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Electrostatique — solution

s Introduction a l'électrostatique avmomome

1 — Calculs de charge en coordonnées sphériques

On considere une boule D de rayon a, de centre O.
Calculer la charge portée par une sphere de rayon r, en
considérantles cas r > aetr < a, silasphére X :

— est uniformément chargée en volume avec la den-
sité volumique de charge py;

— porte la densité volumique de charge

p(r) =Po(1—£)

en coordonnées sphériques;

— est chargée en surface avec la densité surfacique de
charge o uniforme.

2 — Calculs de charge en coordonnées cylindriques

On considere un cylindre D de rayon a, d’axe Oz, de
longueur infinie.

Calculer la charge portée par un cylindre de hauteur H
et derayon r, en considérantlescas r >aetr <a,sile
cylindre :

— estuniformément chargé en volume avec la densité
volumique de charge py;
r
— porte la densité volumique de charge p(r) = pp— en
a
coordonnées cylindriques;

— est chargé en surface avec la densité surfacique de
charge o uniforme.

3 — Espace chargé

1. Largument d'une exponentielle étant sans dimen-
sion, T doit fére sans dimension. La constante a a donc
la dim%nsion de r, c’est-a-dire d'une longueur : [a] = L.
On peut alors déterminer la dimension de K.

La charge volumique a la dimension d'une charge di-
visée par un volume. Lexponentielle étant sans di-
mension, et le dénominateur 47a’r ayant la dimen-
sion d’'un volume, la constante K a la dimension d’'une
charge : [K]=1IT . La distribution de charges est a
symétrie sphérique. On considere donc une coquille
sphérique de rayon r et d’épaisseur dr. Elle porte la
charge dg = p(r)4nr?dr.

La charge contenue dans tout I'espace vaut donc :

K +o0o
Q:ff[ p(M)dT:—z/ re”"adr
MeD a=Jo

On effectue une intégration par parties. Posons

rla

fn=r et gr=e

Onaf'(r)=1letg(r)=—-ae "% et

+00 +00 +o0o
/ re’"%dr=[-are"'? +a/ e "edr
0 0
:a2

—rlay]too
=0-a*[e”"?],

La charge totale de la distribution vautdonc | Q=K |.

4 — Champ au centre d’un carré

On considere quatre charges ponctuelles, avec g >0 :

q Yy g
Ag————-——-94
l l
| 0|

| ES
I I
I I
|
A3.I____ _____ .Az
q q

1. Enexaminant les symétries de la distribution, déter-
>

miner la direction de E (O), champ électrique en centre

de la figure.

2. Etablir I'expression de E(0).

5 — Espace chargé

Le demi-espace z > 0 est chargé avec le densité volu-
mique de charges p(z) = pge %%

Une couche d’épaisseur b porte la densité volumique
de charge —py : on a donc

0 pourz<-—b
p(M) =< —po pour-b<z<0
poe ?'* pourz>0.

1. Déterminer b pour que la charge totale de la distri-
bution soit nulle.

2. Etudier les symétries et invariances de cette distri-
bution.
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6 — Cylindre chargé

1. La géométrie de la distribution nous conduit natu-
rellement a utiliser les coordonnées cylindriques d’axe
Oz.

Etude des symétries

La densité surfacique de charge est positive sur toute la
distribution; elle ne peut donc pas comporter de plan
d’antisymétrie !.

Soit M'(r,—6) le symétrique de M par rapport au plan
x0z.0n a p(M') = pgsin?(—0) = pysin®6 = p(M).

Le plan xOz est un plan de symétrie de la distribution
de charges.

Soit M" (r,m—0) le symétrique de M par rapport au plan
yOz.0nao(M") = ggsin?(m —0) = 0¢sin®0 = o (M).
Le plan yOz est un plan de symétrie de la distribution
de charges.

La densité de charges ne dépend pas de z. La distri-
bution étant de longueur finie, seul le plan médiateur
x0y est plan de symétrie de la distribution.

Etude des invariances

La distribution étant de longueur finie, elle n’est pas in-
variante par translation.

La densité de charges dépendant de I’angle 0, elle n’est
pas invariante par rotation autour de Oz.

2. Onréutilise la figure précédente.

Etude des symétries

Soit M’ le symétrique de M par rapport au plan xOz.
Ona:

o(M") = p(r,—0) = pgcos(—0) = pgcosd = g (M)

Le plan xOz est donc un plan de symétrie de la distri-
bution de charges.

Soit M" le symétrique de M par rapport au plan yOz.
Ona:

oM") = p(r,m—0) = pcos(r,t—0) = —pgcosh = —a (M)

Le plan yOz est donc un plan d’antisymétrie de la dis-
tribution de charges.

La densité de charges ne dépend pas de z. La distri-
bution étant de longueur finie, seul le plan médiateur
x0y est plan de symétrie de la distribution.

Etude des invariances

La distribution étant de longueur finie, elle n’est pas in-
variante par translation.

La densité de charges dépendant de I'angle 0, elle n’est
pas invariante par rotation autour de Oz.

7 — Deux charges en équilibre

Deux boules identiques de masse m, portant la méme
charge g, sont fixées en un point O par deux fils isolants
de longueur a. En assimilant les boules a des charges
ponctuelles, calculer I'angle a entre les fils al’équilibre.

w2z
(0]

(m, q) (m,q)

Application numérique :

Gg=10"8C;a=1m; m=10"3kg.

Ondonne g=10m-s 2.

8 — Balance de Coulomb

La balance de Coulomb se compose d'un fil de torsion
de constante C auquel est accroché en son milieu O
une tige horizontale de longueur 2a. Cette tige porte
aune extrémité A une boule chargée de g. Le fil n’étant
pas tordu, la boule A est au contact d'une boule B, fixe,
portant la méme charge q.

7

fil de torsion

__________ contrepoids
L 0 """ 0

Aq

1. Etablir 'équation en 0 exprimant I'équilibre du sys-
teme :
g*> cos/2

 16megasin0/2
2. Résoudre graphiquement puis numériquement

cette équation. On donne C = 3-1078 N-m-rad™};
a=140cm; g=2-10"°C.

1. La densité de charge est nécessairement nulle en tout point d'un plan d’antisymétrie.
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nvnen Théoréeme de Gauss @ememome

9 — Distribution a symétrie cylindrique

1. La distribution est a symétrie cylindrique : E(M) =
E(r)€, en coordonnées cylindriques d’axe Oz.
Surface de Gauss : cylindre de rayon r, de hauteur H.
On a Qjpt = HAg.

Théoreme de Gauss :

HAy
2nrHE(r) = —,
€0
d’olt
= /10 —
E(M) = e,
2mEQT

2. Symétrie cylindrique : E (M) = E(r) @.
Surface de Gauss : cylindre de rayon r, de hauteur H
arbitraire.

Le flux de E vaut alors
# E(P)-dSp =2nrHE(®).
Pex

Pourr > a,ona

a 2npoH [° 2npoHa?
Qintz/p(r)ZTH"HdTZﬂ/rzdI’:M.
0 a 0 3

Pourr<a,ona

§ 2npoH (' 2npoHr3
Qint = /p(r')2nr'Hdr’= ZPo /r’zdr'z il Rty
0 a 0

3a
On en déduit
2
-
Po_?r pourr<a
- _ ) 3€pa
E(M) = 2
pod” —
€, pourr =a.
3egr

3. Les propriétés de symétrie et d'invariance sont les
mémes, seul change le calcul de la charge intérieure a
la surface de Gauss.

Pourr > a,ona

¢ 2npoH [° 2mpo Ha?
Qint:/p(r)ZHTHdr:ﬂ/rzdr:M.
0 a 0 3

Pourr<a,ona

r 2npoH [’ 2mpoHr3
Qim:/p(r’)an’Hdr’: ZPo2 /r’zdr'z PO
0 a 0

3a
On en déduit
2
r
gg—aer pourr<a
EM) = 0
{ PO“2—>

e, pourr=a.
3eor
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10 — Distribution a symétrie sphérique

1. La distribution est a symétrie sphérique : E(M) =
E(r)€, en coordonnées sphériques.

Surface de Gauss : sphere de rayon r. Le flux du champ
vaut 4nr2E(r).

Pourr > a,ona

a 3
Qim=/P(r)47tr2dr=—mo?(:bZ :
0

Pourr<a,ona

’ 2 ot
Qint=/p(r')47rr’ drt:4npo(———).
0

3 4da
On en déduit
m(r3 r4)_,
—|—=-—|¢er pourr<a
Eap=1%0 7 4

0 —

e ourr > a.
12¢qgr1 r P -

2. Les propriétés de symétrie et d'invariance sont les
mémes, seul change le calcul de la charge intérieure a
la surface de Gauss.

Sir<a,ona Qi =0.

Sir > a, ona Qi = oodmwa’.

On en déduit
=
0 pourr<a
o
E(M)=A opa®_,
> €r pourr>a.
Egr

On remarque que le champ est discontinu en r = g, la
discontinuité valant

Ea")-Ew@a)=22.
&0

11 — Champ créé par un cylindre chargé

1. Le champ al'intérieur d'un cylindre uniformément
chargé en volume a été établi en cours :

Po
E(r)=—r.
(r) 2e0 r

Cette loi est fonction linéaire de r, compatible avec le
graphe.
D’apres le grapheon a

r
E(r)=Ey—
a
d’ol1 en identifiant
_ 2£0E0
Po = 2 |
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2. On détermine le champ a l'extérieur avec le théo-
reme de Gauss comme a I’exercice 1 :

2
poa
]

2&0r1

E=

soit

— a_,
E=Ey—e,pourr=>a .
r

dv
3. Le potentiel est donné par E(r) = 4 soit
r
E r
dv ~Eo— pourr<a
bk Y
dr —EO? pourr>a
d’ol1
2
—Ey—+C; pourr<a
V(r) = 2a
—Epaln(r)+C, pourr=a

On ne peut pas prendre le potentiel nul a I'infini car on
ne peut considérer r — oo pour un cylindre infini.

En choisissant V(a) = V,, on obtient

Ey

V(r)=4 2@ .
- - >

anln(a) pourr > a

(@*>-r?) pourr<a

12 — Deux plans de charges opposées

Utilisons les coordonnées cartésiennes, I’axe Oz étant
perpendiculaire aux deux plans de cotes +§ et —%.

z
[} dl2

0 X
-0 —d/2

Pour tout point M de 'espace, les plans (M; ey, €7) et
(M; €y, €-) sont des plans de symétrie, donc le champ
n'a pas de composante selon € et .

La distribution est invariante par translation selon Ox
et Oy, donc les composantes du champ ne dépendent
pas de x et de y.

Finalement, le champ est de la forme E(M) =E(z)¢,.
Le plan Oxy est un plan d’antisymétrie de la distribu-
tion, donc E(—z) = —E(z) (le champ se réduit a sa com-
posante normale E 1 au plan d’antisymétrie).

La distribution peut s’écrire comme la superposition
de deux distributions : le plan de cote d/2, de charge
surfacique o, qui crée le champ E;(M), et le plan
de cote —d/2, de charge surfacique —d/2, qui crée le
champ fz(M). D’apres le théoréme de superposition,
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l_e)champ créé par les deux plans est E(M) = fl (M) +
E(M).

On se rameéne donc au calcul du champ créé par un
plan infini, traité en cours :

g0 —
. z—oez pour z>d/2
Ex(M) =4~
—z?z pour z<d/2
0
et
0y —
N —z—oez pour z>—d/2
Eo(M)={ ;o0
—7¢, pourz<-d/2
2&0
On adonc
0 pour z > d/2
— 00—
EM) = —8—0ez pour —d/2<z<d/2
0
0 pour z < —d/2

» La distribution posséde a priori toutes les proprié-
tés pour que I'on puisse utiliser le théoreme de
Gauss. On est tenté de choisir comme surface fer-
mée un cylindre compris entre les cotes z et -z,
mais on aura toujours Qjn; = 0, et le flux de E est
nul; le théoreme de Gauss conduit alors a la rela-
tion 0 = 0... qui est vraie mais guére utile!

13 — Modele de I'atome

3e

dnad’
La distribution est a symétrie sphérique; on a donc

TE)(M) = E(r) @, en coordonnées sphériques.

1. Densité volumique de charge: p =

Théoreme de Gauss avec une spheére de rayon r :

e

= pourr > a
47”2E(r):{$904 3_er’
ag r :aﬁ pourr<a
d’ol
e
— ourr > a
_ ) dmgpr? p =
E(I‘)—{ e r
T, @ pourr<a
e

Pour r > a,avec V(oo) =0,ona | V(r > a)

Amegr |
2

er C
Pourr<a,onaV(r)=- : + A. La continuité du

3
TENA
potentiel en r = a s’écrit

e

V(a) = =- + Ay

dnega 8mega
d’ou
3e
A = .
8mega

On en déduit

Vr<a)= (3 r* )

" 4megal\2  2a?
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» Pour r > a, on retrouve le champ et le potentiel
créés par une charge ponctuelle.

2. Lénergie potentielle d'un électron soumis au

champ créé par le noyau est &, = —eV(r), soit

eZ

- pourr>a
e - 4megr
p e’ 2 3

—— |53 5| pourr<a
dmega \2a- 2

&

p

0 a r

€p(0)

» La courbe V(r), et donc E(f) = —eV(r), a une tan-
gente continue en r = a : le champ E(r) et continu,

et dv =—E(r)
dr '

L'énergie d’'ionisation est I'énergie a apporter a I'élec-
tron pour 'apporter du centre (position d’équilibre) a
I'infini avec une vitesse nulle.

Elle vaut donc€; = € (00) — €(0), soit

3e?
= .
8mega

Lénergie d’ionisation en électron-volt (1eV =

1,6 x 10719 J) est donnée par
39%x109x1,6x10719
&i=3 12
2 100 x 10

soit | €;=21,6€eV .

On ne retrouve pas la valeur réelle, mais I'ordre de
grandeur est tout a fait comparable.

3. Position d’équilibre stable en 7 = 0.

Quand il est al'intérieur de I'atome, 'atome est soumis
2

alaforce de rappel élastique F=- OM. Le PFD
4dmegasd
s’écrit N
oM, ¢ oni-7
m =0.
dr? dmegad

Oscillateur harmonique de pulsation propre

2
wy=1 ——.
dnegma’

On calcule la fréquence propre associée :

e 1 1

- g 47TEO \/ma?’
1,6 x 10719 9 x 10° 1,6 16
2m 91x10731 x1073!  2x¢
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soit | fy=2,5x101° Hz .

La longueur d’onde correspondante est A = c/f =
120 nm : on est dans le domaine des ultraviolets.

14 — Potentiel de Yukawa

. - 1 . ~
1. Larelation locale E = —grad V conduit a

- dV_,  ge 1 1],
E=——é =" |-5-—|7%
dr 4meg r2  ar
soit
E= q [1+£]e_”“?
Amegr? a

2. Le champ étant radial, de la forme E=E (re, le
flux a travers une sphere de rayon r est donné par

O(r) = # E-dS =4nr?E(r),
>

soit

o) =-L[1+1]ea
€ a

Le théoreme de Gauss s’écrit

3. Ona
limQ(r)=gq .
r—0

Il existe une charge ponctuelle g située au point O.

4. Ona
lim Q(r)=0/|.
r—00

La distribution est globalement neutre.
La charge g située en O est donc entourée d'un
«nuage » a symétrie sphérique, de charge totale —g.

5. Larelation de Maxwell-Gauss s’écrit : divf = ﬁ.

€o
< 2 —
Danslecasou E = E(r)e,,ona

— 1 d[r2E)]

divE = —
r2  dr
1 d q rla -r/
==—|—e"(1+e7"°
r2dr |4neg ( )
r 1
— q Ze—r/a _ (1+_) (__)
Amegr a a a
soit
divE=-—39 _¢1la,
Amegalr
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On en déduit

qz e—r/u.
Adwa-r

p(r) =~

On peut calculer cette densité volumique sans utiliser
lopérateur divergence. C'est moins dans l'esprit du pro-
gramme actuel, mais je vous donne aussi cette méthode.

=
Le flux sortant de E a travers la sphére de rayon r est

() = 4nr?E(r) = L (1 + 5) e vl
£€o a

On applique le théoréeme de Gauss a la surface fermé dé-
limitant la coquille de rayon r et d’épaisseur dr : ce vo-
lume est donc compris entre la sphere de rayon r et la
sphérederayonr +dr.

Le flux sortant de ce volume s’écrit
# EM)-dSy = —-®(r) +®(r +dr) = —dr
Mex dr

car ®(r) «entre» dans la coquille tandis que ®(r + dr)
en sort.

La charge comprise dans ce volume est?
0Qint = p(r)47rr2 dr.

Le théoréme de Gauss s'écrit alors

do amr?
—dr= d
dr ’ &0 ptrydr

d'oit
oL do
p " Amegr? dr’

On calcule

dd g —riall r ( 1) q -rla

—=— —+|1+—||-—||=———

dr ¢ a ( a) a eoazre

On retrouve alors

q e—r/a .

pr) = " Amegalr

6. Cette distribution peut représenter I'atome d’hy-
drogene dans son état fondamental :

— la charge g au centre est le proton (g = +e);

— Le «nuage» de densité p(r) et de charge totale —q =
—e représente le « nuage électronique », c’est-a-dire
I'orbitale 1s de I'électron.

En effet, la charge comprise entre r et r + dr est
8Q(r) = 6Qint = 4nr’p(r)dr,

soit
0Q(r) = —izre_”“ dr.
a

On peut définir une densité radiale de charge

_dem _ g,
dr a2

-rla

Cette densité est équivalente a la densité de probabilité
de présence de I'électron dans une description quan-
tique de 'atome d’hydrogene. Elle est maximum en ry

tel que

iz (1 _ Q)e—ro/a

a a
soit ry = a. Cette grandeur représente le rayon de Bohr
de I'atome d’hydrogene.

P'(rg)=0=-

15 — Oscillations dans un tunnel

Le satellite, en orbite circulaire, est animé d'un mouve-
ment circulaire uniforme de rayon R. Le principe fon-
damentale de la dynamique projeté sur le vecteur ¢,
des coordonnées sphériques de centre C s’écrit :

v>  GMm

—-_m— =
R R?

’ b GM 2.
douv= = La période T = 27 R/v vaut donc:

47’ R3
To=
GM
L . T?  4n?
On retrouve la troisieme loi de Kepler : — = —.
R GM

Ftude du mouvement du mobile P
Le mobile est soumis a :

s
— la réaction N du tunnel, normal a I'axe Ox car les
frottements sont négligés;

— la force gravitationnelle ? = mG(P), ou §(P) estle
champ de gravitation créé en P par l'astre.

En négligeant le trou créé par le tunnel, on peut consi-
dérer que 'astre est une distribution de masse a symé-
trie sphérique, avec une masse volumique p uniforme.
Le champ de gravitation s’écrit donc en coordonnées
sphériques de centre C:

S(P)=5(%;

Le théoreme de Gauss permet de calculer le champ
de gravitation a l'intérieur de l'astre. En choisissant
comme surface de Gauss une sphere de centre C, de
rayonr=CP<R,ona:

4mr?G(r) = —47 Ming
La masse de I'astre étant uniformément répartie, M =
2 OR et My = 2 pr3, on a My = M—, dot
- et Myt = —pr°,ona M, = M—, dout:
3 p int 3 Y int RS

— GM _,
S(P):_Frer:

GM —
-—CP
R3

2. On considere la densité p(r) dans la coquille de volume dr = 4712 dr.
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Le mobile est donc soumis a la force :

F=- cp
R3
Larotation de I'astre étant négligée, on peut considérer
le référentiel lié a I'astre comme galiléen, et y appliquer

le principe fondamental de la dynamique au mobile :

maP)=N+F

En projection sur Ox, il vient :

mdzx __GMm_

dz2 RS
L dix B _|/GM
smtﬁﬂuox—o, avec wo = e

On retrouve I’équation de I'oscillateur harmonique.
La solution générale est

x(t) = acoswyt+ Bsinwyt.
Comme x(0) = a =—-VR?-a?, et x(0) = fwp=0,0na:
x(t) = -V R2—-a?coswt

Ona< -VR?-a?2 < x < VR?-a?:le mobile ne sort
pas du tunnel; il effectue donc des oscillations harmo-
niques avec la période :

472 R3
GM

27
Tp=—=

o
La période des oscillations est indépendantes de la dis-
tance a du tunnel au centre de I’astre.

Le satellite effectue un mouvement circulaire avec la
période T ; le mobile oscille avec la méme période Tp.
Les deux objets, partant initialement du point A4, s’y
rencontreront avec la période T = Tp = T, soit

4Am2R3
GM

T=

» Si a =0, les deux mobiles se rencontreront égale-
ment au point B; la périodicité de leurs rencontres
seraalorsde T = Tp/2, soit :

2R3
GM

T =

16 — Gravimétrie

La gravimétrie est 'étude des champs gravitationnels.

On donne G = 6,67 x 10711 SI.

Dans un sol calcaire, de masse volumique p., une ca-
vité a été créée par la lente dissolution de la roche et
par I'écoulement souterrain qui évacue les matieres
dissoutes au fur et a mesure. On considere la cavité
comme vide de matiere, et sphérique de rayon R.
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ML»x

P

1. En utilisant le théoréme de superposition, exprimer
la variation du champ de gravité (appelée « anomalie
gravimétrique ») a la verticale du centre de la cavité (au
point M de la figure) du fait de I'existence de cette ca-
vité.

2. On fait varier 'abscisse x du point M tout en res-
tant au niveau du sol. Sans calcul supplémentaire, don-
ner l'allure du graphe représentant 'anomalie gravi-
meétrique verticale en fonction de x.

3. Comment les résultats sont-ils modifiés su la cavité
est remplie d’eau de masse volumique pe ?

4. Lunité utilisée pour quantifier 'anomalie gravimé-
trique est le gal, avec 1 Gal = 1 cm-s~2. On utilise un
gravimetre portatif permettant d’atteindre une résolu-
tion effective d’environ 10 pGal.

Ce gravimetre est-il capable de détecter une cavité de
5 m de rayon, située a 10 m de profondeur?

On donne p. =2,6 g-cm ™3,
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17 — Grotte alors!

1. Théoréeme de Gauss pour la gravitation :
# S(M)-dSy = —47GMin.
b
2. Probleme a symétrie sphérique : ?(M) =S U,,et

# G (M) -dSyy = 4mr2G(r).
>

4
Pour r < R, on a Miy = gnpors et

4
4anr’S(r) = —4nG§np0r3

471G
”Por

§n=-—

”GPO —

Dans la planéte, on a ?(M) =- r U, soit

Gpo —>
4 POOM

=
§(M) =~
3. Principe de superposition; la planeéte avec la grotte
est décrite comme la superposition des deux distribu-
tions de masse suivantes :
— une boule de centre O et de rayon R, de masse vo-
lumique uniforme pg;
— une boule de centre C et de rayon a, de masse volu-
mique uniforme —py.

La planete pleine crée le champ

T[Gp() —

S = - OM.

Une sphere de centre C portant la masse volumique
—po crée le champ

Le champ total dans la cavité est
S = G100 + G2 (M),

soit

S = —npcho

Le champ grawtatlonnel est uniforme dans la grotte,
colinéaire a CO.

Les deux masses ont des trajectoires rectilignes, repré-
sentées en bleu sur le schéma. L'accélération étant la
méme, constante, pour les deux pierres, c’est celle 1a-
chée du point A (trajectoire la plus courte) qui tou-
chera 'autre extrémité de la grotte en premier.

Question bonus : calculer le temps mis pour la trajectoire la
plus longue. On pose OC = D
2

d
Masse B. PFD surl’'axe OC : m— .

4
a7 —gnpoGDm

2
Onar(r)= —gnpoGth +D+a.Onveut r(t;) =D —a,d ol

3a
wpoGD’

wenenes Loislocales aemomone

18 — Jonction P-N

1. Onrencontre des jonctions PN dans les diodes et les
transistors.

2. L'ensemble étant neutre, la charge totale d'une sec-
tion S (perpendiculaire a Ox) est donc

p2bS+p1aS=0
d’ou
pi1a+p2b=0|.

3. Les plans (M; ey ey) et (M; €y, €,) étant des plans
de symétrie de la distribution de charge, le champ E
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est porté par vex. La distribution étant invariante par
translation selon Oy et Oz, on a donc

E(M) = E(x)@y.

Léquation de Maxwell-Gauss dans le milieu s’écrit

- dE
alors, comme div E =
x
dE fgo pour —b < x<0
dx p— pour0<x<a

On en déduit par intégration, sachant que E(—b) =0 et
E(a) =0 (le champ est nul a 'extérieur et il est continu)
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B2(x+ b pour —-b < x<0
E(x)= f)"
g—;(x—a) pour0< x<a

b
OnakE@) =P -_~%

N =N)
E(x)

-b 0 a

— — dv
4. De E = —grad V on déduit T = —FE(x), soit
X

0 pour x < —b
o

dv_ |- x+b)
p

dx —E—;(x—a)

pour -b < x<0
pour0< x<a

0 pour x > a
On integre sachant que V' (0) =0, d’ou

C; pour x < —b

b2 (2 +bx)

X

= pour —b < x <0
V=4 24

7—(136)

_a

& pour0<x<a

G pour x> a
Par continuité du potentiel en x = —b on obtient

_ p2b?

C
! 2€9

<0.

Par continuité du potentiel en x = a on obtient

_ p1a*

C
2 2¢€
Vi(x)

X

19 — Distribution de charges

1. Le champ électrostatique est donné par

E dv=-2z%
=—-gradV=——c¢
g dx *
soit
[ pour x > a
— 3Vo 2
E={—3Xx"¢é pour0<x<a
a
0 pour x <0

Représentons sa composante E(x) :
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2. La densité volumique de charge est donnée part
I’équation de Poisson

[y

AV+—=0
€0
soit
d2
X)=—€y—
p(x) U
On calcule
0 pour x > a
6e0
p(x) = 030x pour0<x<a
a

0 pour x <0

Considérons un cylindre d’axe Oz, de section S, englo-
bant la zone [0, a] (ses extrémités ont pour cotes x; <0
et x > a). Le champ E étant nul au niveau des extré-
mités de ce cylindre, le théoreme de Gauss s’écrit

# EM)-dSy; =0= Qin
M

ex €0

On a donc Qjn = 0.

La charge totale portée due a la densité volumique de
charge p(x) dans ce cylindre vaut

a 6eoVy 4 3e0 V4
Qvolz/ p(x)Sdx = "3"/ Sxdx=222g.
0 a 0 a

La charge totale contenue dans le cylindre étant nulle,
la distribution de charge ne peut étre uniquement dé-
crite par une répartition volumique de charges.

I existe donc une distribution surfacique, de densité
surfacique o, située en x = a, ol on observe une dis-
continuité du champ électrostatique. La charge surfa-
cique comprise dans le cylindre est Qg = 0S.

3¢&p VO

Comme Qjpt = Qo1+ Qsurf =0, 0nacS=— S,d’olt

3£0V0
a .

3. Comme on I'a vu, la distribution est globalement
neutre.
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20 — Electrolyte

On considere le demi-espace z > 0, constitué d'un
électrolyte de cations et d’anions de charges respec-
tives +e et —e. Le demi-espace z < 0 est constitué d'un
métal.

Le potentiel V(z) ne dépend que de z et vaut Vj > 0 en
z=0.

On considére I'ensemble du systéme a I’équilibre a une
température T.

Les densités volumiques de cations et d’anions sont
données par

V(z)e
kgT

V(z)e
) et N_(z2)=ny exp( )

N, (2) =ny exp(— T
B

1. Donner une interprétation physique des facteurs de
Boltzmann.

2. Exprimer la densité volumique de charge p et trou-
ver une équation différentielle sur V (z).

3. Dansle cas o1 eV (z) < kg T, déterminer V (z) avec
V(oc0) =0, etle champ E dans 'électrolyte.

21 — Ecrantage de Debye

1. Ladensité volumique de charges dans le milieu est

_av av
e %I —ekgT

p(N=n"(rNg-n"(r)q=neq

soit

%4
p(r) = —2n0qsinh(%) .

L'équation de Poisson s’écrit

av+L o,

€o

Le potentiel V(r) vérifie donc I’équation différentielle

AV:M—Oqsinh(ﬂ) .
[N) kBT
2. Pour gV <« kgT,ona
qVv qv
h| 21— |~ 1=
soh (7)o

d’ou en utilisant I'expression du laplacien fournie

1d*(rV(n) _ 2noq*V(r)

rodr? ok T
soit
drvnl  2noq?
= %4 .
dr? eokgT rvir
On peut écrire

v 1 eoksgT
T:%TV(I‘) avec [D: W
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La solution générale est de la forme
rvV(r)=A;ed +Ae o,

soit
Al L A2 N
Vir)=—eb +—e .
r r

Le potentiel V (r) ne pouvant diverger pour r — co, on
anécessairement A; =0, et

Ay _ -
Vir)=—¢ ‘.
r

Considérer r — 0 revient a se rapprocher de la charge g
en 0; le potentiel créé par cette charge prédomine alors
sur le potentiel créés par les autres charges; comme
e % ~1,onaalors

A
Vi~ —1— ~ 22
Amegr r
On en déduit A, = 4L et le potentiel s’écrit finale-
TTEY
ment

__r
q % |
4megr

V(r) =

3. Le potentiel coulombien créé par la charge + g seule
est

Veou (1) = .
Amegr

Le potentiel au voisinage de cette charge dans le
plasma s’écrit

V(r) = Veoul (1) e .

Cette expression fait apparaitre le terme d’écrantage
e B < 1, qui devient tres faible des que r > ¢p. Les
charges négatives du plasmas sont attirées autour de
la charge +¢, et font « écran », diminuant le potentiel
créé.

» Cela peut surprendre d’obtenir un potentiel qui fait
apparaitre un role centrale a la charge + ¢ choisie au
hasard dans le plasma. En fait, c’est un phénomeéne
statistique, en moyenne dans le temps; le plasma
présente une certaine dynamique, due a I'agitation
thermique, et les charges ne sont pas figées dans
I'espace.

» Lagitation thermique s’oppose au regroupement
des charges —qg autour de la charge +¢, donc a
I'écrantage. En effet, le phénomene est moins im-
portant (¢p est plus grand) quand T augmente.
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22 — Diode avide

Les deux plaques A et B d'une diode a vide sont deux
plans conducteurs paralléles (surface s = 5cm?, dis-
tance ¢ = 5 mm). La cathode A est chauffée et peut
émettre des électrons dans le vide. Une différence de
potentiel U = 100V est maintenue entre A et B (on
prendra comme potentiel des électrodes V4 = 0V et
Vg =U>0).

Les électrons sortis de A et accélérés par le champ élec-
trique sont attirés vers I'anode B, d’oli un courant / > 0
de B vers A. On pourra négliger ici 'énergie cinétique
initiale d'un électron émis.

On suppose que le courant électronique n'est pas li-
mité par le processus d’émission lui-méme, mais par
I'effet répulsif des électrons qui circulent dans le vide
et qui constitue une charge d’espace négative de den-
sité volumique p. On admettra que I'on est en régime
stationnaire et que la limite supérieure du courant est
atteinte quand le champ résultant E estnul ala surface
de A.

1. Le probleme est a une dimension : on note x la dis-
tance a A.

Enrégime permanent, relier v(x) a V(x), V(x) a p(x), et
exprimer I'intensité I traversant la diode.

2. Montrer que V(x) est solution d'une équation diffé-
rentielle de la forme

vk
dx?

VV(x)
ou k est une constante qui dépend de I (on donnera
son expression).

Expliciter V(x) en tenant compte des contions aux li-
mites sur les plaques.

Indication : on pourra multiplier les deux membres de
l'équation précédente par T
X

3. En déduire la valeur de I. Donner l'allure de p(x)
et v(x).

23 — Membrane cellulaire

On considere une cellule biologique entourée de sa
membrane. Localement elle peut étre modélisée par
un plan placé en x = 0. Le potentiel créé est alors

Vo pour x <0

Voexp (—g) pour x>0

1. Donner I'expression du champ électrique E.

2. Donner l'expression de la densité volumique de
charge p(x).
La densité surfacique de charge sur la membrane o vé-
rifie

o + _

— =Ex(07) —Ex(0).

€o
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3. Donner I'expression de o et tracer p(x).

4. Déterminer la charge dans un cylindre d’axe x et de
rayon r.

24 — Champ disruptif de l'air

1. Ladifférence de potentiel 6V entre deux équipoten-
tielles successives et la méme sur le graphique.
oV
Comme E =~ — ol d¥ est la distance entre deux équi-
potentielle, le champ est maximum la ou les équipo-
tentielles sont le plus rapprochées, c’est-a-dire au voi-
sinage des électrodes.
: dv :
On voit de plus que la pente — est maximum en x =
z

+1 sur le graphe V (z).
2. On estime la pente de V(z) en z =0, soit

dv 0,25

dz = 0,4x1073 - (0,4 x 1073)

=3,1x10°V-m™!L.

On a donc en intensité E(0) = 3,1 x 10> V-m~!, pour
une différence de potentiel entre les électrodes AV =
2V.

Larelation entre E et V étant linéaire, pour obtenir Egjs,
il faut appliquer A Vy;s telle que

Edgis

AViyis = AV
dis E(0)

soit | AVgis =2,3x10*V .
Le champ disruptif de I'air est Egjs = 3,6 x 106 V-m™!.
Quelle tension doit-on appliquer aux bornes des élec-

trodes pour atteindre ce champ au centre O du dispo-
sitif?

25 — Colloide

Un colloide est une particule dont la taille est tres
grande a I’échelle atomique; il est assimilable a une
sphere chargée uniformément en surface, de rayon ry,
de charge +pe (p e N*).

On plonge un tel colloide dans un électrolyse ou
reégnent des charges +e; on suppose que lorsqu’on s’en
éloigne suffisamment, le champ électrostatique est di
uniquement aux ions de I’électrolyte et 'on admet que
I'on pourra remplacer dans toutes les équations g, par
€ = gpEy, avec & = 80.

On donne les distributions volumiques des cations et
des anions dans 'électrolyte :

E} (1)
kgT

E;(r))

)etn_(r)=noexp(— T
B

n*(r) = npexp (—

ol Eg est I'énergie potentielle électrostatique de la
charge +e dans le potentiel V(r).

1. Qu'évoquent les formes des densités volumiques
d’ions?
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2. Donner 'expression du champ électrostatique et du
potentiel électrostatique en r = ry (quand r — ry, avec
r>rg).

3. Exprimer la densité volumique de charges p(r) en
fonction de V(r). On admettra que kg T > Ej,.

4. EtablirI’équation différentielle vérifiée par le poten-
tiel V(r), et la résoudre.

On introduira une longueur caractéristique D que 'on
exprimera en fonction de e, ng, e et kgT.

5. Tracer 'allure de V (r) en commentant le choix des
constantes d’intégration. Pourquoi parle-t-on d’effet
d’écran?

6. Pour de I'’eau pure a pH =7, calculer D.

On rappelle I'expression du laplacien en coordonnées
sphériques :

10%(rG) 1 0 (

AG=—
r or? +r2sin969

OG) 1 0°G

nf— —.
00 )  r2sin®0 d¢?

26 — Matiere noire
1. Théoréme de Gauss pour la gravitation :
# G(M)-dSy = 471G M.
b2

3
r
Pour r < R, on a Mipt = Mgﬁ’ donc

3

2 3 r
47r-G(r) = —47‘[GMgﬁ
d’ou
S(r) =- =
Pour r > R, on a Mjn¢ = Mg, donc 477r2G(r) = —4nGMg,
d’ou

GM,
Sr)=- Rt

2. On écrit le PFD appliqué a I’étoile pour un mouve-
ment circulaire uniforme :

—mv (r)? =-mS(r)e,.
2 GM,
Pour r < R, on obtient v (r) gr d’ou1
GMg
v(r) = 73 r.
2
r GM,
Pour r > R, on obtient () rzg,d’ u
GM,
v(r) = g,
v(r) r
JGMg |,
"R
0 R r
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Le profil de vitesse est cohérent avec les mesures pour
r < R, c’est-a-dire dans le noyau, mais n’est pas compa-
tible avec les données mesurées pour r > R : on obtient
un profil v(r) décroissant tandis que le profil réel est
quasi constant. La répartition de masse proposée est
donc a revoir.

3. Onpartdel’équation de Maxwell-Gauss pour la gra-

ﬁ, soit
€0

divS = —47Gpq(r).

N
vitation par analogie avec div E =

Compte tenu de la symétrie sphérique, on a
1 d(r?gm)
r2 dr

On détermine la forme que doit prendre le champ gra-

vitationnel dans la zone de matiére noire pour avoir
une vitesse uniforme a partir du PFD :

=—4nGpq(r).

2

-—=2=m$()
-
2
. vy
soit §(r) = - On a alors
2 2
1 d(rv v
divg __M - ( 0) -_20
r2 dr r2 dr r
=—-4nGpq(r),
d’ou
2
_ W
pa(r) = 4nGr2”’
Avec v2 = —F on obtient py(r) = ﬁ.

4 3
Comme Mg = gnpoR , on a finalement

R?
PdZPOW .
p(r)
Po
p()/?) ............................. \
0 R 2R 3R r
4. Ona
nR nR 2
R
Mnoire:/ 4nr2pd(r)dr:4n/ po dr
R R

4 3
= ?pOR (n—1).

4 n
Avec Mg = énpoRS, on en déduit |y = .

Pour n =10, on obtient y = 0,9 : la matiére noire repré-
sente 90 % de la masse de la galaxie.
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