (M ′) =−#»

E (M) soit E(−z)−E(z) .

La composante E(z) est une fonction impaire de z ; on mène l’étude pour z > 0.
La surface de Gauss est donc un cylindre, d’axe Oz, de section S arbitraire, compris entre −z et +z.
On a d’une part Ó

M∈Σ
#»
E ·d

#»
SM = E(z)S +E(−z)(−S) = 2E(z)S .

D’autre part Qint =σS, d’où SE(z) = σS

ε0
pour z > 0. On a donc

#»
E (M) =


σ0

2ε0

#»e z pour z > 0

− σ0

2ε0

#»e z pour z < 0
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2.4  Ce qu’il faut savoir faire

En reprenant les trois exemples précédents :

1. Choisir un système de coordonnées adapté au problème.

2. Mener rigoureusement la discussion sur les symétries et les invariances, afin d’arriver à un
champ de la forme

#»
E (M) = E(α) #»eα.

3. Choisir la surface de Gauss Σ en comprenant ce choix.

4. Calculer le flux de
#»
E à travers Σ.

5. Mener le calcul de Qint. Si la densité n’est pas uniforme, se reporter au calcul de la charge d’une
distribution (calcul différentiel). Il peut y avoir plusieurs cas à envisager.

ä Si la distribution comporte des charges surfaciques sur une surface S, on ne cherchera pas à
calculer le champ en un point M de S ; le champ présentera une discontinuité à la traversée
de la surface chargée.

6. Appliquer enfin le théorème de Gauss pour établir l’expression de
#»
E (M).

ä Dans les deux exemples précédents, le calcul du flux a été détaillé bien plus qu’il n’est demandé
dans une rédaction. Le calcul du flux doit être fait « automatiquement ». Il faut connaître :

 En coordonnées sphériques

Le champ électrique créé par une distribution à symétrie sphérique de centre O est de la forme
#»
E (M) = E(r ) #»e r en coordonnées sphériques.
En prenant une surface de Gausse sphérique de rayon z, on aÓ

M∈Σ
#»
E (M) ·d

#»
SM = 4πr 2E(r ) .

Dans le cas général où la distribution porte la densité volumique de charge ρ(r ), la charge à l’inté-
rieur de la sphère de rayon r est donnée par

Qint =
ˆ r

0
ρ(r ′)4πr ′2 dr ′ .

 En coordonnées cylindriques

Le champ électrique créé par une distribution à symétrie cylindrique d’axe Oz est de la forme
#»
E (M) = E(r ) #»e r en coordonnées cylindriques.
En prenant une surface de Gausse cylindrique d’axe Oz, de rayon z et de hauteur H arbitraire, on aÓ

M∈Σ
#»
E (M) ·d

#»
SM = 2πr HE(r ) .

Dans le cas général où la distribution porte la densité volumique de charge ρ(r ), la charge à l’inté-
rieur du cylindre de rayon r et de hauteur H est donnée par

Qint =
ˆ r

0
ρ(r ′)2πr ′H dr ′ .
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 Analogies avec le champ gravitationnel

Force de Coulomb Interaction gravitationnelle

#»
F 1→2 = q1q2

4πε0

#          »
M1M2

(M1M2)3

#»
F 1→2 =−Gm1m2

#          »
M1M2

(M1M2)3

On en déduit les analogies :

Électrostatique Gravitation
charge q masse m

1

4πε0
−G

1

ε0
−4πG

champ électrique
#»
E (M) champ gravitationnel

#»

G (M)

ä Une masse ponctuelle m en O crée en M le champ gravitationnel
#»

G (M) =−Gm
#»e r

r 2
.

Il y a cependant des différences entre les deux interactions :

— l’interaction gravitationnelle est toujours attractive ;

— il n’y a pas de masse négative, donc il n’existe pas de plan d’anti-symétrie pour une distribution de
masses.

 Théorème de Gauss pour le champ gravitationnel

À partir des analogies précédentes, on peut écrire le théorème de Gauss pour le champ gravitationnel :Ó
P∈Σ

#»

G (P ) ·d
#»
SP =−4πGMint ,

où Mint est la masse intérieure à la surface fermée Σ.

ä Vis-à-vis du champ gravitationnel créé à l’extérieur, un astre à symétrie sphérique peut être modé-
lisé par une masse ponctuelle située en son centre.
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