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TD phénomènes de transport Fluides en écoulement— solution

 ;;;; Description d’un fluide en écoulement <<<<

2—  Débit d’une rivière

Le débit moyen annuel de la Marne au niveau de
Meaux est d’environ 100 m3 · s−1, avec une vitesse ty-
pique de 0,5 m · s−1.

1. Le débit massique de l’eau est relié à son débit volu-
mique selon

Dm =µDv avec µ= 103 kg ·m−3 .

On calcule Dm = 105 kg · s−1 .

2. Le débit volumique est donné par

Dv = Sv

d’où la section S = Dv

v
= 100

0,5
, soit S = 200 m2.

3. La section est donnée par S = LH . Avec une largeur
L = 80 m, on obtient comme profondeur H = 2,5 m .

3—  Débit volumique

1. Le champ des vitesses ne dépend que de z :

#»v (M) = v(z) #»e x = v0
z

a
#»e x pour 0⩽ z ⩽ a.

1.a) La vitesse étant uniforme sur une bande de lar-
geur b et de hauteur dz, de section dS = b dz, le débit
volumique peut s’écrire

Dv =
Ï

v(z)dS =
ˆ a

0
v0

z

a
b dz = v0

b

a

[
z2

2

]a

0

soit Dv = v0
ab

2
.

En considérant une vitesse uniforme, on peut écrire
pour la section S = ab

Dv = vmoyab .

En identifiant, on obtient Vmoy = v0

2
.

1.b) On a

div #»v = dv

dx
= 0.

L’écoulement est incompressible.

2. Le champ des vitesses ne dépend que de r :

#»v (M) = v(r ) #»e z = v0

(
1− r 2

a2

)
#»e z pour 0⩽ r ⩽ a.

2.a) La vitesse est uniforme sur un anneau de rayon r ,
d’épaisseur dr donc d’aire dS = 2πr dr . Le débit volu-
mique peut s’écrire

Dv =
Ï

v(r )dS =
ˆ a

0
v(r )2πr dr

= 2πv0

ˆ a

0

(
r − r 3

a2

)
dr = 2πv0

[
r 2

2
− r 4

4a2

]a

0

= 2πv0

(
a2

2
− a4

4a2

)

soit Dv =πv0
a2

2
.

En considérant une vitesse uniforme, on peut écrire
pour la section S =πa2

Dv = vmoyπa2 .

En identifiant, on obtient Vmoy = v0

2
.

2.b) On a div #»v = 0 : l’écoulement est incompressible.

4—  Débit massique

1. Le débit massique s’écrit

Dm =µvπ
D2

4
.

Avec

Dm = 510×10−3

30×1800
= 9,44×10−6 kg · s−1

on calcule

v = 4Dm

µπD2 = 4×9,44×10−6

7,5×π× (2×10−2)2

soit v = 4,0×10−3 m · s−1 = 4,0 mm · s−1 .

2. L’écoulement étant incompressible, il y a conser-
vation du débit volumique à travers toute section du
tuyau, soit

π
D2

4
v =π

D ′2

4
v ′

d’où

v ′ =
(

D

D ′

)2

v .

On calcule v ′ = 6,4×10−4 m · s−1 = 0,64 mm · s−1.

La vitesse diminue bien quand la section augmente.

La vitesse de l’écoulement est très inférieure à la vi-
tesse du son dans le gaz (typiquement en centaines
de mètres par seconde) ; l’écoulement peut donc être
considéré comme incompressible.



TD phénomènes de transport Fluides en écoulement— solution

5—  Écoulement radial

Le débit massique à travers toute sphère de rayon r est
conservé en régime stationnaire ; il s’écrit

Dm =µ(r )V04πr 2

d’où

µ(r ) = Dm

4πV0r 2 .

7—  Écoulement dans un tube

De l’eau circule dans un tube dans lequel la section se
réduit brusquement.

1. La vitesse est maximale là où les lignes de courant
sont le plus resserrées, soit en au point J.

La vitesse est minimale là où les lignes de courant sont
le plus écartées, soit en au point K.

L’eau étant un fluide incompressible, il y a conserva-
tion du débit volumique à travers toute section d’un
tube de courant, d’où le raisonnement suivi.

2. Les lignes de courants sont également écartées dans
le plan d’entrée. On a donc vB = v A , soit vB = 2 m · s−1.

En première approximation, on peut considérer la vi-
tesse uniforme dans le plan de sortie, d’où vC = vD . La
section étant diminuée d’un facteur 2/3, la conserva-
tion du débit volumique entre l’entrée et la sortie s’écrit

vC
2

3
S = v AS

d’où vC = vD = 3 m · s−1.

8—  Canalisation à section lentement va-
riable

Considérons la tranche entre x et x +dx. La masse de
fluide contenue est

δm =µ(x)S(x)dx .

Sa variation entre t et t +dt , vu que l’écoulement est
stationnaire, est nulle : d(δm) = 0.
Le bilan s’écrit

d(δm) = δ2mreçu ,

avec

δ2mreçu =µ(x)v(x)S(x)dt

−µ(x +dx)v(x +dx)S(x +dx)dt

=−dµ(x)v(x)S(x)

dx
dx dt .

On a donc

0 = dµ(x)v(x)S(x)

dx
= S(x)

dµ(x)v(x)

dx
+µ(x)v(x)

dS(x)

dx

d’où
d[µ(x)v(x)]

dx
+ µ(x)v(x)

S(x)

dS(x)

dx
= 0.

9—  Convergent

1. L’eau étant incompressible, le débit volumique est
conservé à travers toute section de la conduite, soit

v1π
D2

1

4
= v2π

D2
2

4

d’où

v2 = v1

(
D1

D2

)2

.

On aura v2 = K v1 si

D1

D2
=
p

K .

D’après la figure, on a

tanα= D1 −D2

2L

d’où

D2 = D1 −2L tanα .

On a donc
D1

D1 −2L tanα
=
p

K

d’où

L =
(
1− 1p

K

)
D1

2tanα
.

2. On calcule

L =
(
1− 1p

1,5

)
200×10−3

2× tan(10°)

soit L = 10 cm .
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 ;;;; Statique des fluides <<<<

11—  Cube flottant

Notons h la hauteur de cube immergée :

h

#»g

1. Le cube est soumis à :

— son poids
#»
P = m #»g ;

— la poussée d’Archimède
#»
ΠA =−ρa2h #»g .

L’équilibre du cube s’écrit

#»
0 = m #»g −ρa2h #»g

d’où

h = m

ρa2 .

ä En notant ρc la masse volumique du cube et d sa
densité, on peut écrire

m = ρca3 = dρa3

d’où h = d a. On est bien sûr dans le cas où d < 1 car
le cube flotte !

2. Considérons l’axe descendant Oz, et prenons
comme origine la cote de la base du cube lorsqu’il flotte
à l’équilibre.

Lorsque le cube s’enfonce de z (algébriquement), le vo-
lume immergé est Vi = a2(h + z), et la poussée d’Archi-
mède vaut

#»
ΠA =−ρa2(h + z) #»g .

Le poids est inchangé, et le principe de la dynamique
appliqué au cube s’écrit

m #»a = m #»g −ρa2(h + z) #»g ,

soit en soustrayant l’équation de l’équilibre établie à la
question précédente

m #»a =−ρa2z #»g .

En projetant selon #»e z , on obtient

m
d2z

dt 2 =−ρa2g z

soit
d2z

dt 2 + ρg a2

m
z = 0.

Il s’agit de l’équation de l’oscillateur harmonique, de

pulsation ω=
√

ρg a2

m
.

Le cube effectue donc des oscillations sinusoïdales, de
période

T = 2π

√
m

ρa2g
.

ä Avec les conditions initiales z(0) = b et ż(0) = 0, on
obtient

z(t ) = b cos(ωt ) .

À partir de sa position de repos, on l’enfonce de b
(tout en maintenant une partie du cube émergée), et
on lâche. Montrer que le cube effectue des oscillations
verticales dont on déterminera la période.

12—  Flottation à une interface

1. Le poids du bloc de densité da est

Pbloc = daµ(a +b)Sg .

où S est la section horizontale du bloc et µ la masse vo-
lumique de l’eau. Le poids du fluide déplacé, donnant
la poussée d’Archimède, est

ΠA = Saµg +dmSbµg .

À l’équilibre, la poussée d’Archimède compense le
poids du cube, soit

daµ(a +b)Sg = Saµg +dmSbµg

d’où

da(a +b) = a +dmb .

On en déduit
b

a
= da −1

dm −da
.

2. On calcule b/a = 1,33 .

13—  Juste un doigt !

Notons
#»
F d→e la force exercée par le doigt sur l’eau.

Bilan des forces s’exerçant sur le système
{eau+récipient} :

— force
#»
F d→e exercée par le doigt ;

— poids m #»g ;

— force
#»
F b→r exercée par la balance sur le récipient.
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L’équilibre s’écrit

#»
F d→e +m #»g + #»

F b→r = #»
0 .

L’eau exerce sur le doigt immergé une force de pression
qui est la poussée d’Archimède :

#»
F e→d = #»

ΠA

soit en notant V le volume immergé du doigt et µ la
masse volumique de l’eau

#»
F e→d =−µV #»g .

Par le principe des actions réciproques, le doigt exerce
sur l’eau la force

#»
F d→e =−#»

F e→d =µV #»g ,

d’où

µV #»g +m #»g + #»
F b→r = #»

0 .

La balance indique l’intensité (convertie en masse en
divisant par g ) de la force exercée par le récipient sur
la balance, soit d’après le principe des actions réci-
proques

#»
F r→b =−#»

F b→r =µV #»g +m #»g .

La balance indique donc une masse apparente

mapp =µV +m .

Il s’agit donc d’évaluer le volume de la première pha-
lange de l’index. On peut la considérer comme cylin-
drique, de diamètre D = 1,5 cm et de hauteur H = 3 cm
(mesuré sur mon doigt !). Son volume est donc

V = Hπ
D2

4
5,3 cm3 ≈ 5 cm3 = 5 mL.

La masse du fluide déplacé est donc m′ = µV = 5 g. La
balance doit indiquer mapp = 155 g.
La preuve par l’image :

14—  Quand la routourne tourne!

1. La pression varie avec l’altitude. Cette dernière va-
riant périodiquement quand la tourne tourne (réguliè-
rement), on mesure la variation de pression observée
sur le graphe.

La pression est maximale quand la nacelle est au plus
bas, et diminue avec l’altitude. Partant du bas, on y re-
tourne 4 fois : la nacelle fait 4 tours (dont 3 de façon
quasi-régulière).

2. Méthode « exacte » : modèle de l’atmosphère iso-

therme, à partir de
#      »

gradP = ρ #»g . On a
dP

dz
= −ρg =

−MP

RT
g . On considère la température T constante,

d’où

P (z) = P (0)exp
(
− z

H

)
avec H = RT

M g
.

On prend l’origine z = 0 à la position basse de la na-
celle.

La pression diminue de ∆P > 0 à l’altitude D , soit

P (0)−∆P = P (0)exp

(
−D

H

)
.

On en déduit D = −H ln

(
1− ∆P

P (0)

)
. On donne ∆P =

467 Pa, la pression au point le plus bas peut être esti-
mée à P (0) = 1013 hPa = 1,013×105 Pa. On obtient le
diamètre de la grande roue : D = 38 m .

On peut avantageusement faire des hypothèses simplifi-
catrices en calculant la valeur de H.

— On calcule H = 8,3×103 m. On a donc D ¿ H , ce

qui permet d’écrire P (z) = P (0)
(
1− z

H

)
. On en dé-

duit D = ∆P

P (0)
H = 38 m.

— On peut aussi supposer que l’air est incompres-
sible sur une très faible variation d’altitude, avec

une masse volumique ρ = MP (0)

RT
. On a donc

dP

dz
=

−ρg =−M g

RT
P (0) =−P (0)

H
et on retrouve le résultat

précédent.

3. On peut estimer la période de rotation sur la
graphe : T = 85 s. On en déduit

v = D

2
ω= D

2

2π

T
= Dπ

T
= 38π

85

soit v = 1,4 m · s−1 .

L’accélération centripète vaut

a = v2

R
= 2v2

D
,

soit a = 0,1 m · s−2 ¿ g : la grande roue n’est pas un ma-
nège à sensations !
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15—  Vidange automatique

1. Statique des fluides pour un liquide incompres-
sible :

P (y) = P0 +µg (h − y) .

2. Isobares horizontales : la pression est uniforme sur
le fond et vaut P0 +µg h.

Résultante :

#»
F L =−[P0 +µg h]bL #»e y .

En tenant compte de l’action de l’atmosphère, la ré-
sultante des actions subies par le panneau est

#»
F 1 =

−µg hbL #»e y . Le moment peut donc se calculer en
considérant que la résultante s’applique au milieu M1

du panneau (
#     »
OM 1 =−L/2 #»e x ), soit

#»

M1 = #     »
OM 1 ∧ #»

F 1 =−L

2
#»e x ∧ (−µg hbL) #»e y

d’où
#»

M1 = µg hbL2

2
#»e z .

3. La pression n’est pas uniforme sur le panneau ver-
tical. On peut la considérer comme uniforme sur une
bande de largeur b, comprise entre y et y +dy . De la
part de l’eau et de l’atmosphère elle est soumise à

d
#»
F 2 = [P (y)−P0]b dy #»e x =µg (h − y)b dy #»e x .

La résultante est

#»
F 2 =µg b

ˆ h

0
(h − y)dy #»e x =

[
µg bh2 −ρg b

h2

2

]
#»e x ,

soit
#»
F 2 =µg b

h2

2
#»e x .

On ne peut pas calculer le moment directement car la
force n’est pas uniforme.

Moment résultant sur la bande b dy :

#»

M2 = #     »
OM ∧d

#»
F 2 = y #»e y ∧µg (h − y)b dy #»e x

=−µg b(h − y)y dy #»e z .

On en déduit

#»

M2 =−µg b

ˆ h

0
(hy − y2)dy #»e z =−µg b

(
h3

2
− h3

3

)
#»e z ,

soit
#»

M2 =−µg b
h3

6
#»e z .

4. Le moment résultant s’appliquant sur les panneaux
est

#»

M= #»

M1 + #»

M2 =µg b

(
hL2

2
− h3

6

)
#»e z .

Le moment par rapport à Oz est

MOz = #»

M#»e z = µg bh

2

(
L2 − h3

3

)
.

Les panneaux pivotent si MOz < 0 soit si

h >p
3L ≈ 1,73L .

16—  Trop plein

1. Prenons l’axe Oz ascendant d’origine O (axe de ro-
tation du trop-plein).

Le relation de la statique des fluides s’écrit

dP

dz
=−µg

où µ est la masse volumique de l’eau.

Avec P (H) = P0, on obtient

P (z) = P0 +µg (H − z) .

La pression de l’eau au niveau de la partie OB vaut

P (0) = P0 +µg H .

La pression de l’air sur l’autre face valant P0, la résul-
tante des forces de pression sur la paroi du fond du
trop-plein vaut

#»
F = (P (0)−P0)Lℓ#»e z =µg HLℓ#»e z ,

en notant ℓ sa largeur selon O y .
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La pression étant uniforme sur cette paroi, la force de
pression s’applique au milieu de OB ; son moment par
rapport à O y vaut alors

M′
O y =−L

2
µg HLℓ .

La pression n’étant pas uniforme sur la paroi O A′, on va
considérer la résultante sur un section comprise entre
z et z+dz, de surface dS = ℓdz. La résultante des forces
de pression (eau d’un côté et air de l’autre) s’y exerçant
vaut

d
#»
F = (P (z)−P0)ℓdz #»e x =µg (H − z)ℓdz #»e x

et son moment par rapport à O y vaut

dM′′
O y = zµg (H − z)ℓdz .

On en déduit

M′′
O y =µgℓ

ˆ H

0
(H − z)z dz =µgℓ

ˆ H

0
(H z − z2)dz

=µgℓ
H 3

6
.

Le moment en O des forces de pression exercées par
l’eau et l’air sur la porte vaut MO y =M′

O y +M′′
O y soit

MO y = µg Hℓ

2

(
H 2

3
−L2

)
.

2. La porte bascule si MO y > 0, soit si H >p
3L ; la hau-

teur de liquide vérifie alors

h > h0 +
p

3L .

17—  Baromètre différentiel à deux li-
quides

A
B

C

D

1. La loi de de l’hydrostatique dans la glycérine donne

P (C ) = P (D)+ρ2g h2 = ρ2g h2

comme P (D) = 0.

La loi de de l’hydrostatique dans le mercure donne

P (B) = P (C )+ρ1g h1 = ρ2g h2 +ρ1g h1 .

Les points A et B étant à la même altitude z, on a
P (B) = P (A) = P o, d’où

ρ2g h2 +ρ1g h1 = P o .

La pression atmosphérique est P o, et les dénivellation
des deux liquides sont h1 et h2. Établir la relation entre
P o, h1 et h2 à l’équilibre.

2. Notons z > 0 l’élévation de la surface libre de la gly-
cérine, z ′ > 0 celle de l’interface entre le mercure et la
glycérine et z ′′ > 0 la baisse de niveau de la surface libre
de mercure dans la cuve.

Les altitudes considérées précédemment deviennent
alors

h′
1 = h1 + z ′+ z ′′ et h′

2 = h2 + z − z ′ .

La conservation du volume de glycérine permet
d’écrire

S1z ′ = S2z

soit

z ′ = S2

S1
z .

La conservation du volume de mercure permet d’écrire

S1z ′ = S0z ′′

soit

z ′′ = S1

S0
z ′ = S1

S0

S2

S1
z .

Avec la pression P o +∆P , le résultat de la question 1
donne

P o +∆P = g (ρ1h′
1 +ρ2h′

2) = g (ρ1h1 +ρ2h2)

+ g [ρ1(z ′+ z ′′)+ρ2(z − z ′)]

d’où

∆P = g z

[
ρ1

(
S2

S1
+ S1

S0

S2

S1

)
+ρ2

(
1− S2

S1

)]
.

ä C’est le raisonnement attendu compte tenu de la
forme de l’énoncé. Si on comprend que S0 est la
section de la cuve et non de la surface libre, et que le
tube en B à la section S2, la conservation du volume
de mercure s’écrit

S1z ′ = (S0 −S2)z ′′

et le résultat final devient

∆P = g z

[
ρ1

(
S2

S1
+ S2

S0 −S2

)
+ρ2

(
1− S2

S1

)]
qui ne fait pas apparaître clairement les rapports
des sections demandés.
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3. On calcule

∆P = 9,81×30×10−3
[

13,6×103
(

1

20
+ 1

20×10

)
+1,26×103

(
1− 1

20

)]
= 572 Pa

soit ∆P = 5,72 mbar .

La sensibilité est

z

∆P
= 5,24 mm/mbar.

Pour le baromètre de Torricelli, on a initialement

P o = ρ1g h1 .

Quand la pression varie, on a

P o +∆P = ρ1g (h1 + z)

soit
∆P = ρ1g z .

La sensibilité est alors

z

∆P
= 1

ρ1g
= 0,75 mm/mbar.

Le baromètre différentielle est nettement plus sensible
que le baromètre de Torricelli.

18—  Forces de pression

1re méthode (la moins calculatoire)
On calcule la résultante des forces de pression exercées
sur la demi-sphère :

#»
F = #»

F liq + #»
F air .

En prenant un axe Oz ascendant dont l’origine est au
fond du récipient, la pression dans le liquide est

P (z) = P0 +µg (h − z) .

Considérons la demi-boule dans le fond du récipient
(non percé), juste décollée du fond (elle est à la même
profondeur, mais entourée de liquide). La résultante
des forces de pression de l’eau est donnée par la pous-
sée d’Archimède

#»
ΠA = 2

3
πR3µg #»e z .

On peut décomposer cette force selon la résultante sur
la demi-sphère et la résultante sur le fond de la demi-
boule que l’on peut calculer directement car la pres-
sion y est uniforme (et la surface plane) :

#»
ΠA = #»

F liq +πR2P (h) #»e z = #»
F liq +πR2(P0 +µg h) #»e z .

La résultante des forces de pression de l’eau sur la
demi-sphère est donc

#»
F liq = 2

3
πR3µg #»e z −πR2(P0 +µg h) #»e z .

La pression atmosphérique est uniforme sur la hau-
teur h. La résultante des forces de pression sur la demi-
boule placée dans l’atmosphère est donc nulle. On en
déduit la résultante des forces de pression atmosphé-
rique sur la face interne de la demi-sphère

#»
F air =πR2P0

#»e z .

On en déduit la résultante des forces de pression sur la
demi-sphère :

#»
F = 2

3
πR3µg #»e z −πR2µg h #»e z

soit
#»
F =−µgπR2

(
h − 2

3
R

)
#»e z .

Cette force est vers le bas. Il faut a minima exercée
sur force opposée, vers le haut, pour soulever la demi-
sph!re, soit en intensité

Fmin =µgπR2
(
h − 2

3
R

)
.

ä Ce terme est bien positif car h > R si la demi-sphère
est entièrement immergée.

2e méthode : calcul direct

P0

P0

h

z

0

θ

R

#»e r

Compte tenu de la symétrie du système, la résultante
des forces de pression est portée par l’axe de symétrie
du système, c’est-à-dire l’axe Oz :

#»
F = F #»e z .

En notant d
#»
S = dS #»e r le vecteur surface (sortant) sur

la demi-sphère, la résultante des forces de pression du
liquide sur la demi-sphère Σ est

#»
F liq =−

Ï
Σ

P (z)d
#»
S

et celle de l’air en dessous est

#»
F air =

Ï
Σ

P0d
#»
S .

Comme P (z) = P0 +µg (h − z) la résultante est

#»
F =−

Ï
Σ
µg (h − z)d

#»
S .

Le calcul de cette intégrale vectoriel est bien compliqué
car la direction du vecteur d

#»
S varie quand on balaye
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la surface. . . Nous allons utiliser la discussion prélimi-
naire sur la symétrie du système, en faisant le produit
scalaire avec #»e z :

#»
F · #»e z =−

Ï
Σ
µg (h − z)d

#»
S · #»e z

soit

F =−
Ï

Σ
µg (h − z)dS cosθ .

En coordonnées sphériques, on a

dS = R2 sinθdθdφ .

De plus z = R cosθ, d’où

F =−
ˆ
Σ

µg (h −R cosθ)cosθR2 sinθdθdφ

soit

F =−µg R2
ˆ π/2

0
(h −R cosθ)cosθ sinθdθ

ˆ 2π

0
dφ

=−2πµg R2
ˆ π/2

0
(h −R cosθ)cosθ sinθdθ .

En posant u = cosθ, on a du =−sinθdθ d’où

F = 2πµg R2
ˆ 0

1
(h −Ru)u du

=−2πµg R2
[

h
u2

2
−R

u3

3

]1

0
=−2πµg R2

(
h

2
− R

3

)
d’où

F =−πµg R2(

(
h − 2

3
R

)
.

On retrouve l’expression obtenue par la première mé-
thode.

19—  Hémisphères de Magdebourg

Sur chaque côté, il faut exercer une force qui s’oppose
à la résultante des forces de pression atmosphérique
s’exerçant sur une demi-sphère.
On sait que le résultante des forces de pression uni-
forme s’exerçant sur la surface fermée constituée d’une
demi-sphère fermée par une paroi plane (disque de
rayon R) est nulle.
En intensité, la résultante des forces de pression atmo-
sphérique s’exerçant sur la demi-sphère est donc égale
à la force de pression sur le disque, soit

F = PπR2 = 105 ×π×0,282 = 2,5×104 N

soit une force équivalente à un poids de 2,5 tonnes !

20—  Modèle de l’atmosphère

L’air atmosphérique est considéré comme un gaz par-
fait de masse molaire M = 29 g ·mol−1. Le champ de
pesanteur et uniforme, de valeur g = 9,8 m · s−2.
La verticale ascendante est repérée par #»e z . Au niveau
du sol, en z = 0, on donne P0 = P (0) = 105 Pa et T (0) =
T0 = 310 K.

1. Relation de la statique des fluides :

dP

dz
=−µg .

L’équation d’état du gaz parfait donne

P
V

n
= RT = P

M

µ

d’où
dP

dz
=−P M g

RT
.

Avec T = T0, on a

dP

P
=−M g

RT0
dz

d’où

P (z) = P0 e−
z

H1 et H1 = RT0

M g
.

On calcule H1 = 9,1×103 m .

2. Avec
T (z) = T0 +λz

on a
dP

P
=−M g

R

dz

T0 +λz

soit ˆ P (z)

P0

dP

P
=−M g

λR

ˆ z

0

λdz

T0 +λz

d’où

ln

(
P (z)

P0

)
=−M g

λR
ln

(
T0 +λz

T0

)
.

On a donc

P (z) = P0

(
1+ λz

T0

)− M g
λR

.

où λ = −5×10−3 K ·m−1 est appelée gradient ther-
mique de l’atmosphère.

Déterminer la loi P (z).

3. Si z ¿ H1, on a
|λ|z

T0
¿ 1, ce qui permet de linéariser

l’expression précédente :

P (z) ≈ P0

(
1− M g

λR

λz

T0

)
soit

P (z) ≈ P0

(
1− M g z

RT0

)
.
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La linéarisation du modèle isotherme donne

PT (z) ≈ P0

(
1− z

H1

)
= P0

(
1− M g z

RT0

)
.

On retrouve la même loi approchée de pression avec
les deux modèles.

Pour information, voici l’évolution de la pression avec
les deux modèles :

21—  Océan isotherme

La masse volumique de l’eau dans un océan varie avec
la pression selon la loi

ρ = ρ0[1+a(P −P0)] .

1. La loi de la statique des fluides s’écrit

dP

dz
= ρg = ρ0[1+a(P −P0)]g

d’où après séparation des variables

1

a

ˆ P (z)

P0

a dP

1+a(P −P0)
= ρ0g

ˆ z

0
dz

soit
1

a
ln[1+a(P −P0)] = ρ0g z .

On a donc
1+a(P −P0) = eaρ0g z

soit

P (z) = P0 + eaρ0g z −1

a
.

2. La profondeur augmente exponentiellement avec

une distance caractéristique
1

aρ0g
. Les profondeurs

faibles sont petites devant cette distance, ce qui revient
à se placer à

aρ0g z ¿ 1.

On peut donc linéariser eaρ0g z ≈ 1+aρ0g z, d’où

P (z) ≈ P0 +ρ0g z .

On retrouve l’expression de la pression obtenue en
considérant l’eau comme incompressible de masse vo-
lumique ρ0.

3. Avec le modèle proposé, on calcule

P (1 km) = 9,905×106 Pa.

Avec le modèle incompressible, on obtient

Pinc(1 km) = 9,900×106 Pa.

L’écart relatif est

P (1 km)−Pinc(1 km)

P (1 km)
= 0,05 %.

Il est très faible.

23—  Pression au sommet de l’Everest

1. La température évolue avec l’altitude selon la loi

T (z) = T0 −az

avec a = 60

8850
= 6,75×10−3 K ·m−1 (ou °C ·m−1, ça re-

vient au même car c’est une variation de température
par mètre).

2. La relation de la statique des fluides s’écrit, on no-
tant (Oz) l’axe vertical ascendant

dP

dz
=−ρg avec ρ = MP

RT
= MP

R(T0 −az)

soit
dP

dz
=− MP g

R(T0 −az)
.

Séparons les variables :

dP

P
=− M g

R(T0 −az)
dz .

On intègre en faisant attention aux bornes :

ˆ T (z)

P0

dP

P
=−M g

R

ˆ z

0

dz ′

T0 −az ′

soit

ln

(
P (z)

P0

)
= M g

Ra
ln

(
T0 −az

T0

)
= ln

(
T0 −az

T0

) M g
Ra

d’où

P (z) = P0

(
1− az

T0

) M g
aR

.
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3. En notant α = M g

aR
pour simplifier, la relation pré-

cédente s’écrit

P (z) = P0

(
T (z)

T0

)α
.

D’après l’équation d’état du gaz parfait, on a

T

T0
= PV

P0V0

d’où

P = P0

(
PV

P0V0

)α
= P 1−α

0 PαV αV −α
0 .

On a donc
Pα−1V α = Pα−1

0 V α
0

soit PV
α

α−1 = P0V
α

α−1
0 . Avec l’expression de α, on en dé-

duit que l’on a

PV k = cte avec k = M g

M g −aR
.

25—  Mesure de la densité d’une huile

On considère les points A et B à la même côte z :

A B

Comme zA = zB , on a P A = PB .
La relation de la statique des fluides donne

P A = Patm +ρhg h et PB = Patm +ρeg (h −∆z)

en notant ρe la masse volumique de l’eau et ρh celle de
l’huile.
De P A = PB on déduit

ρhg h = ρeg (h −∆z) .

La densité d de l’huile étant définie par ρh = dρe, on a

dh = h −∆z ,

d’où

d = 1− ∆z

h
.

Le volume d’huile est V = hs, d’où

h = V

s
= 10

1
= 10 cm.

On en déduit d = 1−1,510 soit d = 0,85 .

26—  Quand l’entonnoir décolle

Le pression dans l’entonnoir est

P (z) = P0 +µg (z0 − z) .

Par symétrie, résultante des forces de pression (de l’eau
à l’intérieur et de l’air à l’extérieur) est portée par l’axe
de symétrie du système, soit l’axe Oz :

#»
F = F #»e z .

Considérons la surface de l’entonnoir comprise entre z
et z +dz :

D

#»g

z

z0
α

dz

H

d2 #»
S

La largeur de cette bande élémentaire sur l’entonnoir
est

dℓ= dz

cosα
.

Son rayon r (z) est donné par

tanα= r (z)

H − z
avec tanα= D

2H

soit

r (z) = D

2
− z tanα .

La bande de rayon r (z) et de largeur dℓ a donc pour
surface

dS = 2πr (z)dℓ= 2π

(
D

2
− z tanα

)
dz

cosα
.

En prenant en compte la pression de l’eau et la
pression atmosphérique extérieures, la résultante des
forces de pression sur l’entonnoir s’écrit

#»
F =

Ï
(P (z)−P0)d

#»
S .

d’où

#»
F · #»e z = F =

Ï
(P (z)−P0)d

#»
S · #»e z

=
Ï

(P (z)−P0)dS sinα .
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On a donc

F =
ˆ z0

0
(P (z)−P0)2π

(
D

2
− z tanα

)
sinα

dz

cosα

= 2πµg tanα

ˆ z0

0
(z0 − z)

(
D

2
− z tanα

)
dz

= 2πµg tanα

(
z2

0D

2
− z3

0

2
tanα− D

4
z2

0 +
z3

0

3
tanα

)
soit après simplification

F =πµg tanαz2
0

(
D

2
− z0

3
tanα

)
.

L’entonnoir décolle quand cette force compense le
poids de l’entonnoir, soit quand F = M g .
La hauteur z0 correspondante vérifie alors l’équation

πµ tanαz2
0

(
D

2
− z0

3
tanα

)
= M .

27—  Flottaison d’une barre en bois

1. La tige est soumise à

— l’action du support en A, dont le moment en A en
nul (liaison pivot parfaite, non représentée sur le
schéma);

— son poids
#»
P qui s’applique au barycentre G de la

tige ;

— la poussée d’Archimède
#»
ΠA qui s’applique au bary-

centre C de la partie immergée de la tige.

h

θ

#»g
A

B

I

#»
P

#»
ΠA G

C

La tige étant homogène, G est au milieu de AB et C est
au milieu de I B .

L’équilibre de la tige est réalisé comme la somme des
moments en A des actions est nulle, soit en projection
selon l’axe de rotation :

0 = P × AG sinθ−ΠA × AC sinθ

= (P × AG −ΠA × AC )sinθ . (1)

L’équation (1) admet la solution θ = 0 : la tige est verti-
cale.

La solution θ 6= 0 est alors donnée par

0 = P × AG −ΠA × AC

Il faut déterminer AG et AC .

On a AG = L/2.

On a

AI = h

cosθ
d’où

B I = L− AI = L− h

cosθ
.

On a donc

BC = B I

2
= L

2
− h

2cosθ
et

AC = L−BC = L

2
+ h

2cosθ
.

Notons ρe la masse volumique de l’eau. Celle de la tige
est ρt = dρe.

En notant V le volume de la tige, sa masse vaut

m = ρtV = dρeV .

La tige étant de section constante, son volume im-
mergé est donné par

Vim = I B

AB
V =

(
1− h

L cosθ

)
V .

La masse du fluide de remplacement vaut donc

mf = ρeVim = ρeV

(
1− h

L cosθ

)
.

On en déduit
P = mg = dρeV g

et

ΠA = mfg = ρeV

(
1− h

L cosθ

)
g .

La condition d’équilibre AG ×P = AC ×ΠA s’écrit alors

L

2
dρeV g =

(
L

2
+ h

2cosθ

)
ρeV

(
1− h

L cosθ

)
g

soit

d =
(
1+ h

L cosθ

)(
1− h

L cosθ

)
= 1− h2

L2 cos2θ
.

On en déduit

cosθ = 1p
1−d

h

L
. (2)

2. On a une solution θ 6= 0 si l’équation (2) a une solu-
tion. Comme cosθ⩽ 1, il faut

1p
1−d

h

L
⩽ 1

soit
h

L
⩽

p
1−d .

3. On calcule

cosθ = 1p
1−0,65

1

3
= 0,5634

d’où θ = 55,7° .
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 ;;;; Écoulement d’un fluide visqueux <<<<

30—  Courroie sur un film d’huile

1. On a un profil linéaire de vitesse v(y), avec les
conditions aux limites

v(y = 0) = 0 et v(y = h) =V .

On en déduit le champ des vitesses

#»v =V
y

h
#»e x .

La force exercée par le fluide sur la surface S = Lb est
donnée par

#»
F visc =−ηdv

dy
(h)Lb #»e x =−ηV

h
Lb #»e x , .

Sa puissance vaut alors

Pvisc = #»
F ·V #»e x =−ηV 2

h
Lb .

Il faut fournir la puissance opposée pour maintenir la
vitesse de la courroie constante, soit

P = ηV 2

h
Lb .

En supposant un profil de vitesse linéaire dans la
couche d’huile, déterminer la puissance P à fournir
pour maintenir la vitesse de la courroie constante, en
fonction de h, L, V , b et η.

2. Application numérique :

P = 0,40× (2,5)2

3×10−2 ×2×0,60

soit P = 100 W .

31—  Freinage d’un bloc

1. Les conditions aux limites sont

v(0) = 0 = b et v(e) =V0 = ae ,

d’ou

v(z) =V0
z

e
.

2. La force exercée par un fluide sous une surface S est

#»
F =−ηdv

dz
S #»ux

soit
#»
F =−ηV0

e
S #»ux .

3. PFD en projection selon #»ux appliqué au bloc :

m
dV

dt
=−ηV (t )

e
S ,

soit
dV

dt
+ V (t )

τ
= 0 avec τ= me

ηS
.

Avec V (0) =V0, on obtient V (t ) =V0e−t/τ .

En intégrant, on obtient x(t ) =−τV0 e−t/τ+A.

Avec x(0) = 0, on obtient x(t ) = τV0
[
1−e−t/τ

]
.

On a alors lim
t→∞x(t ) = τV0 = L, d’où la distance d’arrêt

L = meV0

ηS
.

Viscosité dynamique de l’eau : η= 10−3 Pl.

On calcule

L = 30×10−3 ×2

1×10−3 ×400×10−4 ,

soit L = 1500 m .

32—  Oléoduc

1. La vitesse débitante est définie par Q =UπR2, d’où

U = Q

πR2 = 36/3600

π× (8×10−2)2

soit U = 0,5 m · s−1 .

2. On a

P A −PB = RhQ avec Q = 8ηL

πR4

d’où

η= (P A −PB )
πR4

8QL
= 2,6×105 × π× (8×10−2)4

8×36/3600× (2×103)

soit η= 0,21 Pl .

La viscosité cinématique vaut ν = η/ρ, soit

η= 2,3×10−4 m2 · s−1 .

3. Le nombre de Reynolds vaut

Re = U × (2R)

ν
= 0,5×16×10−2

2,3×10−4

soit Re = 3,5×102.

On est bien dans le domaine d’un écoulement lami-
naire.

4. On a similitude entre les deux écoulements s’ils ont
même nombre de Reynolds ; il faut donc

R0 = νeauRe

2U
= (9×10−7)× (3,5×102)

2×2

soit R0 = 79 µm .
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33—  Écoulement sur un plan incliné

1. Avec le champ des vitesses proposé, l’accélération
d’une particule de fluide est

#»a = D #»v

Dt
= ∂#»v

∂t
+ ( #»v · #      »

grad) #»v = #»
0 .

Le principe fondamental de la dynamique appliqué à
une particule de fluide de volume dτ s’écrit donc

#»
0 =−#      »

gradP dτ+η
d2v

dy2 dτ+ρ #»g dτ

soit
#»
0 =−#      »

gradP +η
d2v

dy2 +ρ #»g .

En projection selon O y , on obtient :

0 =−
(
∂P

∂x

)
y
−ρg cosα . (3)

On intègre par rapport à x (donc y est considérée
comme constante) :

P (x, y) =−ρg y cosα+ A(x) .

ä La « constante » d’intégration est constante vis-à-vis
de la variation d’intégration y , donc a priori elle dé-
pend de x. . . N’hésitez pas à dériver par rapport à y ,
avec x constant, l’expression de la pression obtenue
pour vous en convaincre.

Pour y = e, on a P (x,e) = P0, soit

P0 =−ρg e cosα+ A(x) .

Finalement la constante d’intégration est une vraie
constante ! On a alors

P (y) = P0 +ρg (h −e)cosα .

On projette alors (3) selon Ox :

0 = η
d2v

dy2 +ρg cosα ,

soit
d2v

dy2 =−ρg cosα

η
.

Une première intégration donne

dv

dy
=−ρg cosα

η
y +B .

ä Le champ des vitesses ne dépend que de y d’après
l’énoncé, donc la constante d’intégration est une
vraie constante !

On néglige la force visqueuse à la surface libre en y = e,
soit

η
dv

dy
(y = e) = 0

d’où
B = ρg cosα

η
e .

On a donc
dv

dy
= ρg cosα

η
(e − y) .

On intègre à nouveau :

v(y) = ρg cosα

η

(
e y − y2

2

)
+C .

Avec la condition y(0) = 0, on a C = 0, d’où

v(y) = ρg cosα

η

(
e y − y2

2

)
.

2. Le débit massique est donné par

Dm =
ˆ e

0
ρv(y)L dy = ρ2g L cosα

η

ˆ e

0

(
e y − y2

2

)
dy

= ρ2g L cosα

η

(
e

e2

2
− e3

6

)
soit

Dm = ρ2g e3L cosα

3η
.

3. Compte tenu du profil de vitesse, la vitesse est maxi-
male en y = e (dérivée nulle d’après la condition à la
surface libre), soit

vmax = ρg e cosα

2η
.

34—  Fioul dans une conduite

1. En r = D/2 = 0,15 cm, on calcule

v(D/2) = 2×10−4 m · s−1 ≈ 0 m · s−1 .

La loi est bien cohérente avec la condition sur la paroi
(vitesse nulle).

Le débit volumique est donné par

Dv =
ˆ 0,15

0
v(r )2πr dr = 4π

ˆ 0,15

0
(r −44,44r 3)dr

= 4π

[
(0,15)2

2
− 44,44

4
(0,15)4

]
.

La vitesse moyenne est donnée par Dv = π(0,15)2vmoy,
d’où

vmoy = 4

[
1

2
−11,11(0,15)2

]
= 1 m · s−1 .

La loi de vitesse est donc cohérente avec la vitesse
moyenne donnée.
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2. Le débit volumique vaut Dv = vmoyπ
D2

4 , soit

Dv = 70,7×10−3 m3 · s−1 = 70,7 L · s−1 .

3. Un écoulement est dit laminaire quand les lignes de
courants sont rectilignes, parallèles entre elles (à une
dimension). Un écoulement a des chances d’être lami-
naire si le nombre de Reynolds est tel que Re < 2000.

Ici, on calcule

Re = vmoyD

ν
= 6×103 .

On a Re > 4000 : l’écoulement sera sans aucun doute
turbulent.

4. On écrit la contrainte tangentielle visqueuse :

d
#»
F i−>e =−ηdv

dr
dS #»e z

où dS = 2πr dz est la surface latérale considérée. Le
gradient de la vitesse normal à cette surface est la com-

posante radiale 1 dv

dr
. Le fluide intérieur correspond

au fluide « en-dessous » dans la formule du cours : ici
dv

dr
< 0; le fluide intérieur va plus vite que le fluide ex-

térieur, et exerce sur ce dernier une force selon +#»e z .

On a donc

d
#»
F i−>e =−2πηr

dv

dr
dz #»e z .

5. Sur toute la paroi, la force due à la viscosité est don-
née par

#»
F =−2πη

D

2

dv

dr
(D/2)L #»e z

=−2πη
D

2
(−4)44,44

D

2
L #»e z = 88,88πηD2L #»e z .

Avec η=µν, on calcule F = 88,88πµνD2L soit

F = 1,1×103 N .

6. Les lignes de courants sont rectilignes, selon l’axe
Oz de la conduite ; en régime stationnaire, elles s’iden-
tifient aux trajectoires des particules de fluides. Ces
dernières ont donc un mouvement rectiligne et uni-
forme : leur accélération est nulle, ainsi donc que la
somme des forces appliquées (d’après le PFD).

Se reporter au cours : on a montré que
dP

dz
est une

constante, c’est-à-dire que la pression est une fonction
affine de z.

Considérons le pellicule cylindrique de longueur L,
comprise entre r et r + dr . Toutes les particules de

fluide qui la constitue ont une trajectoire rectiligne uni-
forme; la quantité de mouvement de ce système étant
constante, la somme des forces appliquées est nulle :

dFp(0)+dFp(L)+dFvisc = 0.

La composante selon #»e z de le force de pression en
amont vaut

dFp(0) = 2πr P (0)dr .

La composante selon #»e z de le force de pression en aval
vaut

dFp(L) =−2πr P (L)dr .

La résultante des forces visqueuses s’écrit en ajoutant
la résultante sur la face interne de surface S(r ) et la face
externe de surface S(r +dr ) :

dFvisc =−η
(

dv

dr

)
r

S(r )+η

(
dv

dr

)
r+dr

= η
d

dr

(
S(r )

dv

dr

)
dr

soit comme S(r ) = 2πr L,

dFvisc = 2πηL
d

dr

(
r

dv

dr

)
.

Le bilan des forces conduit alors à

0 = 2πr [P (0)−P (L)]dr +2πηL
d

dr

(
r

dv

dr

)
dr

d’où

P (0)−P (L) =−ηL

r

d

dr

(
r

dv

dr

)
.

On calcule

dv

dr
=−4×44,44r ; r

dv

dr
=−4×44,44r 2

d’où

1

r

d

dr

(
r

dv

dr

)
=−8

r
×44,44r =−8×44,44.

On en déduit l’écart de pression entre l’entrée et la sor-
tie du tuyau :

P (0)−P (L) = 8×44,44ηL = 356µνL .

On calcule ∆P = 1,55×104 Pa .

1. Dérivée droite car v ne dépend que de r .
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35—  Mesure de viscosité par lecture d’une
carte des vitesses

D’après la carte des vitesses, le champ des vitesses est
de la forme #»v = v(x, y) #»e x .
On considère une « particule de fluide » de cote y2, cu-
bique, de 1 cm de côté.
L’accélération de la particule de fluide est donnée par

#»a = ( #»v · #      »

grad) #»v = v(x, y2)
∂v(x, y2)

∂x
#»e x .

On mesure sur la carte

v(x1, y2) = 6

4
×0,1 = 0,15 m · s−1

et

v(x2, y2) = 7

4
×0,1 = 0,175 m · s−1 .

On peut estimer

∂v(x, y2)

∂x
= v(x2, y2)− v(x1, y2)

x2 −x1
= 0,175−0,15

5,5×10−2

= 0,455 s−1 .

On en déduit l’accélération de la particule de fluide :

a = v(x1, y2)
∂v(x, y2)

∂x
= 0,15×0,455

= 6,8×10−2 m · s−2 .

La force visqueuse exercée sur la face supérieure de
section S de la particule de fluide par le fluide au-
dessus est

#»
F sup = η

(
∂v(x, y)

∂y

)
sup

S #»e x ,

avec S = 1×10−4 m2.
On peut estimer(

∂v(x, y)

∂y

)
sup

= v(x1, y3)− v(x1, y2)

y3 − y2

avec

v(x1, y3) = 10

4
×0,1 = 0,25 m · s−1

soit (
∂v(x, y)

∂y

)
sup

= 0,25−0,15

10−2 = 10 s−1 .

On a donc la composante

Fsup = η×10×10−4 = 10−3η .

De même, la face inférieur reçoit du fluide en dessous
la force visqueuse

#»
F inf =−η

(
∂v(x, y)

∂y

)
inf

S #»e x ,

On peut estimer(
∂v(x, y)

∂y

)
inf

= v(x1, y2)− v(x1, y1)

y2 − y1

avec

v(x1, y1) = 4

4
×0,1 = 0,1 m · s−1 ,

d’où (
∂v(x, y)

∂y

)
inf

= 0,15−0,1

10−2 = 5 s−1 .

On a donc la composante

Finf =−η×5×10−4 =−5×10−4η .

En notant ℓ3 = 1×10−6 m−3 le volume de la particule
de fluide, le principe fondamental de la dynamique
projeté selon #»e x s’écrit

µℓ3a = Fsup +Finf ,

soit

1500× (1×10−6)× (6,8×10−2) = (10−3 −5×10−4)η

d’où η= 0,2 Pl .

37—  Écoulement de Couette généralisé

 Écoulement de Couette généralisée

On impose maintenant un gradient de pression paral-
lèlement au plan, par les conditions aux limites P (0) =
P0 et P (L) = P1 = P0 +∆P (le terme ∆P est algébrique).

xL0

y

a

P0 P1

#»
V 0

4. Les particules de fluide ayant une trajectoire recti-
ligne uniforme (car s’identifiant avec les lignes de cou-
rant dans le cas d’un écoulement stationnaire), leur ac-
célération est nulle. Le principe de la dynamique appli-
qué à une particule de fluide s’écrit donc

δm #»a = #»
0 =−#      »

gradP dτ+η
d2v

dy2 dτ#»e x ,

soit
dP

dx
= η

d2v

dy2 .

Le premier membre de l’égalité est indépendant de y ,
le second est indépendant de x ; ces deux termes sont
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donc égaux à une constante. Le profil de pression est
alors affine, d’où

dP

dx
= P (L)−P (0)

L−0

soit
dP

dx
= ∆P

L
.

5. On a donc

η
d2v

dy2 = ∆P

L
.

On en déduit v(y) = ∆P

2ηL
y2 + Ay +b.

Les conditions aux limites sont v(0) = 0 = B et v(a) =
V0, d’où A = V0

a
− ∆P

2ηL
a. Finalement

v(y) = ∆P

2ηL
y(y −a)+ V0

a
y .

ä Pour ∆P = 0 on a le profil linéaire des vitesses ca-
ractéristique de l’écoulement de Couette.

ä Pour V0 = 0, on a le profil parabolique symétrie ca-
ractéristique de l’écoulement de Poiseuille.

Cet écoulement est une superposition d’un écoule-
ment de Couette et de Poiseuille.

6. Le débit volumique est donné par

Q =
ˆ a

0
bv(y)dy

soit

Q =− ba3

12ηL
∆P +V0

ab

2
.

Le débit s’annule pour ∆P = 6ηL

a2 V0. Le champ des vi-

tesses s’écrit alors

v(y) = 3V0

a2

(
y2 − 2

3
ay

)
= 3V0

a2 y

(
y − 2

3
a

)
.

On vérifie v(0) = 0 et v(a) =V0.

y
v(y)

I

xL0

y

a

P0 P1

#»
V 0

La vitesse s’annule en I (y =−2
3 a). Au dessus de la ligne

bleue, l’écoulement est dirigé vers la droite, forcé par
le mouvement de la plaque supérieure. En-dessous de
cette ligne, on observe un écoulement de retour, dû à
la surpression à droite.

7. On peut décomposer la force exercée par le fluide
sur chaque plaque en une composante normale, la
force de pression, et une composante tangentielle, la
contrainte visqueuse.

La plaque supérieure est soumise à

#»
F = #»

F N,s + #»
F T,s = FN,s

#»e y +FT,s
#»e x .

La contrainte visqueuse exercée par le fluide sur la
plaque supérieure vaut

FT,s =−η
(

dv

dy

)
y=a

bL =−4η
V0

a
bL .

La plaque inférieure est soumise à la force de pression

FT,i =−FN,s =−
(
P0 + ∆P

2

)
bL.

La contrainte tangentielle s’exerçant sur la plaque infé-
rieure vaut

FT,i =+η
(

dv

dy

)
y=0

bL =−2η
V0

a
bL .

38—  Écoulement sanguin

1. Le débit volumique est donné par

Dv =
ˆ R

0
2πr v(r )dr = 2πB

ˆ R

0

(
r − r 3

R2

)
dr

= 2πB

(
R2

2
− R4

2R2

)
= πBR2

2
.

On a donc

B = 2Dv

πR2 .

2.a) Le fluide exerce sur une longueur dz de paroi la
force

dF =−η
(

dv

dr

)
R

2πR dz .

On a
dv

dr
=−2B

R2 r =−4Dv

πR4 r ,

d’où

dF = η
4Dv

πR3 2πR dz = η
8Dv

R2 dz .

Pour une longueur L, la résultante est donc

F = 8η
L

R2 Dv .

2.b) On a F > 0 : cette force est dans le sens de l’écou-
lement.

3. La quantité de mouvement du fluide contenu dans
une longueur L de tuyau étant constante, la somme
des forces exercées est nulle. Selon la 3e de Newton, le
tuyau exerce sur le fluide la force −#»

F , opposée à celle
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exercée par le fluide sur le tuyau. Selon Ox, on obtient
alors

0 = PeS −PsS −F ,

d’où, comme S =πR2

Pe −Ps = F

πR2 .

4. Compte tenu de l’expression de F établie précé-
demment, on a

Pe −Ps = 8η
L

πR4 Dv = RhDv ,

d’ou

Rh = 8ηL

πR4 .

39—  Sténose

1. L’écoulement étant incompressible, la diminution
de la section dans la zone sténosée se traduit par une
augmentation de la vitesse.

2. Nous allons faire l’hypothèse d’un écoulement la-
minaire stationnaire. On se ramène donc à un écoule-
ment de Poiseuille.

La résistance hydraulique de chaque partie saine du
vaisseau est

Rh,v =
8ηL

πR4 .

La résistance hydraulique de la partie sténosée est

Rh,s =
8ηLs

πR4
s

.

Les trois segments étant associés en série, la résistance
équivalente est donnée par Rh = 2Rh,v +Rh,s, soit

Rh = 8η

π

(
2L

R4 + Ls

R4
s

)
.

On peut alors écrire

∆P = RhQ ,

d’où l’expression du débit volumique

Q = π∆P

8η

1
2L
R4 + Ls

R4
s

.

On calcule

Q = 40π

8× (6×10−3)

1
7×10−2

(6×10−3)4 + 10−2

(2×10−3)4

= 3,9×10−6 m3 · s−1 ,

soit Q = 3,9 mL · s−1 .

3. Le nombre de Reynolds dans les parties non sténo-
sées s’écrit

Re = ρv2R

η

où la vitesse moyenne est donnée par Q = vπR2. On en

déduit Re = 72 .

Dans la partie sténosée, on a de même

Re′ = ρv ′2Rs

η
= 220.

Dans les deux cas, l’hypothèse d’un écoulement lami-
naire est pertinente.

4. La vitesse d’écoulement étant plus grande dans la
partie sténosée, on peut détecter cette différence de vi-
tesse par échographie Doppler.

40—  Couple sur un disque en rotation

Nous allons considérer les actions visqueuses s’exer-
çant sur la partie supérieure du disque. Par symétrie,
les actions s’exerçant sur la partie inférieure sont iden-
tiques.
À une distance r de l’axe, la vitesse d’un point du
disque est

#»
V = rΩ#»e θ

en coordonnées cylindriques.
Le champ des vitesses dans l’huile est de la forme #»v =
v(r, z) #»e θ et vérifie les conditions aux limites

v(r,0) = rΩ et v(r,h) = 0

en prenant z = 0 sur la face supérieure du disque (cf.
schéma).
Le profil de vitesse étant linéaire (selon z), on a donc

∂v

∂z
= v(r,h)− v(r,0)

h −0
=−rΩ

h
.

Considérons un élément de surface élémentaire en co-
ordonnées polaires

d
#»
S = r dr dθ #»e z

à la distance r de l’axe, centré en M(r,θ).
La force exercée par le fluide sur cette surface est

d
#»
F sup =+η∂v

∂z
dS #»e θ =−ηrΩ

h
r dr dθ #»e θ .

Le moment exercé sur cette surface est

d
#»
Γ sup = #     »

OM ∧d
#»
F sup = r #»e r ∧

(
−ηrΩ

h

)
r dr dθ #»e θ

=−ηΩ
h

r 3 dr dθ #»e z = dΓ#»e z .

Le moment total exercé sur la face supérieur vaut donc

2. On a un signe − car le fluide est sous la plaque, mais le gradient de vitesse est lui aussi opposé.
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On en déduit le moment total exercé sur la face supé-
rieure :

Γ=−ηΩ
h

ˆ R

0
r 3 dr

ˆ 2π

0
dθ =−ηΩ

h

R4

4
2π= πηΩ

2h
R4 .

Par symétrie, on a sur la face inférieure 2 d
#»
F inf = d

#»
F sup,

et le couple est identique.
Le moment total est donc

#»
Γ = Γ#»e z , où le couple total

exercé par les forces visqueuses sur le disque s’écrit

Γ=−πηΩ

2h
R4 .

41—  Viscosimètre de Poiseuille

1. On va considérer que la section S du réservoir est
grande devant la section πa2 du tuyau (ce qui revient à
considérer R À a comme le suggère la figure).

De la conservation du débit volumique on déduit que
la vitesse du fluide dans le réservoir est très faible de-
vant la vitesse du fluide dans le tuyau.

Nous pouvons dont faire l’hypothèse que le fluide est
quasi-au repos dans le réservoir.

L’écoulement est lent dans le tuyau, donc nous allons
supposer que cet écoulement est laminaire.

Enfin, le jet sort du tuyau à l’air libre, donc la pression
à la sortie du tuyau est P0, pression atmosphérique.

2. La loi de l’hydrostatique s’applique dans le réservoir
(fluide au repos), donc la pression dans le fond du ré-
servoir est

P1 = P0 +µg h .

Cette pression se retrouvant à l’entrée du tuyau, la sur-
pression entre l’entrée et la sortie du tuyau est

∆P = P1 −P0 =µg h .

L’hypothèse d’un écoulement laminaire permet d’ap-
pliquer la loi de Poiseuille donnant le débit volumique :

Dv = πa4

8ηL
∆P = πa4

8ηL
µg h .

On en déduit la vitesse débitante dans le tuyau par
Dv =πa2U , d’où

U = µg ha2

8ηL
.

En fait, le niveau h(t ) baisse très lentement dans le ré-
cipient ; la vitesse d’un point de la surface libre est donc

Vsl =−dh

dt
.

Attention au signe, h(t ) diminue quand le récipient se
vide !

La conservation du débit volumique entre le récipient
et le tuyau s’écrit

VslπR2 =Uπa2 .

On a donc

−dh

dt
=U

a2

R2 = µg a4

8ηLR2 h(t ) .

soit en notant ν= η/µ la viscosité cinématique

dh

dt
+ h(t )

τ
= 0 avec τ= 8νLR2

g a4 .

La solution est

h(t ) = h0 e−t/τ .

3. On donne

h(∆t ) = h0 e−∆t/τ = h0

2

d’où

∆t = τ ln2 = 8νLR2

g a4 ln2.

On en déduit

ν= ∆t g a4

2LR2 ln2
= 59×60×9,8× (0,5×10−3)4

8×0,5× (2×10−2)2 ln2

soit ν= 2,0×10−6 m2 · s−1 .

4. La vitesse débitante varie au cours du temps. Calcu-
lons sa valeur maximale, en t = 0 :

U = µg h0a2

8ηL
= g h0a −2

8νL
= R2

a2

h0

∆t
ln2

=
(

2×10−2

0,5×10−3

)2
6×10−2

60×59
ln2

soit U0 = 19 mm · s−1 .

Le nombre de Reynolds associé à l’écoulement dans le
tuyau est

Re = 2aU

ν
= 9,4 ≈ 10.

Cette valeur est bien compatible avec un écoulement
laminaire.

43—  Montée de lave

1. Le liquide étant incompressible, son écoulement
l’est aussi ; on a donc

div #»v = ∂v

∂z
= 0 et #»v = v(r ) #»e z .

La vitesse ne dépend que de r .
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2. Nous allons calculer v(r ) pour en déduire le débit.

Considérons comme système le tube de rayon r ,
d’épaisseur dr , compris entre z et z +dz.

Sa section est donc dS = 2πr dr et son volume dτ =
2πr dr dz.

Les particules de fluides ont un mouvement rectiligne
uniforme (lignes de courant rectilignes, égales aux tra-
jectoires en régime stationnaire) ; leur accélération est
donc nulle.

Le principe fondamentale de la dynamique s’écrit
alors, en projection selon Oz

0 = P (z)2πr dr −P (z +dz)2πr dr −ρg 2πr dr dz

+η2π(r +dr )

(
dv

dr

)
r+dr

dz −η2πr

(
dv

dr

)
r

dz

=−∂P

∂z
2πr dr dz−ρg 2πr dr dz+2πη

d

dr

[
r

dv

dr

]
dr dz

soit après simplification

dP

dz
= η

r

d

dr

[
r

dv

dr

]
−ρg .

Le premier membre de l’égalité est indépendant de r
tandis que le second est indépendant de z ; ces deux
termes sont donc égaux à une constante. La loi P (z) est
donc affine; en particulier

dP

dz
= P (h)−P (0)

h −0
= P0 −Pinf

h
.

On a donc

η

r

d

dr

[
r

dv

dr

]
−ρg = P0 −Pinf

h

soit
d

dr

[
r

dv

dr

]
= 1

ηh

[
P0 −Pinf +ρg h

]
r .

Intégrons une première fois :

r
dv

dr
= 1

2ηh

[
P0 −Pinf +ρg h

]
r 2 + A ,

soit
dv

dr
= 1

2ηh

[
P0 −Pinf +ρg h

]
r + A

r
.

Comme dv/dr doit rester fini en r = 0, on a A = 0 :

dv

dr
= 1

2ηh

[
P0 −Pinf +ρg h

]
r .

Intégrons une seconde fois :

v(r ) = 1

4ηh

[
P0 −Pinf +ρg h

]
r 2 +B .

La condition v(R) = 0 permet d’écrire

v(r ) = 1

4ηh

[
Pinf −P0 −ρg h

](
R2 − r 2) .

Le débit volumique est donné par

Q =
ˆ 5

0
2πr v(r )dr

= 2π

4ηh

(
Pinf −P0 −ρg h

)ˆ R

0
(r R2 − r 3)dr

= π

2ηh

(
Pinf −P0 −ρg h

)(
R2 R2

2
− R4

4

)
soit

Q = πR4

8ηh
(Pinf −P0 −ρg h) .

ä On aurait pu prendre comme système le cylindre de
rayon r et de hauteur dz. Le principe de la dyna-
mique donne alors

0 = P (z)πr 2−P (z+dz)πr 2−ρgπr 2 dz+η
dv

dr
2πr dz

d’où avec le même raisonnement que précédem-
ment

dP

dz
=−ρg + 2η

r

dv

dr
= P0 −Pinf

h
.

On arrive alors directement à

dv

dr
= 1

2ηh

(
P0 −Pinf +ρg h

)
r

faisant l’économie d’une intégration.

3. On calcule

Q = π×104

8×20×103 ×5000
× (2×103 ×105 −105 −2700×9,8×5000)

soit Q = 2,7×103 m3 · s−1 .

La vitesse est maximale au centre :

vmax = Pinf −P0 −ρg h

4ηh
R2 .

On calcule vmax = 17 m · s1 .

La vitesse débitante est donnée par Q = πR2u, d’où

u = 8,5 m · s−1 .

4. Le nombre de Reynolds est donné par

Re = ρu2R

η
.

On calcule Re = 23 .

L’hypothèse d’un écoulement laminaire est cohérente.
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