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TD électromagnétisme no 1 Électrostatique— solution

 ;;;; Introduction à l’électrostatique <<<<

1—  Calculs de charge en coordonnées sphériques

On considère une boule D de rayon a, de centre O.
Calculer la charge portée par une sphère de rayon r , en
considérant les cas r > a et r < a, si la sphère Σ :

— est uniformément chargée en volume avec la den-
sité volumique de charge ρ0 ;

— porte la densité volumique de charge

ρ(r ) = ρ0

(
1− r

a

)
en coordonnées sphériques;

— est chargée en surface avec la densité surfacique de
charge σ0 uniforme.

2—  Calculs de charge en coordonnées cylindriques

On considère un cylindre D de rayon a, d’axe Oz, de
longueur infinie.
Calculer la charge portée par un cylindre de hauteur H
et de rayon r , en considérant les cas r > a et r < a, si le
cylindre :

— est uniformément chargé en volume avec la densité
volumique de charge ρ0 ;

— porte la densité volumique de charge ρ(r ) = ρ0
r

a
en

coordonnées cylindriques ;

— est chargé en surface avec la densité surfacique de
charge σ0 uniforme.

3—  Espace chargé

1. L’argument d’une exponentielle étant sans dimen-

sion,
r

a
doit Íêre sans dimension. La constante a a donc

la dimension de r , c’est-à-dire d’une longueur : [a] = L.
On peut alors déterminer la dimension de K .

La charge volumique a la dimension d’une charge di-
visée par un volume. L’exponentielle étant sans di-
mension, et le dénominateur 4πa2r ayant la dimen-
sion d’un volume, la constante K a la dimension d’une
charge : [K ] = I T . La distribution de charges est à
symétrie sphérique. On considère donc une coquille
sphérique de rayon r et d’épaisseur dr . Elle porte la
charge dq = ρ(r )4πr 2 dr .

La charge contenue dans tout l’espace vaut donc :

Q =
Ñ

M∈D
ρ(M)dτ= K

a2

ˆ +∞

0
r e−r /a dr

On effectue une intégration par parties. Posons

f (r ) = r et g ′(r ) = e−r /a .

On a f ′(r ) = 1 et g (r ) =−a e−r /a , et

ˆ +∞

0
r e−r /a dr = [−ar e−r /a]+∞

0 +a

ˆ +∞

0
e−r /a dr

= 0−a2 [
e−r /a]+∞

0 = a2

La charge totale de la distribution vaut donc Q = K .

4—  Champ au centre d’un carré

On considère quatre charges ponctuelles, avec q > 0 :

qq

−qq
A1

A2A3

A4

O
x

y

1. En examinant les symétries de la distribution, déter-
miner la direction de

#»
E (O), champ électrique en centre

de la figure.

2. Établir l’expression de
#»
E (O).

5—  Espace chargé

Le demi-espace z > 0 est chargé avec le densité volu-
mique de charges ρ(z) = ρ0 e−z/a .
Une couche d’épaisseur b porte la densité volumique
de charge −ρ0 : on a donc

ρ(M) =


0 pour z <−b

−ρ0 pour −b ⩽ z < 0

ρ0 e−z/a pour z > 0.

1. Déterminer b pour que la charge totale de la distri-
bution soit nulle.

2. Étudier les symétries et invariances de cette distri-
bution.
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6—  Cylindre chargé

1. La géométrie de la distribution nous conduit natu-
rellement à utiliser les coordonnées cylindriques d’axe
Oz.

Étude des symétries

La densité surfacique de charge est positive sur toute la
distribution; elle ne peut donc pas comporter de plan
d’antisymétrie 1.

θ

x

y

M(r,θ)M ′′(r,π−θ)

M ′(r,−θ)

O

Soit M ′(r,−θ) le symétrique de M par rapport au plan
xOz. On a ρ(M ′) = ρ0 sin2(−θ) = ρ0 sin2θ = ρ(M).

Le plan xOz est un plan de symétrie de la distribution
de charges.

Soit M ′′(r,π−θ) le symétrique de M par rapport au plan
yOz. On a σ(M ′′) =σ0 sin2(π−θ) =σ0 sin2θ =σ(M).

Le plan yOz est un plan de symétrie de la distribution
de charges.

La densité de charges ne dépend pas de z. La distri-
bution étant de longueur finie, seul le plan médiateur
xO y est plan de symétrie de la distribution.

Étude des invariances

La distribution étant de longueur finie, elle n’est pas in-
variante par translation.

La densité de charges dépendant de l’angle θ, elle n’est
pas invariante par rotation autour de Oz.

2. On réutilise la figure précédente.

Étude des symétries

Soit M ′ le symétrique de M par rapport au plan xOz.
On a :

σ(M ′) = ρ(r,−θ) = ρ0 cos(−θ) = ρ0 cosθ =σ(M)

Le plan xOz est donc un plan de symétrie de la distri-
bution de charges.

Soit M ′′ le symétrique de M par rapport au plan yOz.
On a :

σ(M ′′) = ρ(r,π−θ) = ρ cos(r,π−θ) =−ρ0 cosθ =−σ(M)

Le plan yOz est donc un plan d’antisymétrie de la dis-
tribution de charges.

La densité de charges ne dépend pas de z. La distri-
bution étant de longueur finie, seul le plan médiateur
xO y est plan de symétrie de la distribution.

Étude des invariances

La distribution étant de longueur finie, elle n’est pas in-
variante par translation.

La densité de charges dépendant de l’angle θ, elle n’est
pas invariante par rotation autour de Oz.

7—  Deux charges en équilibre

Deux boules identiques de masse m, portant la même
charge q , sont fixées en un point O par deux fils isolants
de longueur a. En assimilant les boules à des charges
ponctuelles, calculer l’angle α entre les fils à l’équilibre.

α

(m, q)(m, q)

O

Application numérique :
q = 10−8 C; a = 1 m; m = 10−3 kg.
On donne g = 10 m · s−2.

8—  Balance de Coulomb

La balance de Coulomb se compose d’un fil de torsion
de constante C auquel est accroché en son milieu O
une tige horizontale de longueur 2a. Cette tige porte
à une extrémité A une boule chargée de q . Le fil n’étant
pas tordu, la boule A est au contact d’une boule B , fixe,
portant la même charge q .

(B , q)

(A, q)

contrepoids

Oθ

fil de torsion

1. Établir l’équation en θ exprimant l’équilibre du sys-
tème :

Cθ = q2

16πε0a

cosθ/2

sin2θ/2

2. Résoudre graphiquement puis numériquement
cette équation. On donne C = 3 · 10−8 N · m · rad−1 ;
a = 140 cm; q = 2 ·10−9 C.

1. La densité de charge est nécessairement nulle en tout point d’un plan d’antisymétrie.
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 ;;;; Théorème de Gauss <<<<

9—  Distribution à symétrie cylindrique

1. La distribution est à symétrie cylindrique :
#»
E (M) =

E(r ) #»e r en coordonnées cylindriques d’axe Oz.

Surface de Gauss : cylindre de rayon r , de hauteur H .
On a Qint = Hλ0.

Théorème de Gauss :

2πr HE(r ) = Hλ0

ε0
,

d’où
#»
E (M) = λ0

2πε0r
#»e r .

2. Symétrie cylindrique :
#»
E (M) = E(r ) #»e r .

Surface de Gauss : cylindre de rayon r , de hauteur H
arbitraire.

Le flux de
#»
E vaut alorsÓ

P∈Σ
#»
E (P ) ·d

#»
SP = 2πr HE(t ) .

Pour r ⩾ a, on a

Qint =
ˆ a

0
ρ(r )2πr H dr = 2πρ0H

a

ˆ a

0
r 2 dr = 2πρ0H a2

3
.

Pour r < a, on a

Qint =
ˆ r

0
ρ(r ′)2πr ′H dr ′ = 2πρ0H

a

ˆ r

0
r ′2 dr ′ = 2πρ0Hr 3

3a
.

On en déduit

#»
E (M) =


ρ0r 2

3ε0a
#»e r pour r < a

ρ0a2

3ε0r
#»e r pour r ⩾ a .

3. Les propriétés de symétrie et d’invariance sont les
mêmes, seul change le calcul de la charge intérieure à
la surface de Gauss.

Pour r ⩾ a, on a

Qint =
ˆ a

0
ρ(r )2πr H dr = 2πρ0H

a

ˆ a

0
r 2 dr = 2πρ0H a2

3
.

Pour r < a, on a

Qint =
ˆ r

0
ρ(r ′)2πr ′H dr ′ = 2πρ0H

a

ˆ r

0
r ′2 dr ′ = 2πρ0Hr 3

3a
.

On en déduit

#»
E (M) =


ρ0r 2

3ε0a
#»e r pour r < a

ρ0a2

3ε0r
#»e r pour r ⩾ a .

10—  Distribution à symétrie sphérique

1. La distribution est à symétrie sphérique :
#»
E (M) =

E(r ) #»e r en coordonnées sphériques.

Surface de Gauss : sphère de rayon r . Le flux du champ
vaut 4πr 2E(r ).

Pour r ⩾ a, on a

Qint =
ˆ a

0
ρ(r )4πr 2 dr = πρ0a3

3
.

Pour r < a, on a

Qint =
ˆ r

0
ρ(r ′)4πr ′2 dr t = 4πρ0

(
r 3

3
− r 4

4a

)
.

On en déduit

#»
E (M) =


ρ0

ε0

(
r 3

3
− r 4

4a

)
#»e r pour r < a

ρ0a2

12ε0r
#»e r pour r ⩾ a .

2. Les propriétés de symétrie et d’invariance sont les
mêmes, seul change le calcul de la charge intérieure à
la surface de Gauss.

Si r < a, on a Qint = 0.

Si r > a, on a Qint =σ04πa2.

On en déduit

#»
E (M) =


#»
0 pour r < a
σ0a2

ε0r 2
#»e r pour r > a .

On remarque que le champ est discontinu en r = a, la
discontinuité valant

E(a+)−E(a−) = σ0

ε0
.

11—  Champ créé par un cylindre chargé

1. Le champ à l’intérieur d’un cylindre uniformément
chargé en volume a été établi en cours :

E(r ) = ρ0

2ε0
r .

Cette loi est fonction linéaire de r , compatible avec le
graphe.

D’après le graphe on a

E(r ) = E0
r

a

d’où en identifiant

ρ0 = 2ε0E0

a
.
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2. On détermine le champ à l’extérieur avec le théo-
rème de Gauss comme à l’exercice 1 :

#»
E = ρ0a2

2ε0r
#»e r

soit
#»
E = E0

a

r
#»e r pour r ⩾ a .

3. Le potentiel est donné par E(r ) =−dV

dr
, soit

dV

dr
=


−E0

r

a
pour r < a

−E0
a

r
pour r ⩾ a

d’où

V (r ) =

−E0
r 2

2a
+C1 pour r < a

−E0a ln(r )+C2 pour r ⩾ a

On ne peut pas prendre le potentiel nul à l’infini car on
ne peut considérer r →∞ pour un cylindre infini.

En choisissant V (a) =V0, on obtient

V (r ) =


E0

2a
(a2 − r 2) pour r < a

−E0a ln
( r

a

)
pour r ⩾ a

12—  Deux plans de charges opposées

Utilisons les coordonnées cartésiennes, l’axe Oz étant
perpendiculaire aux deux plans de cotes +d

2 et −d
2 .

z

x
σ

−σ

O

d/2

−d/2

Pour tout point M de l’espace, les plans (M ; #»e x , #»e z ) et
(M ; #»e y , #»e z ) sont des plans de symétrie, donc le champ
n’a pas de composante selon #»e y et #»e x .
La distribution est invariante par translation selon Ox
et O y , donc les composantes du champ ne dépendent
pas de x et de y .
Finalement, le champ est de la forme

#»
E (M) = E(z) #»e z .

Le plan Ox y est un plan d’antisymétrie de la distribu-
tion, donc E(−z) =−E(z) (le champ se réduit à sa com-
posante normale

#»
E ⊥ au plan d’antisymétrie).

La distribution peut s’écrire comme la superposition
de deux distributions : le plan de cote d/2, de charge
surfacique σ, qui crée le champ

#»
E 1(M), et le plan

de cote −d/2, de charge surfacique −d/2, qui crée le
champ

#»
E 2(M). D’après le théorème de superposition,

le champ créé par les deux plans est
#»
E (M) = #»

E 1(M)+
#»
E 1(M).
On se ramène donc au calcul du champ créé par un
plan infini, traité en cours :

#»
E 1(M) =


σ0

2ε0

#»e z pour z > d/2

− σ0

2ε0

#»e z pour z < d/2

et

#»
E 2(M) =


− σ0

2ε0

#»e z pour z >−d/2

σ0

2ε0

#»e z pour z <−d/2

On a donc

#»
E (M) =


#»
0 pour z > d/2

− σ0

ε0

#»e z pour −d/2 < z < d/2
#»
0 pour z <−d/2

ä La distribution possède a priori toutes les proprié-
tés pour que l’on puisse utiliser le théorème de
Gauss. On est tenté de choisir comme surface fer-
mée un cylindre compris entre les cotes z et −z,
mais on aura toujours Qint = 0, et le flux de

#»
E est

nul ; le théorème de Gauss conduit alors à la rela-
tion 0 = 0... qui est vraie mais guère utile !

13—  Modèle de l’atome

1. Densité volumique de charge : ρ = 3e

4πa3 .

La distribution est à symétrie sphérique ; on a donc
#»
E (M) = E(r ) #»e r en coordonnées sphériques.

Théorème de Gauss avec une sphère de rayon r :

4πr 2E(r ) =
{

e
ε0

pour r ⩾ a
ρ
ε0

4
3πr 3 = e

ε0

r 3

a3 pour r < a

d’où

E(r ) =
{

e
4πε0r 2 pour r ⩾ a

e
4πε0

r
a3 pour r < a

Pour r ⩾ a, avec V (∞) = 0, on a V (r ⩾ a) = e

4πε0r
.

Pour r < a, on a V (r ) =− er 2

8πε0a3 + A. La continuité du

potentiel en r = a s’écrit

V (a) = e

4πε0a
=− e

8πε0a
+ A2

d’où

A2 = 3e

8πε0a
.

On en déduit

V (r < a) = e

4πε0a

(
3

2
− r 2

2a2

)
.
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ä Pour r ⩾ a, on retrouve le champ et le potentiel
créés par une charge ponctuelle.

2. L’énergie potentielle d’un électron soumis au
champ créé par le noyau est Ep =−eV (r ), soit

Ep =


− e2

4πε0r
pour r > a

e2

4πε0a

(
r 2

2a2 − 3

2

)
pour r < a

r
Ep

Ep(0)

a
0

ä La courbe V (r ), et donc Ep(t ) = −eV (r ), a une tan-
gente continue en r = a : le champ E(r ) et continu,

et
dV

dr
=−E(r ).

L’énergie d’ionisation est l’énergie à apporter à l’élec-
tron pour l’apporter du centre (position d’équilibre) à
l’infini avec une vitesse nulle.

Elle vaut doncEi =Ep(∞)−Ep(0), soit

Ei = 3e2

8πε0a
.

L’énergie d’ionisation en électron-volt (1 eV =
1,6×10−19 J) est donnée par

Ei = 3

2

9×109 ×1,6×10−19

100×10−12

soit Ei = 21,6 eV .

On ne retrouve pas la valeur réelle, mais l’ordre de
grandeur est tout à fait comparable.

3. Position d’équilibre stable en r = 0.

Quand il est à l’intérieur de l’atome, l’atome est soumis

à la force de rappel élastique
#»
F =− e2

4πε0a3

#     »
OM . Le PFD

s’écrit

m
d2 #     »

OM

dt 2 + e2

4πε0a3

#     »
OM = #»

0 .

Oscillateur harmonique de pulsation propre

ω0 =
√

e2

4πε0ma3 .

On calcule la fréquence propre associée :

f0 = e

2π

√
1

4πε0

1p
ma3

= 1,6×10−19

2π

√
9×109

9,1×10−31 ×10−31 = 1,6

2π
1016

soit f0 = 2,5×1015 Hz .

La longueur d’onde correspondante est λ = c/ f =
120 nm : on est dans le domaine des ultraviolets.

14—  Potentiel de Yukawa

1. La relation locale
#»
E =−#      »

gradV conduit à

#»
E =−dV

dr
#»e r =−qe−r /a

4πε0

[
− 1

r 2 − 1

ar

]
#»e r

soit
#»
E = q

4πε0r 2

[
1+ r

a

]
e−r /a #»e r .

2. Le champ étant radial, de la forme
#»
E = E(r ) #»e r , le

flux à travers une sphère de rayon r est donné par

Φ(r ) =
Ó

Σ

#»
E ·d

#»
S = 4πr 2E(r ) ,

soit

Φ(r ) = q

ε0

[
1+ r

a

]
e−r /a .

Le théorème de Gauss s’écrit

Φ(r ) = Q(r )

ε0
,

d’où

Q(r ) = q
[

1+ r

a

]
e−r /a .

3. On a

lim
r→0

Q(r ) = q .

Il existe une charge ponctuelle q située au point O.

4. On a

lim
r→∞Q(r ) = 0 .

La distribution est globalement neutre.

La charge q située en O est donc entourée d’un
« nuage » à symétrie sphérique, de charge totale −q .

5. La relation de Maxwell-Gauss s’écrit : div
#»
E = ρ

ε0
.

Dans le cas où
#»
E = E(r ) #»e r , on a

div
#»
E = 1

r 2

d[r 2E(r )]

dr

= 1

r 2

d

dr

[
q

4πε0
er /a (

1+e−r /a)]
= q

4πε0r 2 e−r /a
[

1

a
+

(
1+ r

a

)(
− 1

a

)]
soit

div
#»
E =− q

4πε0a2r
e−r /a .
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On en déduit

ρ(r ) =− q

4πa2r
e−r /a .

On peut calculer cette densité volumique sans utiliser
l’opérateur divergence. C’est moins dans l’esprit du pro-
gramme actuel, mais je vous donne aussi cette méthode.

Le flux sortant de
#»
E à travers la sphère de rayon r est

Φ(r ) = 4πr 2E(r ) = q

ε0

(
1+ r

a

)
e−r /a .

On applique le théorème de Gauss à la surface fermé dé-
limitant la coquille de rayon r et d’épaisseur dr : ce vo-
lume est donc compris entre la sphère de rayon r et la
sphère de rayon r +dr .

Le flux sortant de ce volume s’écritÓ
M∈Σ

#»
E (M) ·d

#»
SM =−Φ(r )+Φ(r +dr ) = dΦ

dr
dr

car Φ(r ) « entre » dans la coquille tandis que Φ(r +dr )
en sort.

La charge comprise dans ce volume est 2

δQint = ρ(r )4πr 2 dr .

Le théorème de Gauss s’écrit alors

dΦ

dr
dr = 4πr 2

ε0
ρ(r )dr

d’où

ρ(r ) = 1

4πε0r 2

dΦ

dr
.

On calcule

dΦ

dr
= q

ε0
e−r /a

[
1

a
+

(
1+ r

a

)(
− 1

a

)]
=− q

ε0a2 r e−r /a .

On retrouve alors

ρ(r ) =− q

4πε0a2r
e−r /a .

6. Cette distribution peut représenter l’atome d’hy-
drogène dans son état fondamental :

— la charge q au centre est le proton (q =+e) ;

— Le « nuage » de densité ρ(r ) et de charge totale −q =
−e représente le « nuage électronique », c’est-à-dire
l’orbitale 1s de l’électron.

En effet, la charge comprise entre r et r +dr est

δQ(r ) = δQint = 4πr 2ρ(r )dr ,

soit
δQ(r ) =− q

a2 r e−r /a dr .

On peut définir une densité radiale de charge

P (r ) = δQ(r )

dr
=− q

a2 e e−r /a .

Cette densité est équivalente à la densité de probabilité
de présence de l’électron dans une description quan-
tique de l’atome d’hydrogène. Elle est maximum en r0

tel que

P ′(r0) = 0 =− q

a2

(
1− r0

a

)
e−r0/a

soit r0 = a. Cette grandeur représente le rayon de Bohr
de l’atome d’hydrogène.

15—  Oscillations dans un tunnel

Le satellite, en orbite circulaire, est animé d’un mouve-
ment circulaire uniforme de rayon R. Le principe fon-
damentale de la dynamique projeté sur le vecteur #»e r

des coordonnées sphériques de centre C s’écrit :

−m
v2

R
=−GMm

R2

d’où v =
√

GM

R
. La période TQ = 2πR/v vaut donc :

TQ =
√

4π2R3

GM

On retrouve la troisième loi de Kepler :
T 2

R3 = 4π2

GM
.

Étude du mouvement du mobile P
Le mobile est soumis à :

— la réaction
#»
N du tunnel, normal à l’axe Ox car les

frottements sont négligés ;

— la force gravitationnelle
#»
F = m

#      »

G(P ), où
#»

G (P ) est le
champ de gravitation créé en P par l’astre.

En négligeant le trou créé par le tunnel, on peut consi-
dérer que l’astre est une distribution de masse à symé-
trie sphérique, avec une masse volumique ρ uniforme.
Le champ de gravitation s’écrit donc en coordonnées
sphériques de centre C :

#»

G (P ) =G(r ) #»e r

Le théorème de Gauss permet de calculer le champ
de gravitation à l’intérieur de l’astre. En choisissant
comme surface de Gauss une sphère de centre C , de
rayon r =C P < R, on a :

4πr 2G(r ) =−4πMint

La masse de l’astre étant uniformément répartie, M =
4

3
ρR3 et Mint = 4

3
ρr 3, on a Mint = M

r 3

R3 , d’où :

#»

G (P ) =−GM

R3 r #»e r =−GM

R3

#   »
C P

2. On considère la densité ρ(r ) dans la coquille de volume dτ= 4πr 2 dr .
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Le mobile est donc soumis à la force :

#»
F =−GMm

R3

#   »
C P

La rotation de l’astre étant négligée, on peut considérer
le référentiel lié à l’astre comme galiléen, et y appliquer
le principe fondamental de la dynamique au mobile :

m #»a (P ) = #»
N + #»

F

En projection sur Ox, il vient :

m
d2x

dt 2 =−GMm

R3 x

soit
d2x

dt 2 +ω2
0x = 0, avec ω0 =

√
GM

R3 .

On retrouve l’équation de l’oscillateur harmonique.
La solution générale est

x(t ) =αcosω0t +βsinω0t .

Comme x(0) =α=−
p

R2 −a2, et ẋ(0) =βω0 = 0, on a :

x(t ) =−
√

R2 −a2 cosωt

On a < −
p

R2 −a2 ⩽ x ⩽
p

R2 −a2 : le mobile ne sort
pas du tunnel ; il effectue donc des oscillations harmo-
niques avec la période :

TP = 2π

ω0
=

√
4π2R3

GM

La période des oscillations est indépendantes de la dis-
tance a du tunnel au centre de l’astre.
Le satellite effectue un mouvement circulaire avec la
période TQ ; le mobile oscille avec la même période TP .
Les deux objets, partant initialement du point A, s’y
rencontreront avec la période T = TP = TQ , soit

T =
√

4π2R3

GM
.

ä Si a = 0, les deux mobiles se rencontreront égale-
ment au point B ; la périodicité de leurs rencontres
sera alors de T = TP /2, soit :

T =
√

π2R3

GM
.

16—  Gravimétrie

La gravimétrie est l’étude des champs gravitationnels.
On donne G = 6,67×10−11 SI.
Dans un sol calcaire, de masse volumique ρc, une ca-
vité a été créée par la lente dissolution de la roche et
par l’écoulement souterrain qui évacue les matières
dissoutes au fur et à mesure. On considère la cavité
comme vide de matière, et sphérique de rayon R.

ρc

M

O

h

x

z

R

1. En utilisant le théorème de superposition, exprimer
la variation du champ de gravité (appelée « anomalie
gravimétrique ») à la verticale du centre de la cavité (au
point M de la figure) du fait de l’existence de cette ca-
vité.

2. On fait varier l’abscisse x du point M tout en res-
tant au niveau du sol. Sans calcul supplémentaire, don-
ner l’allure du graphe représentant l’anomalie gravi-
métrique verticale en fonction de x.

3. Comment les résultats sont-ils modifiés su la cavité
est remplie d’eau de masse volumique ρe ?

4. L’unité utilisée pour quantifier l’anomalie gravimé-
trique est le gal, avec 1 Gal = 1 cm · s−2. On utilise un
gravimètre portatif permettant d’atteindre une résolu-
tion effective d’environ 10 µGal.

Ce gravimètre est-il capable de détecter une cavité de
5 m de rayon, située à 10 m de profondeur?

On donne ρc = 2,6 g ·cm−3.
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17—  Grotte alors !

1. Théorème de Gauss pour la gravitation :Ó
Σ

#»

G (M) ·d
#»
SM =−4πGMint .

2. Problème à symétrie sphérique :
#»

G (M) =G(r ) #»ur , etÓ
Σ

#»

G (M) ·d
#»
SM = 4πr 2G(r ) .

Pour r < R, on a Mint = 4

3
πρ0r 3 et

4πr 2G(r ) =−4πG
4

3
πρ0r 3

d’où

G(r ) =−4πGρ0

3
r .

Dans la planète, on a
#»

G (M) =−4πGρ0

3
r #»ur soit

#»

G (M) =−4πGρ0

3
#     »
OM .

3. Principe de superposition; la planète avec la grotte
est décrite comme la superposition des deux distribu-
tions de masse suivantes :

— une boule de centre O et de rayon R, de masse vo-
lumique uniforme ρ0 ;

— une boule de centre C et de rayon a, de masse volu-
mique uniforme −ρ0.

La planète pleine crée le champ

#»

G1(M) =−4πGρ0

3
#     »
OM .

Une sphère de centre C portant la masse volumique
−ρ0 crée le champ

#»

G2(M) = 4πGρ0

3
#    »
C M .

Le champ total dans la cavité est

#»

G (M) = #»

G1(M)+ #»

G2(M) ,

soit

#»

G (M) = 4

3
πρ0G

#   »
CO .

Le champ gravitationnel est uniforme dans la grotte,
colinéaire à

#   »
CO.

Les deux masses ont des trajectoires rectilignes, repré-
sentées en bleu sur le schéma. L’accélération étant la
même, constante, pour les deux pierres, c’est celle lâ-
chée du point A (trajectoire la plus courte) qui tou-
chera l’autre extrémité de la grotte en premier.

O C

A

B

Question bonus : calculer le temps mis pour la trajectoire la
plus longue. On pose OC = D

Masse B . PFD sur l’axe OC : m
d2r

dt 2 =−4

3
πρ0GDm

On a r (t ) =−2

3
πρ0GDt 2 +D +a. On veut r (t1) = D −a, d’où

t1 =
√

3a

πρ0GD
.

 ;;;; Lois locales <<<<

18—  Jonction P-N

1. On rencontre des jonctions PN dans les diodes et les
transistors.

2. L’ensemble étant neutre, la charge totale d’une sec-
tion S (perpendiculaire à Ox) est donc

ρ2bS +ρ1aS = 0

d’où
ρ1a +ρ2b = 0 .

3. Les plans (M ; #»e x , #»e y ) et (M ; #»e x , #»e z ) étant des plans
de symétrie de la distribution de charge, le champ

#»
E

est porté par vex. La distribution étant invariante par
translation selon O y et Oz, on a donc

#»
E (M) = E(x) #»e x .

L’équation de Maxwell-Gauss dans le milieu s’écrit

alors, comme div
#»
E = dE

dx
:

dE

dx
=

{
ρ2

ε0
pour −b ⩽ x ⩽ 0

ρ1

ε0
pour 0⩽ x ⩽ a

On en déduit par intégration, sachant que E(−b) = 0 et
E(a) = 0 (le champ est nul à l’extérieur et il est continu)
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E(x) =
{

ρ2

ε0
(x +b) pour −b ⩽ x ⩽ 0

ρ1

ε0
(x −a) pour 0⩽ x ⩽ a

On a E(0) = ρ2b

ε0
=−ρ1a

ε0
.

x
a−b

E(x)

0

4. De
#»
E =−#      »

gradV on déduit
dV

dx
=−E(x), soit

dV

dx
=


0 pour x ⩽−b

−ρ2

ε0
(x +b) pour −b ⩽ x ⩽ 0

−ρ1

ε0
(x −a) pour 0⩽ x ⩽ a

0 pour x ⩾ a

On intègre sachant que V (0) = 0, d’où

V (x) =


C1 pour x ⩽−b

−ρ2

ε0

(
x2

2 +bx
)

pour −b ⩽ x ⩽ 0

−ρ1

ε0

(
x2

2 −ax
)

pour 0⩽ x ⩽ a

C2 pour x ⩾ a

Par continuité du potentiel en x =−b on obtient

C1 = ρ2b2

2ε0
< 0.

Par continuité du potentiel en x = a on obtient

C2 = ρ1a2

2ε0
> 0.

x
−b

a

V (x)

19—  Distribution de charges

1. Le champ électrostatique est donné par

#»
E =−#      »

gradV =−dV

dx
#»e x

soit

#»
E =


#»
0 pour x > a
3V0

a3 x2 #»e x pour 0 < x < a

#»
0 pour x < 0

Représentons sa composante E(x) :

a x

E(x)

3V0
a

0

2. La densité volumique de charge est donnée part
l’équation de Poisson

∆V + ρ

ε0
= 0

soit

ρ(x) =−ε0
d2V

dx2 .

On calcule

ρ(x) =


0 pour x > a
6ε0V0

a3 x pour 0 < x < a

0 pour x < 0

Considérons un cylindre d’axe Oz, de section S, englo-
bant la zone [0, a] (ses extrémités ont pour cotes x1 < 0
et x2 > a). Le champ

#»
E étant nul au niveau des extré-

mités de ce cylindre, le théorème de Gauss s’écritÓ
M∈Σ

#»
E (M) ·d

#»
SM = 0 = Qint

ε0
.

On a donc Qint = 0.

La charge totale portée due à la densité volumique de
charge ρ(x) dans ce cylindre vaut

Qvol =
ˆ a

0
ρ(x)S dx = 6ε0V0

a3

ˆ a

0
Sx dx = 3ε0V0

a
S .

La charge totale contenue dans le cylindre étant nulle,
la distribution de charge ne peut être uniquement dé-
crite par une répartition volumique de charges.

Il existe donc une distribution surfacique, de densité
surfacique σ, située en x = a, où on observe une dis-
continuité du champ électrostatique. La charge surfa-
cique comprise dans le cylindre est Qsurf =σS.

Comme Qint =Qvol+Qsurf = 0, on a σS =−3ε0V0

a
S, d’où

σ=−3ε0V0

a
.

3. Comme on l’a vu, la distribution est globalement
neutre.
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20—  Électrolyte

On considère le demi-espace z ⩾ 0, constitué d’un
électrolyte de cations et d’anions de charges respec-
tives +e et −e. Le demi-espace z < 0 est constitué d’un
métal.
Le potentiel V (z) ne dépend que de z et vaut V0 > 0 en
z = 0.
On considère l’ensemble du système à l’équilibre à une
température T .
Les densités volumiques de cations et d’anions sont
données par

N+(z) = n0 exp

(
−V (z)e

kBT

)
et N−(z) = n0 exp

(
V (z)e

kBT

)
.

1. Donner une interprétation physique des facteurs de
Boltzmann.

2. Exprimer la densité volumique de charge ρ et trou-
ver une équation différentielle sur V (z).

3. Dans le cas où eV (z) ¿ kBT , déterminer V (z) avec
V (∞) = 0, et le champ

#»
E dans l’électrolyte.

21—  Écrantage de Debye

1. La densité volumique de charges dans le milieu est

ρ(r ) = n+(r )q −n−(r )q = n0q

[
e
− qV

kBT −e
qV

kBT

]
soit

ρ(r ) =−2n0q sinh

(
qV

kBT

)
.

L’équation de Poisson s’écrit

∆V + ρ

ε0
= 0.

Le potentiel V (r ) vérifie donc l’équation différentielle

∆V = 2n0q

ε0
sinh

(
qV

kBT

)
.

2. Pour qV ¿ kBT , on a

sinh

(
qV

kBT

)
≈ qV

kBT
,

d’où en utilisant l’expression du laplacien fournie

1

r

d2(r V (r ))

dr 2 = 2n0q2V (r )

ε0kbT
,

soit
d2[r V (r )]

dr 2 = 2n0q2

ε0kBT
r V (r ) .

On peut écrire

d2[r V (r )]

dr 2 = 1

ℓ2
D

r V (r ) avec ℓD =
√

ε0kBT

2n0q2 .

La solution générale est de la forme

r V (r ) = A1 e
r
ℓD +A2 e

− r
ℓD ,

soit

V (r ) = A1

r
e

r
ℓD + A2

r
e
− r

ℓD .

Le potentiel V (r ) ne pouvant diverger pour r →∞, on
a nécessairement A1 = 0, et

V (r ) = A2

r
e
− r

ℓD .

Considérer r → 0 revient à se rapprocher de la charge q
en 0 ; le potentiel créé par cette charge prédomine alors
sur le potentiel créés par les autres charges ; comme

e
− r

ℓD ≈ 1, on a alors

V (r ) ≈ q

4πε0r
≈ A2

r
.

On en déduit A2 = q

4πε0
et le potentiel s’écrit finale-

ment

V (r ) = q

4πε0r
e
− r

ℓD .

3. Le potentiel coulombien créé par la charge +q seule
est

VCoul(r ) = q

4πε0r
.

Le potentiel au voisinage de cette charge dans le
plasma s’écrit

V (r ) =VCoul(r )e
− r

ℓD .

Cette expression fait apparaître le terme d’écrantage

e
− r

ℓD < 1, qui devient très faible dès que r À ℓD. Les
charges négatives du plasmas sont attirées autour de
la charge +q , et font « écran », diminuant le potentiel
créé.

ä Cela peut surprendre d’obtenir un potentiel qui fait
apparaître un rôle centrale à la charge+q choisie au
hasard dans le plasma. En fait, c’est un phénomène
statistique, en moyenne dans le temps; le plasma
présente une certaine dynamique, due à l’agitation
thermique, et les charges ne sont pas figées dans
l’espace.

ä L’agitation thermique s’oppose au regroupement
des charges −q autour de la charge +q , donc à
l’écrantage. En effet, le phénomène est moins im-
portant (ℓD est plus grand) quand T augmente.
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22—  Diode à vide

Les deux plaques A et B d’une diode à vide sont deux
plans conducteurs parallèles (surface s = 5 cm2, dis-
tance ℓ = 5 mm). La cathode A est chauffée et peut
émettre des électrons dans le vide. Une différence de
potentiel U = 100 V est maintenue entre A et B (on
prendra comme potentiel des électrodes VA = 0 V et
VB =U > 0).
Les électrons sortis de A et accélérés par le champ élec-
trique sont attirés vers l’anode B , d’où un courant I > 0
de B vers A. On pourra négliger ici l’énergie cinétique
initiale d’un électron émis.
On suppose que le courant électronique n’est pas li-
mité par le processus d’émission lui-même, mais par
l’effet répulsif des électrons qui circulent dans le vide
et qui constitue une charge d’espace négative de den-
sité volumique ρ. On admettra que l’on est en régime
stationnaire et que la limite supérieure du courant est
atteinte quand le champ résultant

#»
E est nul à la surface

de A.

1. Le problème est à une dimension : on note x la dis-
tance à A.

En régime permanent, relier v(x) à V (x), V (x) à ρ(x), et
exprimer l’intensité I traversant la diode.

2. Montrer que V (x) est solution d’une équation diffé-
rentielle de la forme

d2V

dx2 = kp
V (x)

,

où k est une constante qui dépend de I (on donnera
son expression).

Expliciter V (x) en tenant compte des contions aux li-
mites sur les plaques.

Indication : on pourra multiplier les deux membres de

l’équation précédente par
dV

dx
.

3. En déduire la valeur de I . Donner l’allure de ρ(x)
et v(x).

23—  Membrane cellulaire

On considère une cellule biologique entourée de sa
membrane. Localement elle peut être modélisée par
un plan placé en x = 0. Le potentiel créé est alors

V (x) =
V0 pour x < 0

V0 exp
(
− x

a

)
pour x > 0

1. Donner l’expression du champ électrique
#»
E .

2. Donner l’expression de la densité volumique de
charge ρ(x).

La densité surfacique de charge sur la membrane σ vé-
rifie

σ

ε0
= Ex (0+)−Ex (0−) .

3. Donner l’expression de σ et tracer ρ(x).

4. Déterminer la charge dans un cylindre d’axe x et de
rayon r .

24—  Champ disruptif de l’air

1. La différence de potentiel δV entre deux équipoten-
tielles successives et la même sur le graphique.

Comme E ≈ δV

dℓ
où dℓ est la distance entre deux équi-

potentielle, le champ est maximum là où les équipo-
tentielles sont le plus rapprochées, c’est-à-dire au voi-
sinage des électrodes.

On voit de plus que la pente
dV

dz
est maximum en x =

±1 sur le graphe V (z).

2. On estime la pente de V (z) en z = 0, soit

dV

dz
≈ 0,25

0,4×10−3 − (−0,4×10−3)
= 3,1×102 V ·m−1 .

On a donc en intensité E(0) = 3,1×102 V ·m−1, pour
une différence de potentiel entre les électrodes ∆V =
2 V.

La relation entre E et V étant linéaire, pour obtenir Edis,
il faut appliquer ∆Vdis telle que

∆Vdis =∆V
Edis

E(0)

soit ∆Vdis = 2,3×104 V .

Le champ disruptif de l’air est Edis = 3,6×106 V ·m−1.
Quelle tension doit-on appliquer aux bornes des élec-
trodes pour atteindre ce champ au centre O du dispo-
sitif ?

25—  Colloïde

Un colloïde est une particule dont la taille est très
grande à l’échelle atomique ; il est assimilable à une
sphère chargée uniformément en surface, de rayon r0,
de charge +pe (p ∈ N∗).
On plonge un tel colloïde dans un électrolyse où
règnent des charges ±e; on suppose que lorsqu’on s’en
éloigne suffisamment, le champ électrostatique est dû
uniquement aux ions de l’électrolyte et l’on admet que
l’on pourra remplacer dans toutes les équations ε0 par
ε= ε0εr, avec εr = 80.
On donne les distributions volumiques des cations et
des anions dans l’électrolyte :

n+(r ) = n0 exp

(
−

E+
p (r )

kBT

)
et n−(r ) = n0 exp

(
−

E−
p (r )

kBT

)
,

où E±
p est l’énergie potentielle électrostatique de la

charge ±e dans le potentiel V (r ).

1. Qu’évoquent les formes des densités volumiques
d’ions?
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2. Donner l’expression du champ électrostatique et du
potentiel électrostatique en r = r+

0 (quand r → r0, avec
r > r0).

3. Exprimer la densité volumique de charges ρ(r ) en
fonction de V (r ). On admettra que kBT À Ep.

4. Établir l’équation différentielle vérifiée par le poten-
tiel V (r ), et la résoudre.

On introduira une longueur caractéristique D que l’on
exprimera en fonction de e, n0, ε et kBT .

5. Tracer l’allure de V (r ) en commentant le choix des
constantes d’intégration. Pourquoi parle-t-on d’effet
d’écran?

6. Pour de l’eau pure à pH = 7, calculer D .

On rappelle l’expression du laplacien en coordonnées
sphériques :

∆G = 1

r

∂2(rG)

∂r 2 + 1

r 2 sinθ

∂

∂θ

(
sinθ

∂G

∂θ

)
+ 1

r 2 sin2θ

∂2G

∂φ2 .

26—  Matière noire

1. Théorème de Gauss pour la gravitation :Ó
Σ

#»
G (M) ·d

#»
SM =−4πGMint .

Pour r < R, on a Mint = Mg
r 3

R3 , donc

4πr 2G(r ) =−4πGMg
r 3

R3

d’où

G(r ) =−GMg

R3 r .

Pour r ⩾R, on a Mint = Mg, donc 4πr 2G(r ) =−4πGMg ,
d’où

G(r ) =−GMg

r 2 .

2. On écrit le PFD appliqué à l’étoile pour un mouve-
ment circulaire uniforme :

−m
v2(r )

r
#»e r =−mG(r ) #»e r .

Pour r < R, on obtient
v2(r )

r
= GMg

R3 r , d’où

v(r ) =
√

GMg

R3 r .

Pour r ⩾R, on obtient
v2(r )

r
= GMg

r 2 , d’où

v(r ) =
√

GMg

r
.

rR0

v(r )√
GMg

R

Le profil de vitesse est cohérent avec les mesures pour
r < R, c’est-à-dire dans le noyau, mais n’est pas compa-
tible avec les données mesurées pour r > R : on obtient
un profil v(r ) décroissant tandis que le profil réel est
quasi constant. La répartition de masse proposée est
donc à revoir.

3. On part de l’équation de Maxwell-Gauss pour la gra-

vitation par analogie avec div
#»
E = ρ

ε0
, soit

div
#»

G =−4πGρd(r ) .

Compte tenu de la symétrie sphérique, on a

1

r 2

d
(
r 2G(r )

)
dr

=−4πGρd(r ) .

On détermine la forme que doit prendre le champ gra-
vitationnel dans la zone de matière noire pour avoir
une vitesse uniforme à partir du PFD :

−mv2
0

r
= mG(r )

soit G(r ) =−v2
0

r
. On a alors

div
#»

G = 1

r 2

d
(
r 2G(r )

)
dr

=− 1

r 2

d
(
r v2

0

)
dr

=−v 2
0

r
=−4πGρd(r ) ,

d’où

ρd(r ) = v2
0

4πGr 2 .

Avec v2
0 = GMg

R
on obtient ρd(r ) = Mg

4πRr 2 .

Comme Mg = 4

3
πρ0R3, on a finalement

ρd = ρ0
R2

3r 2 .

rR 2R 3R0

ρ(r )
ρ0

ρ0/3

4. On a

Mnoire =
ˆ nR

R
4πr 2ρd(r )dr = 4π

ˆ nR

R

ρ0R2

3
dr

= 4π

3
ρ0R3(n −1) .

Avec Mg = 4

3
πρ0R3, on en déduit γ= n −1

n
Pour n = 10, on obtient γ= 0,9 : la matière noire repré-
sente 90 % de la masse de la galaxie.
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