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Electromagnétisme Le théoréme de Gauss
1 — Enoncé
( )
Etant donnée une surface fermée X, le flux sortant du champ électrostatique a travers cette surface
s’écrit
# B(p)-dSp = ot (1)
Pex £

N
ol Qi est la charge intérieure a la surface Z, et d Sp le vecteur surface élémentaire en P, normal a

> et dirigé vers I'extérieur.
\ J/

» Dans le cas ou1il n'y a que des charges volumiques, si V est le volume délimité par X, on a

Qint:fff p(M)dr.
MeV

» Le flux élémentaire du champ électrique s’écrit d®p = E(P) -d§p. Lintégrale double du flux total se
comprend comme la somme des flux élémentaires a travers d Sp, quand P décrit toute la surface X.

» Lasurface X n’a pas de réalité physique, elle est purement « fictive » et n’a aucune raison de corres-
pondre avec une surface réelle de la distribution étudiée.

2 — Utilisation pour le calcul d’'un champ électrostatique

2.1 Principe

Le théoreme de Gauss est toujours vrai : pour tout surface iermée 2, le champ électrique vérifie tou-
jours (1). En revanche, cette relation ne permet de calculer E (M) en tout point M de I'espace que dans
des situations « a haut degré de symétrie ».

Dans la pratique, les propriétés de symétrie et d'invariance du systeme doivent étre telles que I’on peut
trouver un systeme de coordonnées (a, f, y) tel que :

— le champ n’a de composante non nulle que selon un seul des vecteurs de base € ;
— cette composante ne dépend que d'une seule coordonnées d’espace a.

Il peut donc se mettre sous la forme E(M) = E(a)e,.

2.2 Choix de la surface de Gauss

Etant donné un point M quelconque de I’espace o1 'on veut calculer le champ, il s’agit de trouver une
surface fermée X :
— qui passe par le point M considéré;
— telle qu’en chacun de ses points P, le champ E(P) est:
— soittangent a Z; on a alors d®p = f(P) . dL_S)p =0;
— soit normal é_) 2, sa composante étant égale (au signe pres) a la composante E(a) de E(M);ona
alors d®p = E(P)-dSp = +E(a)dS.

Le flux total ® = ¢f, s E(P) -dgp ne dépendra alors que de la composante E(a) du champ en M, ce qui
permet de déterminer ce champ.

Le choix de la surface de Gauss ne peut se faire qu’apres une discussion soignée des symétries et
invariances de la distribution de charges.
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( )
. - . 7’
Invariances : elles permettent de conclure que les composantes de E sont indépendantes de cer-

taines coordonnées.

-
Symétries : elles permettent de conclure que certaines composantes du champ E sont nulles. On
utilise la propriété suivante : en tout point d'un plan Il de symétrie d’'une distribution de

N
charges, le champ E est contenu dans ce plan.
. J

» Ecrire qu'un champ est contenu dans un plan revient a écrire que sa composante normale au plan
est nulle. On cherchera donc les plans de symétrie définis par la donnée de M et de deux vecteurs
de base. La composante du champ électrique sur le troisieme vecteur de base est alors nulle.

» Sibesoin, on pourra étudier la parité de la composante non nulle du champ.
2.3 Trois exemples fondamentaux
2.3.1 Distribution a symétrie sphérique

On considere une sphere de rayon a, portant la densité volumique de charge uniforme p. Compte tenu
de la distribution, il est naturel de choisir les coordonnées sphériques :

N
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’ :
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_/\\\\.
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Le champ électrique s’écrit donc sous la forme générale

E(M) = E,(1,0,9) @, + Eg(1,0,9) €9+ E,(1,6,0) €,,.

Invariances La distribution étant invariante par toute rotation d’angle 8 ou ¢, les composantes du
champ ne dépendent pas de ces cordonnées :

E(M)=E, (1, , ) €, + Eg(r, B, ) €9 + Ep (1, B, ) €,y
Symétries Le plan (M; €, €p) étant un plan de symétrie, la composante du champ selon €, est nulle::

E(M) =E, (1)@, + Eg(r) &g+ () €,.

Le plan (M; e, ?3’(,,) étant un plan de symétrie, la composante du champ selon ep estnulle :

E(M) = E, (1)@, +F§(r) o+ Fyp(1) C,.

Finalement, le champ est radial et sa composante ne dépend que de r :

E(M)=E(r)@,.
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Choix de la surface de Gauss Le champ est porté par ¢,; en coordonnées sphériques, le vecteur &,
est normal a la sphére de centre O et de rayon r.

Soit M(r,0,¢);la sphere X de centre O et de rayon r est telle qu’en chacun de ses points, le champ est
normal a sa surface. Cette surface est fermée. On a donc

# E(P)-dSp= # E(r)é,-dSé, = # E(r)-dS.
PeX PeX PeX

La surfaceX vérifie par construction r = cte. On a donc E(r) = cte quand P parcourt Z, d’'ou

# E(r)-dS=E(r) dS = E(r)4nr?,
PeXx PeXx

la derniere intégrale n’étant autre que la surface totale de la sphére de rayon r.
Finalement, on a
# E(P)-dSp = 4nr?E(r). )
Pex

Calcul de la charge intérieure 1l s’agit de calculer la charge comprise a I'intérieur d'une sphere de
rayon r. Il faut envisager ici deux cas :

r > a: la sphére chargée de rayon a est entiérement a 'intérieur de la surface de Gauss; on a donc

_ 43
Qune = pjma’.
r < a: seulela partie de rayon r de la sphére chargée est a I'intérieur de la surface de Gauss; on a donc
_ 4.3
Qint =p37r°.

Application du théoreme de Gauss Compte tenu de |'expression (2), 'application de (1) conduit a

3 3

2 4npa ) pa
Anr°E(r) = pourr > a,soit E(r)=_—-3,
3egr
Ampr3 r
Anr’E(r) = P pour r < a, soit E(r) = p_.
380
On en déduit
pPr—
3en er pourr<a
E(M) =1 70
pa’ e, pourr>=a
3egr2 | P -

2.3.2 Distribution a symétrie cylindrique

On considere un cylindre infini d’axe Oz, de rayon a, portant la charge volumique uniforme p.
Compte tenu de la distribution, il est naturel de choisir les coordonnées cylindriques :

€.
zL zZp —
;\\\ €p
N
M: ~er
)

/<)‘\:
0

Le champ électrique s’écrit donc sous la forme générale

E(M) = E,(1,0,2) @, + Eg(r,0,2) €y + E,(1,0,2) 2,
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Invariances La distribution étant invariante par translation selon Oz, les composantes du champ ne
dépendent pas de z: N
E(M) = Er(1,0, £) €, + Eg(1,0, £) €g + E; (1,0, £) €,

La distribution étant invariante par toute rotation autour de Oz, les composantes du champ ne dé-
pendent pas de 6 : N
E(M)=E; (1,8, £) €, + Eg(r, B, £) €0+ E,(1, B, £) €.

Symétrie Le plan (M; é,,€,) est un plan de symétrie de la distribution; la composante du champ
normale a ce plan, donc selon ep, est nulle :

E(M) = E(r) @, + H§(r) 8y + E (1) &-.

Le plan (M; €, €p) est un plan de symétrie de la distribution; la composante du champ normale a ce
plan, donc selon ¢, estnulle:

E(M) = E,(r) 8, + By (r) 8g + B4(r) &,.

Finalement le champ est radial, et sa composante ne dépend que de r :
= —
EM)=E(r)e,.
» Les discussions sur les invariances et sur les symétrie sont indépendantes : on peut les traiter dans

I'ordre que I'’on veut.

» La discussion sur les invariances ne fait intervenir que la distribution de charges, tandis que la
discussion sur les symétries fait intervenir le point M ou I'on veut calculer le champ.

» Attention a la rigligur : le champ est radial, et sa composante ne dépend que de r. En revanche, le
champ vectoriel E (M) ne dépend pas que de r : sa direction dépend de 8 comme il est facile de
s’en convaincre sur la figure suivante :

ﬁmw
M,
- @_._r_._-:,_)( 1)
O e, iMy

Il est évident sur la figure que E(Ml) # E(Mg), avec OM; = OM, = r. Sila composante du champ ne
dépend que de r, la direction du vecteur &, dépend de 6 (la base cylindrique est une base locale).
Il est donc faux de dire que «le champ ne dépend que de r ».

Choix de la surface de Gauss Le champ est porté par é,; en coordonnées cylindriques, le vecteur &,
est normal au cylindre d’axe Oz et de rayon r.

Soit M(r,0, z); le cylindre de rayon r, de hauteur H arbitraire est tel qu’en chacun de ses points, le
champ est normal a sa surface.

Une telle surface n’est pas fermée; nous allons la fermer a I'aide de deux « couvercles ». Si on les choisit
perpendiculaires a Oz, le champ est tangent a ces surfaces.
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On a donc construit une surface fermée répondant aux criteres énoncés en 2.2.

Calcul du flux En notant Xy la surface latérale, i le « couvercle » supérieur et X « couvercle » infé-

rieur, on a
# E(P)-dfq’p:ff E(P)-d§p+ff E’(P)-d§p+ff E(P)-dSp
PeXx PeXy, PeXy PeXy

avec E (P) = E(1) @ N S S
Sur Xy, onadSp=dSe, et E(P)-dSp=0.Sur 25, onadSp=-dSe, et E(P)-dSp =0.0n adonc

ff E’(P)-dgp:ff EP)-dSp=0.
Pezy Pezp

Sur X;,ona dgp =dS¢e,.Onadonc f(P) 'dg)p =E(r)e,-dSe,=E(r)dScar ¢, - e, =1,d ol

ff E(p)-cﬁp:ff E(r)dS.
Pexy, Pe%xy,

La surface Xy, vérifie par construction r = cte. On a donc E(r) = cte quand P parcourt X1, que I'on peut
donc factoriser en le « sortant » de 'intégrale :

ff E(r)dS:E(r)ff ds
PeX;, Pexyp

La derniere intégrale double n’est autre que la surface totale de Xy :

ff dS=2nrH.
Pexp

# E(P)-dSp =2nr HE(r). 3)
PeXx

Finalement, on a

Calcul de la charge intérieure Il s’agit de calculer la charge comprise a I'intérieur d'un cylindre de
rayon r, de hauteur H. Il faut ici envisager deux cas :

r > a: lahauteur H du cylindre chargé, de rayon a, est entierement a l'intérieur de la surface de Gauss;
on a donc Qi = p x a’H.

r < a: la hauteur H du cylindre chargé n’est a I'intérieur de la surface de Gauss que sur son rayon r;
onadonc Qi = p x nr’H.

Application du théoreme de Gauss Compte tenu de I'expression (3), I'application de (1) conduit a

prna*H . pa?
2rrHE(r) = pour r > a, soit E(r)= —,
€o 2eq1
pnr’H _ or
2nrHE(r) = pour r < a, soit E(r) = -—,
€o 2€g
On en déduit
r
— 5— e, pourr<a
EM) =1 <%,
pa —
—— €, pourr=a
2eq1
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2.3.3 Plan infini chargé en surface

On consideére le plan infini z = 0, portant la densité surfacique de charges uniforme oy.
On se place en coordonnées cartésiennes; le champ s’écrit sous la forme générale

E(M) = Ex(x,y,2) @x + E, (X, 1,2) €y + E4(x, ), 2) €5

La distribution étant invariante par translation selon Ox, les composantes du champ ne dépendent
pasde x: N
E(M) = Ex(4,y,2) €x+Ey(£,y,2) €y +E.(4,y,2) €.

La distribution étant invariante par translation selon Oy, les composantes du champ ne dépendent
pasde y: N
E(M) =Ex(4, §,2) €x+Ey(4, §,2) €y + E; (£, ,2) €.

Le plan (M; ey, €,) estun plan de symétrie, donc la composante de g(M) selon ?y est nulle :

E(M) = Ex(2) €y + Fiy(2) €, + E.(2) €.

Le plan (M; ?y, '¢,) estun plan de symétrie, donc la composante de E)(M) selon €, estnulle :

E(M) = Bi(2) €y + iy(2) € + E,(2) €.

Finalement, le champ est de la forme N
E(M)=E(2)¢,.

Le champ se réduit a sa composante normale au plan de la distribution z = 0. Ce plan est naturellement
un plan de symétrie de la distribution; si on considere _geux points symétriques M(z) et M'(—z) par
rapport a ce plan, les propriétés de symétrie du champ E (M) impliquent

EM)=—EM) soit E(-z)-E(2).

La composante E(z) est une fonction impaire de z; on mene I'étude pour z > 0.
La surface de Gauss est donc un cylindre, d’axe Oz, de section S arbitraire, compris entre —z et +z.
On a d’'une part

# E-dSy = E(z)S+ E(~2)(-S) = 2E(2)S.
MeX

, .. oS
D’autre part Qi =0'S, d’ou1 SE(z) = — pour z> 0. On a donc

€0
00 —
—e€; pourz>0
=t 280
E(M) =
00 —»
—-—¢€,; pourz<0
280
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2.4 Ce qu'il faut savoir faire

En reprenant les trois exemples précédents :

p
1. Choisir un systéme de coordonnées adapté au probléeme.

2. Mener rigoureusement la discussion sur les symétries et les invariances, afin d’arriver a un
—
champ de la forme E (M) = E(a) é,.

3. Choisir la surface de Gauss Z en comprenant ce choix.
4. Calculer le flux de E a travers Z.

5. Mener le calcul de Qjy. Sila densité n’est pas uniforme, se reporter au calcul de la charge d'une
distribution (calcul différentiel). Il peut y avoir plusieurs cas a envisager.

» Sila distribution comporte des charges surfaciques sur une surface S, on ne cherchera pas a
calculer le champ en un point M de S; le champ présentera une discontinuité a la traversée
de la surface chargée.

6. Appliquer enfin le théoreme de Gauss pour établir |'expression de E(M).
\ J/

» Dans les deux exemples précédents, le calcul du flux a été détaillé bien plus qu’il n'est demandé
dans une rédaction. Le calcul du flux doit étre fait « automatiquement ». Il faut connaitre :

En coordonnées sphériques

( )
Le champ électrique créé par une distribution a symétrie sphérique de centre O est de la forme

EM)=E (r) €, en coordonnées sphériques.
En prenant une surface de Gausse sphérique de rayon z, on a

# E(M)-dSy = 4nr’E(r).
MeX

Dans le cas général ou la distribution porte la densité volumique de charge p(r), la charge a I'inté-
rieur de la sphere de rayon r est donnée par

.
Qint:/ p(rhamr'*dr'.
0

En coordonnées cylindriques

p
Le champ électrique créé par une distribution a symétrie cylindrique d’axe Oz est de la forme

f(M) = E(r) €, en coordonnées cylindriques.
En prenant une surface de Gausse cylindrique d’axe Oz, de rayon z et de hauteur H arbitraire, on a

# E(M)-dSy = 2nr HE(r).
MeX

Dans le cas général ou la distribution porte la densité volumique de charge p(r), la charge a I'inté-
rieur du cylindre de rayon r et de hauteur H est donnée par

.
Qint = / p(rh2nr' Hdr'.
0
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Analogies avec le champ gravitationnel

Force de Coulomb \ Interaction gravitationnelle

- 192 MM, - M M,
F1—>2:u—3 1-2=—Gmimy———
dmeg (M1 M>) (M, M>)
On en déduit les analogies :
Electrostatique Gravitation
charge g masse m
1
-G
4me
1
— -4nG
&0
champ électrique F(M) champ gravitationnel §(M)

—

- e
» Une masse ponctuelle m en O crée en M le champ gravitationnel G (M) = —Gmr—zr.

Il'y a cependant des différences entre les deux interactions :
— linteraction gravitationnelle est toujours attractive;

— iln’y a pas de masse négative, donc il n’existe pas de plan d’anti-symétrie pour une distribution de
masses.

Théoréme de Gauss pour le champ gravitationnel

A partir des analogies précédentes, on peut écrire le théoréme de Gauss pour le champ gravitationnel :

S(P)-dSp = —47GMin ,
PeX

ol Myt est la masse intérieure a la surface fermée 2.

» Vis-a-vis du champ gravitationnel créé a I’extérieur, un astre a symétrie sphérique peut étre modé-
lisé par une masse ponctuelle située en son centre.
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