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TD électromagnétisme no 1 Électrostatique

 ;;;; Introduction à l’électrostatique <<<<

1—  Calculs de charge en coordonnées sphériques

On considère une boule D de rayon a, de centre O.
Calculer la charge portée par une sphère de rayon r , en
considérant les cas r > a et r < a, si la sphère Σ :

— est uniformément chargée en volume avec la den-
sité volumique de charge ρ0 ;

— porte la densité volumique de charge

ρ(r ) = ρ0

(
1− r

a

)
en coordonnées sphériques;

— est chargée en surface avec la densité surfacique de
charge σ0 uniforme.

2—  Calculs de charge en coordonnées cylindriques

On considère un cylindre D de rayon a, d’axe Oz, de
longueur infinie.
Calculer la charge portée par un cylindre de hauteur H
et de rayon r , en considérant les cas r > a et r < a, si le
cylindre :

— est uniformément chargé en volume avec la densité
volumique de charge ρ0 ;

— porte la densité volumique de charge ρ(r ) = ρ0
r

a
en

coordonnées cylindriques ;

— est chargé en surface avec la densité surfacique de
charge σ0 uniforme.

3—  Espace chargé

La densité volumique de charge

ρ(M) = K

4πa2r
e−r /a ,

où K et a sont deux constantes et r = OM , est répartie
dans tout l’espace.

1. Quelles sont les dimensions des constantes K et a ?

2. Calculer la charge totale contenue dans tout l’es-
pace.

4—  Champ au centre d’un carré

On considère quatre charges ponctuelles, avec q > 0 :

qq

−qq
A1

A2A3

A4

O
x

y

1. En examinant les symétries de la distribution, déter-
miner la direction de

#»
E (O), champ électrique en centre

de la figure.

2. Établir l’expression de
#»
E (O).

5—  Espace chargé

Le demi-espace z > 0 est chargé avec le densité volu-
mique de charges ρ(z) = ρ0 e−z/a .
Une couche d’épaisseur b porte la densité volumique
de charge −ρ0 : on a donc

ρ(M) =


0 pour z <−b

−ρ0 pour −b ⩽ z < 0

ρ0 e−z/a pour z > 0.

1. Déterminer b pour que la charge totale de la distri-
bution soit nulle.

2. Étudier les symétries et invariances de cette distri-
bution.

6—  Cylindre chargé

On considère un cylindre de longueur L, d’axe Oz (tel
que −L/2 ⩽ z ⩽ L/2) et de rayon a. On se place en co-
ordonnées cylindriques d’axe Oz.
Étudier les symétries et les invariances de cette distri-
bution :

1. Dans le cas où il porte la charge volumique

ρ(M) = ρ0 sin2θ .

2. Dans le cas où il porte la charge volumique

ρ(M) = ρ0 cosθ .

7—  Deux charges en équilibre

Deux boules identiques de masse m, portant la même
charge q , sont fixées en un point O par deux fils isolants
de longueur a. En assimilant les boules à des charges
ponctuelles, calculer l’angle α entre les fils à l’équilibre.
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α

(m, q)(m, q)

O

Application numérique :
q = 10−8 C; a = 1 m; m = 10−3 kg.
On donne g = 10 m · s−2.

8—  Balance de Coulomb

La balance de Coulomb se compose d’un fil de torsion
de constante C auquel est accroché en son milieu O
une tige horizontale de longueur 2a. Cette tige porte
à une extrémité A une boule chargée de q . Le fil n’étant
pas tordu, la boule A est au contact d’une boule B , fixe,
portant la même charge q .

(B , q)

(A, q)

contrepoids

Oθ

fil de torsion

1. Établir l’équation en θ exprimant l’équilibre du sys-
tème :

Cθ = q2

16πε0a

cosθ/2

sin2θ/2

2. Résoudre graphiquement puis numériquement
cette équation. On donne C = 3 · 10−8 N · m · rad−1 ;
a = 140 cm; q = 2 ·10−9 C.

 ;;;; Théorème de Gauss <<<<

9—  Distribution à symétrie cylindrique

Pour chacune des distributions suivantes :

— déterminer le champ électrique
#»
E (M) créé en tout

point M de l’espace, et représenter graphiquement
l’évolution spatiale de sa composante;

— déterminer le potentiel électrique V (M) en tout
point M de l’espace et représenter graphiquement
son évolution spatiale.

1. On considère un fil infini selon Oz, portant la den-
sité linéique de charge uniforme λ0.

2. On considère un cylindre infini d’axe Oz, de
rayon a, portant la densité volumique de charge

ρ(r ) = ρ0
r

a
.

3. On considère un cylindre infini d’axe Oz, de
rayon a, chargé sur sa surface avec la densité surfa-
cique uniforme σ0.

10—  Distribution à symétrie sphérique

Pour chacune des distributions suivantes :

— déterminer le champ électrique
#»
E (M) créé en tout

point M de l’espace, et représenter graphiquement
l’évolution spatiale de sa composante;

— déterminer le potentiel électrique V (M) en tout
point M de l’espace et représenter graphiquement
son évolution spatiale.

1. On considère une sphère de rayon a portant la den-

sité volumique de charges ρ(r ) = ρ0

(
1− r

a

)
en coor-

données sphériques.

2. On considère une sphère de rayon a, chargée sur sa
surface avec la densité surfacique uniforme σ0.

11—  Champ créé par un cylindre chargé

On considère un cylindre infini de rayon a. On donne le
graphe du champ électrique en un point M à une dis-
tance r < a de l’axe du cylindre :

a0 r

E0

E(r )

1. Montrer que ce champ est compatible avec une
densité volumique de charge ρ0 uniforme à l’intérieur
du cylindre, dont on donnera l’expression.

2. Déterminer le champ électrique en un point M si-
tué à une distance r > a de l’axe.

3. En déduire V (M) en tout point de l’espace. Repré-
senter le graphe de V (r ).

12—  Deux plans de charges opposées

Calculer le champ électrostatique créé par deux plans
infinis, distants de d , portant les densités surfaciques
de charges uniformes σ et −σ.
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13—  Modèle de l’atome

Un ancien modèle de l’atome le décrit comme étant
constitué d’un noyau (boule de centre O, de charge e,
de rayon a = 100 pm) à l’intérieur duquel gravite un
électron (charge ponctuelle −e). On note

#     »
OM = r #»e r .

1. Montrer que le potentiel créé par la boule est

V (r < a) = e

4πε0a

(
3

2
− r 2

2a2

)
et V (r > a) = e

4πε0r
.

2. Donner l’expression de l’énergie d’ionisation de
l’atome (énergie nécessaire pour envoyer l’électron à
l’infini). La calculer et la comparer à celle de l’atome
d’hydrogène (13,6 eV).

3. Étudier le mouvement de l’électron autour de sa po-
sition d’équilibre. Et dégager notamment la pulsation
ω0 des petites oscillations. À quel domaine appartient
la fréquence associée?

Indication : on commencera par chercher le champ
#»
E (M) créé par la boule.

14—  Potentiel de Yukawa

En tout point M de l’espace, le potentiel électrosta-
tique a pour expression en coordonnées sphériques

V (M) = q

4πε0

1

r
e−r /a .

1. Déterminer le champ
#»
E (M) en tout point M de l’es-

pace.

2. Déterminer le flux Φ(r ) de
#»
E (M) à travers une sur-

face sphérique de rayon r et de centre O. En déduire la
charge Q(r ) comprise dans une sphère de rayon r .

3. Déterminer lim
r→0

Q(r ). Conclusion?

4. Déterminer lim
r→∞Q(r ). Conclusion?

5. Déterminer la densité volumique de charge ρ(r ) ré-
gnant dans l’espace.

6. Que pourrait modéliser une telle distribution?

15—  Oscillations dans un tunnel

Un astre sphérique de masse M uniformément répartie
et de rayon R est percé d’un tunnel rectiligne AB .

a

C

O x

P

Q

A B

Un objet de masse m assimilé à une particule ponc-
tuelle P , peut se déplacer sans frottement dans le tun-
nel.
Un satellite Q est en orbite circulaire à une altitude né-
gligeable.
À t = 0, le satellite Q est en A, et l’objet P est lâché du
point A, avec une vitesse nulle.
Les points P et Q se rencontreront-ils périodiquement
(en A ou en B) ? Si oui, calculer la périodicité de leurs
rencontres.
On négligera la rotation de l’astre sur lui-même.

16—  Gravimétrie

La gravimétrie est l’étude des champs gravitationnels.
On donne G = 6,67×10−11 SI.
Dans un sol calcaire, de masse volumique ρc, une ca-
vité a été créée par la lente dissolution de la roche et
par l’écoulement souterrain qui évacue les matières
dissoutes au fur et à mesure. On considère la cavité
comme vide de matière, et sphérique de rayon R.

ρc

M

O

h

x

z

R

1. En utilisant le théorème de superposition, exprimer
la variation du champ de gravité (appelée « anomalie
gravimétrique ») à la verticale du centre de la cavité (au
point M de la figure) du fait de l’existence de cette ca-
vité.

2. On fait varier l’abscisse x du point M tout en res-
tant au niveau du sol. Sans calcul supplémentaire, don-
ner l’allure du graphe représentant l’anomalie gravi-
métrique verticale en fonction de x.

3. Comment les résultats sont-ils modifiés su la cavité
est remplie d’eau de masse volumique ρe ?

4. L’unité utilisée pour quantifier l’anomalie gravimé-
trique est le gal, avec 1 Gal = 1 cm · s−2. On utilise un
gravimètre portatif permettant d’atteindre une résolu-
tion effective d’environ 10 µGal.

Ce gravimètre est-il capable de détecter une cavité de
5 m de rayon, située à 10 m de profondeur?

On donne ρc = 2,6 g ·cm−3.
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17—  Grotte alors !

1. Rappeler le théorème de Gauss pour la gravitation.

2. Déterminer le champ gravitationnel
#»

G (M) créé en
tout point M intérieur à une planète sphérique homo-
gène de centre O, de rayon R et de masse volumique
uniforme ρ0.

3. On considère maintenant que cette planète possède
une grotte sphérique de centre C et de rayon a.

Deux explorateurs pénètrent dans le grotte ; ils se
trouvent aux points A et B .

Chacun laisse tomber une pierre de masse m. Déter-
miner la trajectoire de chacune des pierres. Laquelle

touche l’autre extrémité de la grotte en premier?

O C

A

B

 ;;;; Lois locales <<<<

18—  Jonction P-N

La jonction PN joue un rôle très important dans la
technologie des semi-conducteurs.

1. Citer des composants électroniques où on la ren-
contre.

On étudie le comportement électrique de cette jonc-
tion PN sur le modèle suivant : elle se comporte comme
deux couches planes illimitées selon O y et Oz, por-
tant des densités volumiques de charges électriques de
signes opposés :

ρ(x) =
{
ρ2 < 0 pour −b ⩽ x < 0

ρ1 > 0 pour 0⩽ x < a

L’ensemble est électriquement neutre.

−b 0 a x

ρ2 ρ1

2. Déterminer le lien entre ρ1, ρ2, a et b.

3. Déterminer complètement le vecteur champ élec-
trique en tout point intérieur (le champ électrique ex-
térieur étant nul) et le représenter graphiquement.

4. Déterminer le potentiel électrique V (x) en tout
point de l’espace (avec V (x = 0) = 0) et le représenter
graphiquement

19—  Distribution de charges

On donne le potentiel électrostatique unidimension-
nel, défini sur trois domaines de l’espace :

0

a

x

V (x) =V0

(
1− x3

a3

)
V (x) = 0

V (x) =V0

1. Calculer le champ électrique.

2. Quelles sont les distributions volumique et surfa-
cique de charge?

3. A-t-on neutralité électrique?

20—  Électrolyte

On considère le demi-espace z ⩾ 0, constitué d’un
électrolyte de cations et d’anions de charges respec-
tives +e et −e. Le demi-espace z < 0 est constitué d’un
métal.
Le potentiel V (z) ne dépend que de z et vaut V0 > 0 en
z = 0.
On considère l’ensemble du système à l’équilibre à une
température T .
Les densités volumiques de cations et d’anions sont
données par

N+(z) = n0 exp

(
−V (z)e

kBT

)
et N−(z) = n0 exp

(
V (z)e

kBT

)
.

1. Donner une interprétation physique des facteurs de
Boltzmann.

2. Exprimer la densité volumique de charge ρ et trou-
ver une équation différentielle sur V (z).

3. Dans le cas où eV (z) ¿ kBT , déterminer V (z) avec
V (∞) = 0, et le champ

#»
E dans l’électrolyte.
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21—  Écrantage de Debye

On considère un milieu globalement électriquement
neutre, dans un état ionisé (un plasma par exemple),
constitué de particules de charges +q et −q , de densi-
tés moyennes identiques égales à n0.
On considère une charge q de ce milieu au point O.
La présence de la charge q en O modifie localement la
répartition des charges positives et négatives, celles-ci
ayant alors les densités n+(r ) et n−(r ) respectivement,
à la distance r de O.
Ces densités sont données par la loi de Boltzmann, à
l’équilibre thermodynamique (statistique) du système
à la température T :

n+(r ) = n0 exp

(
− qV

kBT

)
et n−(r ) = n0 exp

(
+ qV

kBT

)
,

puisque l’énergie potentielle d’une charge q en un
point de potentiel V s’écrit Ep = qV . À grande distance
de l’origine O, le milieu retrouve sa neutralité globale
et les densités de charges positives et négatives tendent
vers la même valeur n0 ; en prenant V = 0 pour r →∞,
on a bien n+(r ) = n−(r ) = n0.

1. Établir l’équation différentielle vérifiée par le poten-
tiel V (r ).

2. Linéariser celle-ci pour qV ¿ kBT , puis la résoudre
en faisant apparaître une distance caractéristique ℓD,
dont on donnera l’expression.

3. Montrer que ℓD, longueur de Debye du plasma,
caractérise l’écrantage du potentiel coulombien de la
charge +q par les autres entités chargées du milieu io-
nisé.

Pour G(M) = G(r ), le laplacien en coordonnées sphé-

riques est ∆G = 1

r

d2(rG)

dr 2 .

22—  Diode à vide

Les deux plaques A et B d’une diode à vide sont deux
plans conducteurs parallèles (surface s = 5 cm2, dis-
tance ℓ = 5 mm). La cathode A est chauffée et peut
émettre des électrons dans le vide. Une différence de
potentiel U = 100 V est maintenue entre A et B (on
prendra comme potentiel des électrodes VA = 0 V et
VB =U > 0).
Les électrons sortis de A et accélérés par le champ élec-
trique sont attirés vers l’anode B , d’où un courant I > 0
de B vers A. On pourra négliger ici l’énergie cinétique
initiale d’un électron émis.
On suppose que le courant électronique n’est pas li-
mité par le processus d’émission lui-même, mais par
l’effet répulsif des électrons qui circulent dans le vide
et qui constitue une charge d’espace négative de den-
sité volumique ρ. On admettra que l’on est en régime
stationnaire et que la limite supérieure du courant est

atteinte quand le champ résultant
#»
E est nul à la surface

de A.

1. Le problème est à une dimension : on note x la dis-
tance à A.

En régime permanent, relier v(x) à V (x), V (x) à ρ(x), et
exprimer l’intensité I traversant la diode.

2. Montrer que V (x) est solution d’une équation diffé-
rentielle de la forme

d2V

dx2 = kp
V (x)

,

où k est une constante qui dépend de I (on donnera
son expression).

Expliciter V (x) en tenant compte des contions aux li-
mites sur les plaques.

Indication : on pourra multiplier les deux membres de

l’équation précédente par
dV

dx
.

3. En déduire la valeur de I . Donner l’allure de ρ(x)
et v(x).

23—  Membrane cellulaire

On considère une cellule biologique entourée de sa
membrane. Localement elle peut être modélisée par
un plan placé en x = 0. Le potentiel créé est alors

V (x) =
V0 pour x < 0

V0 exp
(
− x

a

)
pour x > 0

1. Donner l’expression du champ électrique
#»
E .

2. Donner l’expression de la densité volumique de
charge ρ(x).

La densité surfacique de charge sur la membrane σ vé-
rifie

σ

ε0
= Ex (0+)−Ex (0−) .

3. Donner l’expression de σ et tracer ρ(x).

4. Déterminer la charge dans un cylindre d’axe x et de
rayon r .

24—  Champ disruptif de l’air

Un logiciel de simulation permet de tracer l’allure des
lignes équipotentielles autour de deux électrodes por-
tées aux potentiels respectifs −1 V et +1 V.
On obtient aussi le graphe des variations de potentiel
V en fonction de z sur l’axe.
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1. Où le champ électrique est-il maximal?

2. Le champ disruptif de l’air est Edis =
3,6×106 V ·m−1. Quelle tension doit-on appliquer aux
bornes des électrodes pour atteindre ce champ au
centre O du dispositif ?

25—  Colloïde

Un colloïde est une particule dont la taille est très
grande à l’échelle atomique ; il est assimilable à une
sphère chargée uniformément en surface, de rayon r0,
de charge +pe (p ∈ N∗).
On plonge un tel colloïde dans un électrolyse où
règnent des charges ±e; on suppose que lorsqu’on s’en
éloigne suffisamment, le champ électrostatique est dû
uniquement aux ions de l’électrolyte et l’on admet que
l’on pourra remplacer dans toutes les équations ε0 par
ε= ε0εr, avec εr = 80.
On donne les distributions volumiques des cations et
des anions dans l’électrolyte :

n+(r ) = n0 exp

(
−

E+
p (r )

kBT

)
et n−(r ) = n0 exp

(
−

E−
p (r )

kBT

)
,

où E±
p est l’énergie potentielle électrostatique de la

charge ±e dans le potentiel V (r ).

1. Qu’évoquent les formes des densités volumiques
d’ions?

2. Donner l’expression du champ électrostatique et du
potentiel électrostatique en r = r+

0 (quand r → r0, avec
r > r0).

3. Exprimer la densité volumique de charges ρ(r ) en
fonction de V (r ). On admettra que kBT À Ep.

4. Établir l’équation différentielle vérifiée par le poten-
tiel V (r ), et la résoudre.

On introduira une longueur caractéristique D que l’on
exprimera en fonction de e, n0, ε et kBT .

5. Tracer l’allure de V (r ) en commentant le choix des
constantes d’intégration. Pourquoi parle-t-on d’effet
d’écran?

6. Pour de l’eau pure à pH = 7, calculer D .

On rappelle l’expression du laplacien en coordonnées
sphériques :

∆G = 1

r

∂2(rG)

∂r 2 + 1

r 2 sinθ

∂

∂θ

(
sinθ

∂G

∂θ

)
+ 1

r 2 sin2θ

∂2G

∂φ2 .

26—  Matière noire

On étudie une galaxie spirale, modélisée par un noyau
sphérique de rayon R, de masse volumique ρ0 uni-
forme (on suppose les étoiles uniformément réparties
dans le noyau) et de masse Mg.
On considère une étoile de masse m, en mouvement
circulaire uniforme autour du centre de la galaxie.

1. Rappeler le théorème de Gauss pour la gravitation.
Déterminer le champ de gravitation

#»

G (M) pour tout
point M à l’intérieur ou à l’extérieur du noyau de la ga-
laxie.

2. En déduire l’expression de la vitesse v(r ) de l’étoile
pour r < R et r ⩾ R. Tracer le graphe v(r ) correspon-
dant.

On rappelle que pour mouvement circulaire uniforme,

l’accélération est donnée par #»a =−v2

r
#»e r .

On représente les données expérimentales mesurées
pour la galaxie NGC 3198. Le kiloparsec (kpc) est une
unité de longueur utilisée en astronomie.

Sont-elles compatibles avec la modélisation de la ga-
laxie adopté?
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L’existence de matière noire a été proposée pour ex-
pliquer les observations. Cette matière, non visible, est
distribuée dans un halo sphérique entourant la galaxie.
On fait les hypothèses suivantes :

— il n’y a pas de matière noire dans le noyau de rayon
R (R ≈ 5 kpc pour la galaxie NGC-3198) ;

— la matière noire est symétriquement répartie dans
un halo sphérique compris entre R et nR, avec
une masse volumique ρd(r ) en coordonnées sphé-
riques, et où n > 1 est un facteur numérique carac-
téristique de la galaxie ;

— à l’extérieur du noyau, la vitesse de l’étoile étudiée
est constante : v(r ) = v0, où, par continuité à la li-
mite du noyau, v0 = v(R) déterminée précédem-
ment.

3. Déterminer l’expression du champ gravitationnel

dans la zone R < r < nR donnant le champ de vitesse
v(r ) = v0.

Par analogie avec l’électrostatique, écrire l’équivalent
de la relation de Maxwell-Gauss pour la gravitation.
En déduire l’expression ρd(r ) de la densité volumique
de matière noire compatible avec le profil de vitesse
adopté, en fonction de ρ0, R et r pour R < r < nR.

Représenter ρ(r ) pour 0 < r < nR.

Pour un champ
#»
A = A(r ) #»e r en coordonnées sphé-

riques, on donne div
#»
A = 1

r 2

d
(
r 2 A(r )

)
dr

.

4. En déduire en fonction de n la proportion de ma-
tière noire par rapport à la masse totale de la galaxie :

γ= Mnoire

Mg +Mnoire
.

Dans la pratique, on détermine n = 10. Conclure.
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