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Fluides en écoulement — solution

enenen Description d’un fluide en écoulement avmocoms

2 — Débit d'uneriviere
Le débit moyen annuel de la Marne au niveau de

Meaux est d’environ 100 m3-s~!, avec une vitesse ty-
piquede 0,5m-s~!.

1. Le débit massique de I’eau est relié a son débit volu-
mique selon

Dy =uDy avec p=103kg-m™3.

On calcule | Dy =10°kg-s7! .

2. Le débit volumique est donné par

Dy =Sv

D 100
d’ot1la section S = 7V =55 soit S =200 m?.

’

3. Lasection est donnée par S = LH. Avec une largeur
L =80m, on obtient comme profondeur | H=2,5m |.

3 — Débit volumique
1. Le champ des vitesses ne dépend que de z :
7(1\4) = v(z)?x = UOEZ} pour0< z < a.
a

1.a) La vitesse étant uniforme sur une bande de lar-
geur b et de hauteur dz, de section dS = bdz, le débit
volumique peut s’écrire

a
szff v(z)dSz/ vofbdzzvoé
0 a a

. ab
soit DV=U07 .

214

Z

2

0

En considérant une vitesse uniforme, on peut écrire
pour la section S = ab

Dy = vmoyab.

v
En identifiant, on obtient | Vinoy = ?0 .
1.b) Ona d
v
divy =— =0.
dx

L'écoulement est incompressible.
2. Le champ des vitesses ne dépend que de r :
2

— — r —>
v(M)=v(r) ez:vo(l——z) e, pour0<r<a.
a

2.a) Lavitesse est uniforme sur un anneau de rayon r,
d’épaisseur dr donc d’aire dS = 2zrdr. Le débit volu-
mique peut s’écrire

DV:[[ v(r)dS=/ v(r)2zrdr
0

a r3
:2711/0/ (r——z) dr =2nv,
0 a

2 4 14

r r

2 4a2 0
, (612 a4 )
=2ty ————
N2 aa2

a2
soit | Dy =mvyg— .

2
En considérant une vitesse uniforme, on peut écrire
pour la section S = na?

Dy = vmoynaz.

v
En identifiant, on obtient | Vipoy = ?0 .

2.b) Onadiv 7 =0:1'écoulement est incompressible.

4 — Débit massique

1. Le débit massique s’écrit

DZ
Dy, = [.LUTL'T .

Avec

510 x 1073

m=————=944x10%kg-s7!

30 x 1800
on calcule

4Dy, 4x9,44x107°

V= =
unD?  75%x 7% (2 x 1072)2

soit v=4,0x103m-s'1=4,0mm-s~! .

2. L'écoulement étant incompressible, il y a conser-
vation du débit volumique a travers toute section du
tuyau, soit

On calcule v/ =6,4x10™* m-s~! = 0,64 mm-s~'.

La vitesse diminue bien quand la section augmente.
La vitesse de I'écoulement est trés inférieure a la vi-
tesse du son dans le gaz (typiquement en centaines
de metres par seconde); I’écoulement peut donc étre
considéré comme incompressible.
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5 — Ecoulement radial

Le débit massique a travers toute sphere de rayon r est
conservé en régime stationnaire; il s’écrit

Dy, = pu(r) V0471r2

_ m
pn = 4nV0r2 )

7 — Ecoulement dans un tube

De I'eau circule dans un tube dans lequel la section se
réduit brusquement.

1. La vitesse est maximale la ol les lignes de courant
sont le plus resserrées, soit en au point J.

La vitesse est minimale l1a ol les lignes de courant sont
le plus écartées, soit en au point K.

L'eau étant un fluide incompressible, il y a conserva-
tion du débit volumique a travers toute section d'un
tube de courant, d’ot1 le raisonnement suivi.

2. Leslignes de courants sont également écartées dans
le plan d’entrée. On a donc vg = vy4, soit vg =2 m- sL.
En premiere approximation, on peut considérer la vi-
tesse uniforme dans le plan de sortie, d'olt v¢ = vp. La
section étant diminuée d’un facteur 2/3, la conserva-

tion du débit volumique entre I’entrée et la sortie s’écrit

UZS—vS
C3—A

dottve=vp=3m-s L.

8 — Canalisation a section lentement va-
riable

Considérons la tranche entre x et x + dx. La masse de
fluide contenue est

odm = pu(x)S(x)dx.

Sa variation entre ¢ et t + dt, vu que I'’écoulement est
stationnaire, est nulle : d(6m) = 0.
Le bilan s’écrit

d©ém) = 6° Myrecu,
avec
82 Mrecy = L(X) v(x)S(x) dt

—px+dx)v(x+dx)S(x+dx)dt

_ du(x)v(x)S(x) dx

= dt.
dx
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On adonc
3 du(x)v(x)S(x) 3 dux)vx) dS(x)
0= — - S(x) 4 + p(x)v(x) ax
d’ ol

dlp(x)v(x)] N

px)v(x) dS(x) 0
dx -

S(x) dx

9 — Convergent

1. Leau étant incompressible, le débit volumique est
conservé a travers toute section de la conduite, soit

2 2
4 4
d’ou
&)
v=v—| .
2 1 Dy
On aura v, = Kv; si
D
—L- VK.

D’apres la figure, on a

D;—D,
tana =
2L
d’ol1
Dy,=D;—-2Ltanc.
On a donc
D, B
D, —-2Ltana -
d’on1

-
L=[1-— .
VK 2tana

2. On calcule

( 1 )200><10_3
L=[1-
1,5/ 2 x tan(10°)

soit  L=10cm .
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enenen Statique des fluides avmomome

11 — Cube flottant

Notons & la hauteur de cube immergée :

e

1. Le cube est soumis a :
. - —
— sonpoids P =mg;
R

— la poussée d’Archimede ﬁA =-pa’hyg.

Léquilibre du cube s’écrit

d’olt

» En notant p. la masse volumique du cube et d sa
densité, on peut écrire

m=pca’=dpa’

d’'ot1 h = da. On est bien stir dans le casoui d < 1 car
le cube flotte!

2. Considérons l'axe descendant Oz, et prenons
comme origine la cote dela base du cube lorsqu'il flotte
al'équilibre.
Lorsque le cube s’enfonce de z (algébriquement), le vo-
lume immergé est V; = a’(h+z),etla poussée d’Archi-
mede vaut
g 2 —>
[Ipa=—-pa“(h+2)g.

Le poids est inchangé, et le principe de la dynamique
appliqué au cube s’écrit

ma=mg-pa*(h+2¢g,

soit en soustrayant I'équation de I’équilibre établie a la
question précédente

— 2 —
mad=-pa‘zg.

En projetant selon €, on obtient

d’z 9
mﬁ =—pa gz
soit 5 5
d°z pga
@‘I‘ " z=0.
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I s’agit de I’équation de 'oscillateur harmonique, de

pga*

m
Le cube effectue donc des oscillations sinusoidales, de
période

pulsation w =

m

T=2m > |-
pa-g

» Avec les conditions initiales z(0) = b et z(0) = 0, on
obtient

z(t) = bcos(wt).

A partir de sa position de repos, on 'enfonce de b
(tout en maintenant une partie du cube émergée), et
on lache. Montrer que le cube effectue des oscillations
verticales dont on déterminera la période.

12 — Flottation a une interface
1. Le poids du bloc de densité d, est

Pploc = daji(a+b)Sg.
ol S est la section horizontale du bloc et  la masse vo-
lumique de I'eau. Le poids du fluide déplacé, donnant
la poussée d’Archimede, est

My =Saug +dnShug.

A l'équilibre, la poussée d’Archimeéde compense le
poids du cube, soit

dapla+b)Sg = Saug +dnSbug

d’ ol
d,(a+b)=a+dnb.
On en déduit
b da-1
a B dm_da )

2. Oncalcule | b/a=1,33 .

13 — Juste un doigt!

—
Notons F4_. la force exercée par le doigt sur 'eau.
Bilan des forces s’exercant sur le systéme
{eau+récipient} :

—
— force F4_ exercée par le doigt;
— poids mg;

R
— force Fy_ exercée par la balance sur le récipient.

3/19



TD phénomeénes de transport

Fluides en écoulement — solution

L'équilibre s’écrit
— - - —
Fogetmg+Fyp_;=0.

L'eau exerce sur le doigt immergé une force de pression
qui est la poussée d’Archimeéde :

— —
Fe_q=1Ia

soit en notant V le volume immergé du doigt et u la
masse volumique de I'’eau

Fe_q= —/JV_{;’).

Par le principe des actions réciproques, le doigt exerce
sur I'eau la force

— — —
Fg.e=—Fe—a=pVg,
d’ou
— —>
puVg+mg+Fp..=0.
La balance indique l'intensité (convertie en masse en
divisant par g) de la force exercée par le récipient sur

la balance, soit d’apres le principe des actions réci-
proques

Frp=—Fpr=pVg+mg.
La balance indique donc une masse apparente
Mapp = uV +m.

Il s’agit donc d’évaluer le volume de la premiére pha-
lange de I'index. On peut la considérer comme cylin-
drique, de diameétre D = 1,5 cm et de hauteur H =3 cm
(mesuré sur mon doigt!). Son volume est donc

D2
V= HT[T5,3 cm® ~5cm® =5mL.

La masse du fluide déplacé est donc m’' = uV =5g. La
balance doit indiquer mgpp = 155 g.
La preuve par I'image :
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14 — Quand la routourne tourne!

1. La pression varie avec l'altitude. Cette derniere va-
riant périodiquement quand la tourne tourne (régulie-
rement), on mesure la variation de pression observée
sur le graphe.

La pression est maximale quand la nacelle est au plus
bas, et diminue avec I'altitude. Partant du bas, on y re-
tourne 4 fois : la nacelle fait 4 tours (dont 3 de facon
quasi-réguliere).

2. Méthode « exacte » : modele de I'atmospheére iso-

— - dp
therme, a partir de gradP = pg. On a FE -pg =
z

MP
——Tg. On considere la température T constante,

d’Oil
P(Z) —P(O)exp (__) avec H=—

On prend l'origine z = 0 a la position basse de la na-
celle.

La pression diminue de AP > 0 aI'altitude D, soit

D
P(0)—-AP=P(0)exp (_FI) .

AP
On en déduit D = —Hln(l—%). On donne AP =

467 Pa, la pression au point le plus bas peut étre esti-
mée a4 P(0) = 1013 hPa = 1,013 x 10° Pa. On obtient le
diametre de la grande roue: D =38m |.

On peut avantageusement faire des hypotheses simplifi-
catrices en calculant la valeur de H.

— On calcule H =8,3x10°m. On a dOIZlC D « H, ce
qui permet d’écrire P(z) = P(0) (1 - E) On en dé-

. AP
duit D= ——H =38 m.
P(0)

— On peut aussi supposer que l'air est incompres-
sible sur une tres faible variation d’altitude, avec

. MP(0)
une masse volumique p = .On adonc ek
z
g P(0) .
—-pg = ———=P(0) = ——— et on retrouve le résultat
©  RT H
précédent.

3. On peut estimer la période de rotation sur la
graphe : T =85 s. On en déduit
D D2n Dn 38w
V=—=——= — = ——
2 2T T 85

soit v=1,4m-s™! .

L'accélération centripete vaut

soita=0,1 m-s~? « g:lagrande roue n'est pas un ma-
nege a sensations!
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15 — Vidange automatique

1. Statique des fluides pour un liquide incompres-
sible :

P(y)=Po+uglh-y) .

2. Isobares horizontales : la pression est uniforme sur
le fond et vaut Py + ugh.

Résultante :
FpL=—[Po+ughlbL?e, .

En tenant compte de l'action de 'atmosphere, la ré-
sultante des actions subies par le panneau est fl =
—ugth?y. Le moment peut donc se calculer en
considérant que la résultante s’applique au milieu M;
du panneau (OM, = —LI272,), soit

- . 5 L, .
M1=OM1/\F1:—Eex/\(—ygth)ey

—>

hbL? _,
lzﬂg_e

Z |-
2

3. La pression n’est pas uniforme sur le panneau ver-

tical. On peut la considérer comme uniforme sur une

bande de largeur b, comprise entre y et y + dy. De la
part de ’eau et de 'atmosphere elle est soumise a

dF» = [P(y) — Polbdy @y = pg(h— y)bdy @y.

La résultante est
=1 h — 2 hz —
F2=ugb/ (h=y)dyéx=|ugbh”—pgb—| e€x,
0

= h?
soit | Fy =pgb?_e’x .

On ne peut pas calculer le moment directement car la
force n’est pas uniforme.

Moment résultant sur la bande bdy :

M, = OMAdE, = yeyAnugh—y)bdye,
=—ugbh-y)ydye,.

On en déduit

_ h o h?: h3 N
M, = —ugb/ (hy-y*)dye, = —ugb(7 - ?) €z,
0

soit
— o,
M, = —,ugbg e; .

4. Le moment résultant s’appliquant sur les panneaux
est , s
M=M1 +M2 =,ngb(7— E) ?z-
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Le moment par rapport a Oz est
—_, bh

Mo, =M, = H82 (LZ——) :

Les panneaux pivotent si Mo, < 0 soit si

h>V3L=~1,73L .

16 — Trop plein

" L

1. Prenons I'axe Oz ascendant d’origine O (axe de ro-
tation du trop-plein).

Le relation de la statique des fluides s’écrit

dp

&——ﬂg

ol u est la masse volumique de I'eau.
Avec P(H) = Py, on obtient

P(z)=Py+ug(H-2).
La pression de I'’eau au niveau de la partie OB vaut
P0)=Py+ugH.

La pression de l'air sur 'autre face valant Py, la résul-
tante des forces de pression sur la paroi du fond du
trop-plein vaut

F = (P(0)- PO)LC @, = ugHLC 3,

en notant ¢ sa largeur selon Oy.
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La pression étant uniforme sur cette paroi, la force de
pression s’applique au milieu de OB; son moment par
rapport a Oy vaut alors

L
’Oy:—z,ugHLé.

La pression n’étant pas uniforme sur la paroi OA’, onva
considérer la résultante sur un section comprise entre
zet z+dz, de surface dS = ¢ dz. Larésultante des forces
de pression (eau d'un c6té et air de I'autre) s’y exercant
vaut

dF = (P(2) - Po)¢dz @y = pug(H - 2)0dz 8
et son moment par rapport a Oy vaut
d ’O'y =zug(H-2z)¢dz.
On en déduit
H H
’C')y = ugé/o (H-2)zdz= ,ugﬂ/o (Hz-z%)dz

H3
= pglt—.
224 6

Le moment en O des forces de pression exercées par
1] 2 - ! " :
I'eau et I'air sur la porte vaut Moy, = J\/[Oy + Jv[oy soit

2. Laporte bascule si Moy, > 0, soit si H > v3L;lahau-
teur de liquide vérifie alors

h>ho+V3L .

17 — Barometre différentiel a deux li-

quides

vide —™——]

tube T2Z—1D|

h2
tube T1 glycerine

C
hl

4

e

mercure

1. Laloi de de 'hydrostatique dans la glycérine donne
P(C) = P(D) + p2ghz = p2ghy

comme P(D) =0.
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La loi de de I'hydrostatique dans le mercure donne
P(B)=P(CO) +p1gh1 = pgghg + plghl .

Les points A et B étant a la méme altitude z, on a
P(B)=P(A)=P° dou

p28ha+p1gh1 = P° .

La pression atmosphérique est P°, et les dénivellation
des deux liquides sont h; et h,. Etablir la relation entre
P°, hy et hy al’équilibre.

2. Notons z > 01’élévation de la surface libre de la gly-
cérine, z’ > 0 celle de 'interface entre le mercure et la
glycérine et z” > 0la baisse de niveau de la surface libre
de mercure dans la cuve.

Les altitudes considérées précédemment deviennent
alors

hi=h+z+z" et hy=hy+z-2.

La conservation du volume de glycérine permet
d’écrire

Slz' = SzZ
soit
/ S2
zZ=—z
S1

La conservation du volume de mercure permet d’écrire
512 =8y2"
soit
"n_ Sl I _ Sl SZ
Z =—z2 =—=—z.
So So S1

Avec la pression P° + AP, le résultat de la question 1
donne

P°+AP = g(p1hy +p2hy) = g(p1hy + p2hy)
+glp1(Z +2") + pa(z— 2]

82)
S1

» (C’est le raisonnement attendu compte tenu de la
forme de I'énoncé. Si on comprend que Sy est la
section de la cuve et non de la surface libre, et que le
tube en B ala section S», la conservation du volume
de mercure s’écrit

d’ol

AP =gz

S, S Sz) (
— == 1
91(51 So S1 i

81Z, = (So - SZ)Z”
et le résultat final devient
R AL |
—+ + 1-—
91(81 So—S2 P2 S1

qui ne fait pas apparaitre clairement les rapports
des sections demandés.

AP=gz

6/19



TD phénomeénes de transport

Fluides en écoulement — solution

3. On calcule

AP=9,81x30x103

1 1
13,6 x 10° (— + )
20 20x10

1
+1,26 x 10° (1 - —)] =572 Pa
20

soit | AP =5,72 mbar .
La sensibilité est

z
— =5,24 mm/mbar.
AP

Pour le barometre de Torricelli, on a initialement
P°=pigh.
Quand la pression varie, on a
P°+AP=p,8(h; +2)
soit
AP=p8z.

La sensibilité est alors

z 1
— = —— =0,75mm/mbar.
AP p1g
Le barometre différentielle est nettement plus sensible
que le barometre de Torricelli.

18 — Forces de pression

1r¢ méthode (1a moins calculatoire)
On calcule la résultante des forces de pression exercées
sur la demi-sphere :

- o —
F = Fliq+Fair-

En prenant un axe Oz ascendant dont |'origine est au
fond du récipient, la pression dans le liquide est

P(z)=Py+uglh-2z).

Considérons la demi-boule dans le fond du récipient
(non percé), juste décollée du fond (elle est a la méme
profondeur, mais entourée de liquide). La résultante
des forces de pression de I'’eau est donnée par la pous-
sée d’Archimede

2
Ha= §ER3,ug?z.
On peut décomposer cette force selon la résultante sur
la demi-sphere et la résultante sur le fond de la demi-
boule que 'on peut calculer directement car la pres-
sion y est uniforme (et la surface plane) :

ﬁA = Fliq + JTRZP(I’Z)?Z = T:Fliq + 7'[R2 (Po + ugh)—e'z.
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La résultante des forces de pression de l'eau sur la
demi-sphere est donc

> 2
Fliq= gnRg’ug?z —R?(Py+ ugh)e,.

La pression atmosphérique est uniforme sur la hau-
teur h. Larésultante des forces de pression sur la demi-
boule placée dans I'atmosphere est donc nulle. On en
déduit la résultante des forces de pression atmosphé-
rique sur la face interne de la demi-sphére

Fair = TR?Py 5.
On en déduit la résultante des forces de pression sur la
demi-sphere :
- 2 — —
F = gﬂRgug ¢, —mR*ughe,
soit
- o, 2 )\
F =—ugnR h—gR €.
Cette force est vers le bas. Il faut a minima exercée

sur force opposée, vers le haut, pour soulever la demi-
sphlre, soit en intensité

2
Frwin = ,ugﬂlf{2 (h - §R) .

» Ce terme est bien positif car h > R sila demi-sphere
est entierement immergée.

2¢ méthode : calcul direct

¥4 P()
z,
g h
Py R

0
Compte tenu de la symétrie du systeme, la résultante
des forces de pression est portée par I’axe de symétrie
du systeme, c’est-a-dire 'axe Oz :

F=F¢,.

En notant dS = dSe, le vecteur surface (sortant) sur
la demi-spheére, la résultante des forces de pression du
liquide sur la demi-sphére X est

Fiq= —ffzp(z)dg

et celle de I'air en dessous est

aﬁﬂmﬁ.
>

Comme P(z) = Py + pg(h— z) larésultante est

f:—ff ug(h-2z)ds.
>

Le calcul de cette intégrale vectoriel est bien compliqué
—>
car la direction du vecteur dS varie quand on balaye
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la surface... Nous allons utiliser la discussion prélimi-
naire sur la symétrie du systéme, en faisant le produit
scalaire avec €5 :

F-2,= —ff pg(h-2)ds - 2,
3

soit
F= —ff ug(h—2z)dScosf.
b

En coordonnées sphériques, on a
dS=R?sinfdfde.
De plus z = Rcos6, d'out
F=- /z ug(h—Rcos0) cosOR?sin0do do

soit

/2 21
F:—,ung/ (h—RcosB)cosBsinQdB/ deg
0 0
/2
=—27ng2/ (h—RcosB)cosOsinfdo.
0

En posant u = cosf, onadu = —sinfdf d’ ot

0
F=2nugR2/ (h—Rwudu
1

u? w31’
= —2nugR?|h— - R—
THgl b - R

S RZ(E_E)
= 2mugR | S -3

d’olt

2
F= —n,ung((h - gR) .

On retrouve I'expression obtenue par la premiere mé-
thode.

19 — Hémispheres de Magdebourg

Sur chaque c6té, il faut exercer une force qui s'oppose
a la résultante des forces de pression atmosphérique
s’exercant sur une demi-sphere.

On sait que le résultante des forces de pression uni-
forme s’exercant sur la surface fermée constituée d’'une
demi-sphere fermée par une paroi plane (disque de
rayon R) est nulle.

En intensité, la résultante des forces de pression atmo-
sphérique s’exercant sur la demi-sphere est donc égale
ala force de pression sur le disque, soit

F=PaR*>=10° x7x0,282=25x10*N

soit une force équivalente a un poids de 2,5 tonnes!
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20 — Modeéle de I'atmosphére

Lair atmosphérique est considéré comme un gaz par-
fait de masse molaire M = 29 g-mol™!. Le champ de
pesanteur et uniforme, de valeur g =9,8 m-s™2.

La verticale ascendante est repérée par €. Au niveau
du sol, en z = 0, on donne Py = P(0) = 10° Pa et T(0) =

T, =310K.
1. Relation de la statique des fluides :

dP

E__Hg'

L'équation d’état du gaz parfait donne

\%4 M
P—=RT=P—
n u
d’olt
dP  PMg
dz RT
Avec T =Ty, ona
dp Mg
P RT,
d’ol1
_z RT,
P(z)=Ppe ™ et Hj=-—0
Mg
Oncalcule H; =9,1 x10°m .
2. Avec
T(z)=Top+ Az
ona
dP Mg dz
P R Ty+Az
soit
/Pm dP Mg /z Adz
Py P AR 0 T()+/12
pP M To+ A
ln(ﬂ):——gln( 0 Z).
Py AR Ty
On a donc
Mg
Az\ " 2R
P(z):P0(1+—
To

oli A = -5x1073K-m™! est appelée gradient ther-
mique de 'atmosphere.
Déterminer la loi P(z).
Az
3. Siz« Hj,ona % « 1, ce qui permet de linéariser

0
I'expression précédente :

P~ P (1 MgAz)

z) = -

U7 AR T,
soit

P(2) ~ P (1—Mgz)

=0 RT, )
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La linéarisation du modele isotherme donne

Mgz)
RT, )"

Z
PT(Z)ZP()(l—E) :Po(l—

On retrouve la méme loi approchée de pression avec
les deux modéles.

Pour information, voici I’évolution de la pression avec
les deux modeéles :

1.04 —— isotherme
modele T(z)
0.9 q

0.8

0.7 9

P (bar)

0.6

0.5 1

0.4 4

0.3 4

4000 6000 8000 10000

z(m)

0 2000

21 — Océan isotherme

La masse volumique de '’eau dans un océan varie avec
la pression selon la loi

p = poll+a(P - Py)l.

1. Laloi de la statique des fluides s’écrit

dpP
— =pg=poll+a(P-Py)lg
dz

d’ou1 aprés séparation des variables

1 P(2) z
- =pog / dz
a /PO 0

adP
1+ a(P — Py)

soit )
;ln[l +a(P—Py)l=pog=z.
On adonc
1+ a(P — Py) = e%Po8%
soit
@082 _1
P(z) = Py+

2. La profondeur augmente exponentiellement avec

une distance caractéristique . Les profondeurs
apo

faibles sont petites devant cette distance, ce qui revient
a se placer a
apogz < 1.
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On peut donc linéariser e??8% = 1 + apggz, d’ol1
P(z) = Py+pog=z .

On retrouve l'expression de la pression obtenue en
considérant I’eau comme incompressible de masse vo-
lumique pyp.

3. Avec le modéle proposé, on calcule
P(1 km) = 9,905 x 10° Pa.
Avec le modele incompressible, on obtient
Pinc(1 km) = 9,900 x 10° Pa.

L écart relatif est

P(1 km) — Pjpc(1 km)
P(1km)

=0,05%.

Il est tres faible.

23 — Pression au sommet de |I'Everest

1. Latempérature évolue avec I'altitude selon la loi

T(z)=Tp—az

60 -3 -1 -1
aveca=M=6,75x10 K-m™ (ou°C-m™, care-
vient au méme car c’est une variation de température

par metre).

2. La relation de la statique des fluides s’écrit, on no-
tant (Oz) I’axe vertical ascendant

dp MP MP
—_— == avec = =
dz pE p RT R(Ty—az)
soit
dp MPg

dz  R(Ty-az)

Séparons les variables :

dpP Mg

=-————dz.
p R(Ty— az)

On integre en faisant attention aux bornes :

@ qp Mg (* dZ
/PO ?—‘?/0 To-az
soit
Mg
P(z)\ Mg, K (To—az To—az)Ra
In|—|=—In =In
Po Ra T() To
d’olt
Mg
P(2)=P, (1 “Z)“R
= Py =
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Mg s . .
3. En notant a = R pour simplifier, la relation pré-
a
cédente s’écrit
T(2)\“
P(@)=Py|—| .
To

D’apres I’équation d’état du gaz parfait, on a

T PV
Ty PV
d’ou a
P:Po(ﬂ) =PyTYPRVO Y.
PV
On adonc

-1 -1
p¥ly® = pely@

soit PVa1 = Py VOﬁ . Avec I'expression de a, on en dé-
duit que'on a

M
PVk=cte avec kz—g.
Mg—aR

25 — Maesure de la densité d’'une huile

On considere les points A et B ala méme cote z :

Patm Patm

Huile

Comme z4 = zg,0ona Py = Pg.
Larelation de la statique des fluides donne

Pg=Pam+pngh et Pp=Pym+peg(h—Az)

en notant p, la masse volumique de I'eau et py, celle de
I'huile.
De P4 = Pg on déduit

pngh=pcgh—Az).

La densité d de I'huile étant définie par py, = dpe, On a

dh=h-Az,
d’ou
Az
d=1-— .
h
Le volume d’huile est V = hs, d’ou
vV 10
h=—=—=10cm.
S 1

On en déduitd =1-1,510soit |d =0,85 .
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26 — Quand lI'entonnoir décolle
Le pression dans I’entonnoir est
P(z2) =Py+ug(zg—2z).
Par symétrie, résultante des forces de pression (del’eau

al'intérieur et de I'air a I'extérieur) est portée par I'axe
de symétrie du systeme, soit 'axe Oz :

Considérons la surface de I’entonnoir comprise entre z
etz+dz:

D

La largeur de cette bande élémentaire sur I’entonnoir

est
dz

cosa

ds =

Son rayon r(z) est donné par

tana =

D
avec tana=_—
2H

-z
soit

D
r(z) = E —ztana.

La bande de rayon r(z) et de largeur d¢ a donc pour
surface

dz

D
dS=2ﬂr(z)d€=2n(——ztan(x) .
2 cosw

En prenant en compte la pression de l'eau et la
pression atmosphérique extérieures, la résultante des
forces de pression sur I'entonnoir s’écrit

F:ff(p(z)—PO)d?

d’ol

?-?Zzpsz(P(z)—Po)d?‘e’z

= f (P(z) — Py)dSsina.
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On adonc

dz

4) D
F= / (P(2) — Pg)2m (— — ztana) sina
0 2 cosa

Z0 D
=27t,ugtana/ (zo—z)(g—ztana) dz
0

2 3 3
zcD Zy D Zy
2

0 2
=2nugtana| —— - —tana— —z; + —tana
HE ( 2 1073
soit apres simplification
F=nugtanaz;, > Etana .

Lentonnoir décolle quand cette force compense le
poids de 'entonnoir, soit quand F = Mg.
La hauteur zy correspondante vérifie alors I’équation

Tputanazy | —— —tana|=M .
°\2 3

27 — Flottaison d’une barre en bois

1. Latige est soumise a

— T’action du support en A, dont le moment en A en
nul (liaison pivot parfaite, non représentée sur le
schéma);

— son poids P qui s’applique au barycentre G de la
tige;

— la poussée d’Archimede ﬁA qui s’applique au bary-
centre C de la partie immergée de la tige.

g

La tige étant homogene, G est au milieu de AB et C est
au milieu de IB.
L'équilibre de la tige est réalisé comme la somme des
moments en A des actions est nulle, soit en projection
selon I'axe de rotation :
0=P x AGsinf —IIp x ACsin6
=(Px AG—TIIp x AC)sinf. (1)

L'équation (1) admet la solution 8 = 0 : la tige est verti-
cale.
La solution 8 # 0 est alors donnée par

0=Px AG—TI, x AC
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Il faut déterminer AG et AC.

Ona AG=L/2.
Ona
Al = h
~ cosf
d’ ol
h
BI=L-AlI=L-
cosf
On a donc
BI L h
BC=—=—-
2 2 2cos6
et
h

L
AC=L-BC=—+ .
2 2cosf

Notons pe la masse volumique de I'eau. Celle de la tige
est pr = dpe.
En notant V le volume de la tige, sa masse vaut

m=p{V=dp.V.

La tige étant de section constante, son volume im-
mergé est donné par

IB ( h )
—V=[1- V.
AB LcosO

La masse du fluide de remplacement vaut donc

Vim =

h
M = PeVim = peV(l B LcosG) ’

On en déduit
P=mg=dp.Vg

et

Lcos® ) &
La condition d’équilibre AG x P = AC x Il s’écrit alors

Ip = mfg:peV(l—

L L
— Vo=1|- Vil-
dee & (2 +2cost9)‘oe ( LcosH)g

soit
e
Lcos6 Lcos6 L% cos?6
On en déduit
cosf = ! E 2)
Vi-dL

2. On a une solution 8 # 0 si 'équation (2) a une solu-
tion. Comme cosf < 1, il faut

1 h <1
Vi—dl ™
soit
h
L <Vvl-d.
3. On calcule
0 ! 1 0,5634
cosf=——-=0,
v1-0,653
d'our | @ =55,7° .
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wwenenen Ecoulement d’un fluide visqueux eewmsmoee

30 — Courroie sur un film d’huile

1. On a un profil linéaire de vitesse v(y), avec les
conditions aux limites

v(y=0=0 et v(y=h)=V.

On en déduit le champ des vitesses

B

v=V=ey|
h X

La force exercée par le fluide sur la surface S = Lb est

donnée par

—

- dv N v
Fisc = _nd_y(h)Lb ey = —%Lb €.

Sa puissance vaut alors

> v?
Puc=F- V&= —nTLb.
Il faut fournir la puissance opposée pour maintenir la

vitesse de la courroie constante, soit

nv?
p=1"1p.
h

En supposant un profil de vitesse linéaire dans la
couche d’huile, déterminer la puissance P a fournir
pour maintenir la vitesse de la courroie constante, en
fonctionde h, L, V, b etn.

2. Application numérique :

0,40 x (2,5)2
p=—_—""""

oo X2X 060
X

soit  P=100W |.

31 — Freinage d’'un bloc

1. Les conditions aux limites sont
v(0)=0=b et v(e)=Vy=ae,

d’ou

<
v(z) = Vo= .
e

2. Laforce exercée par un fluide sous une surface S est

— dv —
F=-n—Su
77dz o
soit
— 1%
F=—T]—OSTZX
e
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3. PFD en projection selon 7, appliqué au bloc :

de _ V(t)S
dr '
soit
dv V() me
—+——=0 avec 7T=—.
det T nS

Avec V(0) = Vp, on obtient | V() = Ve /7 .

En intégrant, on obtient x(f) = —tVoe /" + A.

Avec x(0) = 0, on obtient x(£) =7V [1—e~!'T].

On a alors tll.r?o x(t) =tV = L, d’ou1 la distance d’arrét
[= mneSVo

Viscosité dynamique de 'eau: = 1073 PL

On calcule
_ 30x107°x2
T 1x107°3x400x 1074’

soit | L=1500m |.

32 — Oléoduc

1. Lavitesse débitante est définie par Q = UnR?, d’out

Q B 36/3600
TR2 7T % (8 x 10_2)2

U=

soit U=0,5m-s"! .

2. Ona
8nL
Py—Pg=R,Q avec Q=——
R4
d’olu
R* 5 7 x(8x1072)4

b4
N=(Pyp—Pp)——=2,6x10° x

8QL 8 x 36/3600 x (2 x 10%)

soit |n=0,21P1 .
La viscosité cinématique vaut v =
n=23x10"*m?.s71 .

n/p, soit

3. Le nombre de Reynolds vaut

_Ux(@R) _0,5x16x1072

Re
% 2,3x107%4

soit Re = 3,5 x 102,
On est bien dans le domaine d’'un écoulement lami-
naire.

4. On a similitude entre les deux écoulements s’ils ont
méme nombre de Reynolds; il faut donc

_ VeauRe  (9x1077) x (3,5 x 10%)

- 2U 2x2

Ry

soit | Rg =79 um .
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33 — Ecoulement sur un plan incliné

1. Avec le champ des vitesses proposé, I'accélération
d’une particule de fluide est

Le principe fondamental de la dynamique appliqué a
une particule de fluide de volume dz s’écrit donc

— — dZV —
0= —gradeT+nd—y2 dr+pgdr

soit
0 =—gradP+ d2U+ 7
= —gra —_— .

En projection selon Oy, on obtient :

opP

0:—(a)y—pgcosa. 3)

On intégre par rapport a x (donc y est considérée
comme constante) :

P(x,y)=-pgycosa+ A(x).

» La«constante» d’intégration est constante vis-a-vis
de la variation d’intégration y, donc a priori elle dé-
pend de x... N'hésitez pas a dériver par rapporta y,
avec x constant, I'expression de la pression obtenue
pour vous en convaincre.

Pour y =e,on a P(x,e) = Py, soit
Py=-pgecosa + A(x).

Finalement la constante d’'intégration est une vraie
constante! On a alors

P(y)=Py+pg(h—e)cosa.

On projette alors (3) selon Ox :

d2
0 =n—v +pgcosa,
dy?

soit
d2v
dy> 1

Une premiere intégration donne

_ pgcosa

d
dv :_pgcosay_'_B.

dy n

» Le champ des vitesses ne dépend que de y d’apres
I’énoncé, donc la constante d’'intégration est une
vraie constante!
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On néglige la force visqueuse a la surface libreen y = e,
soit
dv( — ) =0
3 y y=e=

d'ou cosa
B= pgcosa e.
n
On adonc d
v pgcosa

—=——(-y).

dy n
On integre a nouveau :

2

Avec la condition y(0) =0,ona C =0, d ou

v(y) =

2
pgcosa(ey_y?) '

2. Le débit massique est donné par

e 2gLcosa [© 2
Dm=/ py(y)Ldy:L/ (ey—y—)dy
0 n 0 2
_ p?gLcosa (eez e3)
B n 2 6
soit

2 3
L
szp ge’Lcosa .
3n

3. Compte tenu du profil de vitesse, la vitesse est maxi-
male en y = e (dérivée nulle d’apres la condition a la
surface libre), soit

pgecosa
2n )

Umax =

34 — Fioul dans une conduite
1. Enr=D/2=0,15cm, on calcule
v(D/2)=2x 10*m-s'~0om-s7'.

La loi est bien cohérente avec la condition sur la paroi
(vitesse nulle).
Le débit volumique est donné par

0,15 0,15
sz/ v(r)andr:4n/ (r —44,44r%) dr
0 0

(0,15)2
2

44,44

—4x - —"7(0,15)*
1 ( )

La vitesse moyenne est donnée par Dy = 7(0,15)? Umoy»
d’out

1

1
Vmoy =4 [5—11,11(0,15)2 =1m-s .

La loi de vitesse est donc cohérente avec la vitesse
moyenne donnée.
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2. Le débit volumique vaut Dy = vmoyn%z, soit
Dy=70,7x102m?®-s71=70,7L-s7" .

3. Unécoulement est dit laminaire quand les lignes de
courants sont rectilignes, paralleles entre elles (a une
dimension). Un écoulement a des chances d’étre lami-
naire si le nombre de Reynolds est tel que Re < 2000.

Ici, on calcule

_ UmoyD

Re = =6x10%.

On a Re > 4000 : I’écoulement sera sans aucun doute
turbulent.

4. On écrit la contrainte tangentielle visqueuse :

ol dS = 2nrdz est la surface latérale considérée. Le
gradient de la vitesse normal a cette surface est la com-
: dv e
posante radiale ! P Le fluide intérieur correspond
r

au fluide « en-dessous » dans la formule du cours : ici
v P . .

i < 0; le fluide intérieur va plus vite que le fluide ex-
’

térieur, et exerce sur ce dernier une force selon + €.

On adonc

— dv —
dFi_se= —Znnra dze, .

5. Sur toute la paroi, la force due a la viscosité est don-
née par

Fe—2mn2 ¥ piare
= —Z7TnN——
n 2 dr z
D D _, 2>
= —27[175(—4)44,44EL e, =88,88mnD"Le,.
Avec 1) = v, on calcule F = 88,88muvD? L soit
F=11x10°N .

6. Les lignes de courants sont rectilignes, selon I'axe
Oz de la conduite; en régime stationnaire, elles s’iden-
tifient aux trajectoires des particules de fluides. Ces
derniéres ont donc un mouvement rectiligne et uni-
forme : leur accélération est nulle, ainsi donc que la
somme des forces appliquées (d’apres le PFD).

dpP
Se reporter au cours : on a montre que _d est une
Z

constante, c’est-a-dire que la pression est une fonction
affine de z.

Considérons le pellicule cylindrique de longueur L,
comprise entre r et r + dr. Toutes les particules de

1. Dérivée droite car v ne dépend que de r.

CPGE PSI 2024-2025

Lycée Jean Perrin

fluide quila constitue ont une trajectoire rectiligne uni-
forme; la quantité de mouvement de ce systéme étant
constante, la somme des forces appliquées est nulle :

dF,(0) + dFy(L) + dFyisc = 0.

La composante selon €, de le force de pression en
amont vaut

dF,(0) =2mrP(0)dr.
La composante selon €, de le force de pression en aval
vaut
dFy(L) = -2nrP(L)dr.
La résultante des forces visqueuses s’écrit en ajoutant

la résultante sur la face interne de surface S(r) etla face
externe de surface S(r +dr) :

dv dv
dFiisc = _n(a) S(r)+n (—)
r

dr Jrear
d dv
=n—|(S(r—|d
77dr( (r) dr) d
soit comme S(r) =2nrlL,
dFisc =27 Ld (rdv)
vise = TNL " ar |
Le bilan des forces conduit alors a
0=2xr[P(0)—P(L)]dr +2nnL d (rdy)dr
a n dr \ dr
d’ou
PO -pPy=-1=4 (rd")
o dr\ dr)’
On calcule
dv dv 9
— =—-4x44,44r; r— =-4x44,44r
dr dr
d’ou

1d ( dv) 8
——|r=—|==-=x44,44r = -8 x 44,44,
rdr\ dr r

On en déduit I’écart de pression entre I'entrée et la sor-
tie du tuyau :

P(0)—P(L) =8x44,44nL = 356uvL.

On calcule | AP=1,55%10%Pa .
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35 — Mesure de viscosité par lecture d’'une
carte des vitesses

D’apres la carte des vitesses, le champ des vitesses est

dela forme 7 = v(x, ¥) ey

On considere une « particule de fluide » de cote y», cu-

bique, de 1 cm de coté.
L'accélération de la particule de fluide est donnée par

ov(x,y2) -
v(xJ’2)e

a= (7-grad)7= v(x, y2) i X-

On mesure sur la carte
6 -1
v(x1,y2) = 1 x0,1=0,15m-s

et
7
v(x2,y2) = 1> 0,1=0,175m-s"'.

On peut estimer
0v(x,y2) _ vixz,y2) = v(x1,y2) _0,175-0,15

ox 5,5x 1072
=0,455s71.

X2 — X1

On en déduit I'accélération de la particule de fluide :

ov(x, y2)

=0,15x 0,455
0x

a=v(xy,y2)
=6,8%x107m-s72.
La force visqueuse exercée sur la face supérieure de

section S de la particule de fluide par le fluide au-
dessus est

- ov(x,y) =
Fsup=n(Ty) Sex,
sup

avec S=1x10"* m?.

On peut estimer
( ov(x,y) ) 3
ay sup

10 .
v(x1,y3) = il 0,1=0,25m-s

v(x1,y3) —v(x1,y2)
Y3—=)2

avec

soit
=10s7'.

(av(x,y)) ~0,25-0,15
ay sup - 1072

On a donc la composante
Foup=1x10x10"*=10""n.

De méme, la face inférieur recoit du fluide en dessous
la force visqueuse

- ov(x,y) -
Finf:—n(a—yy) Sey,
inf
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On peut estimer
(dv(x, Y) ) 3
ay inf
1

4
v(x1, ) = 1 x0,1=01m-s ",

v(x1,y2) —v(x1, 1)
Y2—n

avec

(Ov(x,y)) 0,15-0,1 -1
= =5s .
ay inf 10_2

On a donc la composante
Fipp=-nx5x 1074 = -5x 10_417.

En notant ¢3 = 1 x 107 m~3 le volume de la particule
de fluide, le principe fondamental de la dynamique
projeté selon €, s’écrit

,Ugsa:Fsup"'Finf,
soit
1500 x (1 x107%) x (6,8 x1072) = (102 -5 x 10™%)n

dou |n=0,2Pl .

37 — Ecoulement de Couette généralisé

Ecoulement de Couette généralisée

On impose maintenant un gradient de pression paral-
lelement au plan, par les conditions aux limites P(0) =
Pyet P(L)=P; = Py+AP (le terme AP est algébrique).

y —
Vo
a J—
Py Py
0 | L X

4. Les particules de fluide ayant une trajectoire recti-
ligne uniforme (car s’identifiant avec les lignes de cou-
rant dans le cas d'un écoulement stationnaire), leur ac-
célération est nulle. Le principe de la dynamique appli-
qué a une particule de fluide s’écrit donc

s e d2U >
bma=0= —gradeT+nd—y2dT €x,

soit
dp  d%*v

ax ! dy?’
Le premier membre de 'égalité est indépendant de y,
le second est indépendant de x; ces deux termes sont
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donc égaux a une constante. Le profil de pression est
alors affine, d’out

dP _P(L)-P(0)

dx L-0

soit

dP AP

dx L~
5. Onadonc

d’v AP

ndyz_ L~

AP
On en déduit =—)y>+Ay+b.
n en déduit v(y) 277Ly y

Les conditions auxA lli)rnites sont v(0) =0=Betvia) =
Vo, d'ol1 A= 20 ——a. Finalement
a 2nL

()— ( )
v a) + .

» Pour AP = 0 on a le profil linéaire des vitesses ca-
ractéristique de I’écoulement de Couette.

» Pour Vj =0, on a le profil parabolique symétrie ca-
ractéristique de I'’écoulement de Poiseuille.

Cet écoulement est une superposition d’'un écoule-

ment de Couette et de Poiseuille.

6. Le débit volumique est donné par

Q= / bv(y)dy
0

soit
ab

ba®
AP+,
121 2

Q=-

6nL
Le débit s’annule pour AP = LZVO. Le champ des vi-
a
tesses s’écrit alors

3V 2

- o) a3
Y= 612 y 3 Y= 6l2yy .

3
On vérifie v(0) =0 et v(a) = Vj.

y

a

Py

La vitesse s'annule en I(y = —%a). Au dessus de la ligne
bleue, I'écoulement est dirigé vers la droite, forcé par
le mouvement de la plaque supérieure. En-dessous de
cette ligne, on observe un écoulement de retour, di a
la surpression a droite.
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7. On peut décomposer la force exercée par le fluide
sur chaque plaque en une composante normale, la
force de pression, et une composante tangentielle, la
contrainte visqueuse.

La plaque supérieure est soumise a
— — — — —
F = FN,s + FT,s = FN,s ey +FT,s €y.

La contrainte visqueuse exercée par le fluide sur la
plaque supérieure vaut

dv
Frs=-n (@
y

La plaque inférieure est soumise a la force de pression

AP
FT,i = _FN,S = - P() + 7 bL.

v
bL=—4n—DL.
a

=a

La contrainte tangentielle s’exercant sur la plaque infé-
rieure vaut

d Vi
Fri= +n(d—;) bL = —ZnZObL.
y:

38 — Ecoulement sanguin

1. Le débit volumique est donné par

R R 3
DV=/ 2nrv(r)dr:2nB/ (r——z) dr
0 0 R

R> R*)\ nBR?
=2nB|— - —|=——.
2 2R? 2
On adonc
B= 2Dy .
mR?

2.a) Le fluide exerce sur une longueur dz de paroi la
force

d
dF = —n(—v) 2nRdz.
dr R
Ona
dv 2Br— 4Dvr
dr  R? R
dou 4D 8D
v A%
dF=n”R32anz:17 72 dz.

Pour une longueur L, la résultante est donc
L
F=8n—Dy .
2.b) On a F > 0: cette force est dans le sens de 1’écou-

lement.

3. La quantité de mouvement du fluide contenu dans
une longueur L de tuyau étant constante, la somme
des forces exercées est nulle. Selon la 3¢ de Newton, le
tuyau exerce sur le fluide la force -F, opposée a celle
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exercée par le fluide sur le tuyau. Selon Ox, on obtient
alors
Ozpes_PsS_F,

d’ot1, comme S = 1 R?

4. Compte tenu de 'expression de F établie précé-
demment, on a

L
P, PS—ST] DV—RhDV,
d’ou
8nL
Rn=—=|.
b= TRA

39 — Sténose

1. L'écoulement étant incompressible, la diminution
de la section dans la zone sténosée se traduit par une
augmentation de la vitesse.

2. Nous allons faire I'hypothése d'un écoulement la-
minaire stationnaire. On se rameéne donc a un écoule-
ment de Poiseuille.

La résistance hydraulique de chaque partie saine du
vaisseau est

8nL
Ryy=—.
h,V ]'[R4
La résistance hydraulique de la partie sténosée est
8nLs

hs = ——7 -
R}

Les trois segments étant associés en série, la résistance
équivalente est donnée par Ry, = 2Ry, y + Ry 6, soit

817 2L Lg
Rh (R4+R4)

On peut alors écrire
AP =RyQ,

d’ot'expression du débit volumique

Q= nAP 1
81 5?4 +Ls LS
On calcule
401 1
Q= - —=39x10"°m?-s7!,
8x (6x1073) _7x10” 10
(6x1073)% T (2x1073)4

soit Q=3,9mL-s!

3. Le nombre de Reynolds dans les parties non sténo-
sées s’écrit
PV2R

n
ol1 la vitesse moyenne est donnée par Q = vrR?. On en
déduit | Re=72 .
Dans la partie sténosée, on a de méme

Re =

pV'2Rg
n

Re' = =220.

Dans les deux cas, I'hypothése d'un écoulement lami-
naire est pertinente.

4. La vitesse d’écoulement étant plus grande dans la
partie sténosée, on peut détecter cette différence de vi-
tesse par échographie Doppler.

40 — Couple sur un disque en rotation

Nous allons considérer les actions visqueuses s’exer-
cant sur la partie supérieure du disque. Par symétrie,
les actions s’exercant sur la partie inférieure sont iden-
tiques.
A une distance r de l'axe, la vitesse d’'un point du
disque est

34 —

V=rQey
en coordonnées cylindriques.
Le champ des vitesses dans I'huile est de la forme 7 =

v(r, z) ?g et vérifie les conditions aux limites
v(irb0)=rQ et v(rbh)=0

en prenant z = 0 sur la face supérieure du disque (cf.
schéma).
Le profil de vitesse étant linéaire (selon z), on a donc

v _vim-v(no)  rQ
0z h-0 T h

Considérons un élément de surface élémentaire en co-
ordonnées polaires

dS =rdrdoe,

ala distance r de I'axe, centré en M(r,0).
La force exercée par le fluide sur cette surface est

- 0 N Q N
dFgsyp = +na—lZ)dS €g = —n%rdrd@ €p.
Le moment exercé sur cette surface est
— — — s rQ —
dl'sup =OMAdFspp=r€;N (—7]7) rdrdf eg
Q — —
= —nzr3 drdfe;=dl'e;.

Le moment total exercé sur la face supérieur vaut donc

2. On aun signe — car le fluide est sous la plaque, mais le gradient de vitesse est lui aussi opposé.
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On en déduit le moment total exercé sur la face supé-
rieure :

2m QR4
=—17—/ r dr/ dH_—n——Z

Par symétrie, on a sur la face inférieure 2 dfinf = d?sup,
et le couple est identique.

Le moment total est donc f) =T¢, ol le couple total
exercé par les forces visqueuses sur le disque s’écrit

anQl _,
—R".
2h

@34 .
2h

r=-

41 — Viscosimetre de Poiseuille

1. On va considérer que la section S du réservoir est
grande devant la section a? du tuyau (ce qui revient a
considérer R > a comme le suggere la figure).

De la conservation du débit volumique on déduit que
la vitesse du fluide dans le réservoir est trés faible de-
vant la vitesse du fluide dans le tuyau.

Nous pouvons dont faire 'hypothese que le fluide est
quasi-au repos dans le réservoir.

L'écoulement est lent dans le tuyau, donc nous allons
supposer que cet écoulement est laminaire.

Enfin, le jet sort du tuyau a I'air libre, donc la pression
ala sortie du tuyau est Py, pression atmosphérique.

2. Laloide’hydrostatique s’applique dans le réservoir
(fluide au repos), donc la pression dans le fond du ré-
servoir est

Py =Py + /Jgh .

Cette pression se retrouvant a ’entrée du tuyau, la sur-
pression entre 'entrée et la sortie du tuyau est

AP =P, - Py Z,Ugh
Lhypothése d'un écoulement laminaire permet d’ap-
pliquer la loi de Poiseuille donnant le débit volumique :

Dy=——AP=—yugh.
v 8L HE
On en déduit la vitesse débitante dans le tuyau par
D, =na’U, d ol
_ ugha®
© 8L

En fait, le niveau h(t) baisse tres lentement dans le ré-
cipient; la vitesse d'un point de la surface libre est donc

dh

Va=- €

Attention au signe, h(t) diminue quand le récipient se
vide!
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La conservation du débit volumique entre le récipient
et le tuyau s’écrit

Vslnl’?2 =Una®.
On adonc
dh a’> pugat
-——=U—==—"=h(t
dt R? ST]LR2 (0.

soit en notant v = 1/ u la viscosité cinématique

dh k() 8VLR?
—+——=0 avec T= .

dr 1 gat

La solution est
h(t) = hge /7 .
3. Ondonne
h
h(AD) = hoe 2T =2
d’ ol
8VLR?
At=1In2= In2.
On en déduit
Atga®  59x60x9,8x(0,5x1073)*

" 2LR%In2  8x0,5x(2x1072)2In2

soit v=2,0x10"%m?2.s71 .

4. Lavitesse débitante varie au cours du temps. Calcu-
lons sa valeur maximale, en t =0:

hoa? hoa—-2 R*h
U:Hg 0 :g 0 _ LU
8nL 8vL a2 At
(2x10_ )26><10_2
= ln
0,5x1073) 60x59

soit Up=19mm-s! .

Le nombre de Reynolds associé a I'écoulement dans le

tuyau est

2aU

Re=——=9,4=10.

v

Cette valeur est bien compatible avec un écoulement
laminaire.

43 — Montée de lave

1. Le liquide étant incompressible, son écoulement
I'est aussi; on a donc

—

. Ov >
divv=—=0 et ([ v=v()e, .
0z

La vitesse ne dépend que de r.
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2. Nous allons calculer v(r) pour en déduire le débit.
Considérons comme systeme le tube de rayon r,
d’épaisseur dr, compris entre z et z+ dz.

Sa section est donc dS = 2nrdr et son volume dr =
2nrdrdz.

Les particules de fluides ont un mouvement rectiligne
uniforme (lignes de courant rectilignes, égales aux tra-
jectoires en régime stationnaire) ; leur accélération est
donc nulle.

Le principe fondamentale de la dynamique s’écrit
alors, en projection selon Oz

0=P(z)2nrdr — P(z+dz)2nrdr —pg2nrdrdz

+n2n(r +dr) (@

I Jr+dr

dv
dz-n2 d
z—1 ﬂr(dr) z
P
= —(;—ZandrdZ—PgZHrdrdZ"'Z”’?% [ra] drdz

soit apres simplification

dp_nd|,
dz rdr

dv
dr

-pg-

Le premier membre de 1'égalité est indépendant de r
tandis que le second est indépendant de z; ces deux
termes sont donc égaux a une constante. La loi P(z) est
donc affine; en particulier

d_P _ P(h) - P(0) _ Py — Pint
dz h-0 h '
On adonc
nd [ dvi_ o _ Po—Pin
d dr h
soit
d dv 1
ol L TI_h [Po— Ping+ pgh]r.
Intégrons une premiere fois :
dv 1
rdr o 3 [Po— Pins+ pgh P+ A,
soit
dv A
. Znh [Po— Ping+ pgh]r + —
Comme dv/dr doitrester finienr=0,ona A=0:
dv 1
Py—Piys+pgh
dr 217h [ 0~ Finftp§ ]

Intégrons une seconde fois :

v(r) = [Po— Pins+ pgh] r* + B.

4nh

La condition v(R) = 0 permet d’écrire

v(r) = [Pint— Po— pgh] (R* - 1?).

1
4inh
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Le débit volumique est donné par

5
Q= / 2nrv(r)dr
0

_2n (Ping— P h)/R(rR2 r3)dr
477h inf 0— P8 o

T R> R*

= —— (Put—Po—pgh) |RP— - —
Znh(mf 0~ P8 )( 2 4)

soit

TR*

Q 8 h(Plnf PO_pgh) .

» On aurait pu prendre comme systeme le cylindre de
rayon r et de hauteur dz. Le principe de la dyna-
mique donne alors

d
0=P(2)nr’—P(z+dz)nr?—pgnr? dz+nd—r2nrdz

d’ol1 avec le méme raisonnement que précédem-

ment
dpP 2ndv _ Po— Pyt

dz rdr h

On arrive alors directement a

=—pg+—

dv 1

EZM—h(PO—Pinf"'Pgh)r

faisant I’économie d'une intégration.

3. On calcule

7 x 10%
8 x 20 x 10% x 5000
x (2 %10 x 10° = 10° — 2700 x 9,8 x 5000)

Q:

soit Q=2,7x103m3.s7! .
La vitesse est maximale au centre :

Pins—Po—pgh
Umax = —mf 41;)}1 pE RZ.

On calcule | Vpax=17m-s' .

La vitesse débitante est donnée par Q = mR?u, d’oit
u=85m-s! .

4. Le nombre de Reynolds est donné par

pu2R
.

Re =

On calcule Re=23 .

Lhypothese d'un écoulement laminaire est cohérente.
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